Study shows that COVID-19 vaccine is safe and effective in people with cancer

As we have seen in the US and all around the world, SARS-CoV-2, the virus that causes COVID-19, can cause severe complications and even death in many patients. In the early days of the pandemic, CIRM authorized $5 million in emergency funding for projects targeting the virus. To date CIRM has funded 20 projects related to COVID-19 research, including three clinical studies.

Luckily there have been several vaccines developed that are extremely effective at protecting individuals from the virus. These vaccines work by priming the body’s immune system to produce antibodies that are able to recognize and destroy SARS-CoV-2.

However, one question that remains is if patients with a weakened immune system, such as those receiving active cancer treatment, would be able to produce the antibodies after vaccination. Fortunately, a review of 200 patients with a wide spectrum of cancer diagnoses conducted by researchers at Montefiore Health System and Albert Einstein College of Medicine in the Bronx, NY, found that the COVID-19 vaccine is safe and effective in people with cancer.

The study looked at the rate of seroconversion, which indicates the presence of SARS-CoV-2 antibodies, in patients with solid tumors and blood cancers. The higher the rate of seroconversion, the more protection from COVID the patient has. The results showed that overall 94 percent of patients demonstrated seroconversion. Patients with solid tumors had a higher seroconversion rate compared to patients with blood cancers. Among patients with solid tumors 98 percent showed seroconversion while those with blood cancers showed a seroconversion rate of 85 percent.

The seroconversion rate also varied between those that received different cancer treatments. Those that received therapies for blood cancers that work by killing B cells (such as rituximab or CAR-T therapies) showed seroconversion rates of 70 percent. For those who had recently had bone marrow or stem cell transplants, the success rate was 74 percent. But the researchers stated that those rates were still much higher than expected.

In a news release, Amit Verma, M.B.B.S., senior co-author on the study, stresses the importance of cancer patients getting vaccinated.

“Vaccination among these populations have been lower, even though these groups were hardest hit by the pandemic. It’s important to stress how well these patient populations did with the vaccines.”

The full results of the study were published in Cancer Cell.

Call for a worldwide approach to regulating predatory stem cell clinics

You can’t fix a global problem at the local level. That’s the gist of a new perspective piece in the journal Stem Cell Reports that calls for a global approach to rogue stem cell clinics that offer bogus therapies.

The authors of the article are calling on the World Health Organization (WHO) to set up an advisory committee to draw up rules and regulations to help guide countries trying to shut these clinics down.

In a news release, senior author Mohamed Abou-el-Enein, the executive director of the joint University of Southern California/Children’s Hospital of Los Angeles Cell Therapy Program, says these clinics are trying to cash in on the promise of regenerative medicine.

“Starting in the early 2000s… unregulated stem cell clinics offering untested and poorly characterized treatments with insufficient information on their safety and efficacy began emerging all over the world, taking advantage of the media hype around stem cells and patients’ hope and desperation.”

Dr. Larry Goldstein

The authors include Lawrence Goldstein, PhD, a CIRM Board member and a Science Policy Fellows for the International Society for Stem Cell Research (ISSCR).

Zubin Master, an associate professor of biomedical ethics at the Mayo Clinic, says the clinics prey on vulnerable people who have serious medical conditions and who have often tried conventional medical approaches without success.

“We should aim to develop pathways to provide patients with evidenced-based experimental regenerative intervention as possible options where there is oversight, especially in circumstances where there is no suitable alternative left.”

The report says: “The unproven SCI (stem cell intervention) industry threatens the advancement of regenerative medicine. Reports of adverse events from unproven SCIs has the potential to affect funding and clinical trial recruitment, as well as increasing burdens among regulatory agencies to oversee the industry.

Permitting unregulated SCIs to flourish demonstrates a lack of concern over patient welfare and undermines the need for scientific evidence for medicinal product R&D. While some regulatory agencies have limited oversight or enforcement powers, or choose not to use them, unproven SCI clinics still serve to undermine authority given to regulatory agencies and may reduce public trust impacting the development of safe and effective therapies. Addressing the continued proliferation of clinics offering unproven SCIs is a problem worth addressing now.”

The authors say the WHO is uniquely positioned to help create a framework for the field that can help address these issues. They recommend setting up an advisory committee to develop global standards for regulations governing these clinics that could be applied in all countries. They also say we need more educational materials to let physicians as well as patients understand the health risks posed by bogus clinics.

This article comes out in the same week that reports by the Pew Charitable Trust and the FDA also called for greater regulation of these predatory clinics (we blogged about that here). Clearly there is growing recognition both in the US and worldwide that these clinics pose a threat not just to the health and safety of patients, but also to the reputation of the field of regenerative medicine as a whole.

“I believe that the global spread of unproven stem cell therapies reflects critical gaps in the international system for responding to health crises, which could put the life of thousands of patients in danger,” Abou-el-Enein says. “Urgent measures are needed to enhance the global regulatory capacity to detect and respond to this eminent crisis rapidly.”

CIRM-catalyzed spinout files for IPO to develop therapies for genetic diseases

Graphite Bio, a CIRM-catalyzed spinout from Stanford University that launched just 14 months ago has now filed the official SEC paperwork for an initial public offering (IPO). The company was formed by CIRM-funded researchers Matt Porteus, M.D., Ph.D. and Maria Grazia Roncarolo, M.D.

Six years ago, Dr. Porteus and Dr. Roncarolo, in conjunction with Stanford University, received a CIRM grant of approximately $875K to develop a method to use CRISPR gene editing technology to correct the blood stem cells of infants with X-linked severe combined immunodeficiency (X-SCID), a genetic condition that results in a weakened immune system unable to fight the slightest infection.

Recently, Dr. Porteus, in conjunction with Graphite, received a CIRM grant of approximately $4.85M to apply the CRISPR gene editing approach to correct the blood stem cells of patients with sickle cell disease, a condition that causes “sickle” shaped red blood cells. As a result of this shape, the cells clump together and clog up blood vessels, causing intense pain, damaging organs, and increasing the risk of strokes and premature death. The condition disproportionately affects members of the Black and Latin communities.

CIRM funding helped Stanford complete the preclinical development of the sickle cell disease gene therapy and it enabled Graphite to file an Investigational New Drug (IND) application with the U.S. Food and Drug Administration (FDA), one of the last steps necessary before conducting a human clinical trial of a potential therapy. Towards the end of 2020, Graphite got the green light from the FDA to conduct a trial using the gene therapy in patients with sickle cell disease.

In a San Francisco Business Times report, Graphite CEO Josh Lehrer stated that the company’s goal is to create a platform that can apply a one-time gene therapy for a broad range of genetic diseases.

Two voices, one message, watch out for predatory stem cell clinics

Last week two new papers came out echoing each other about the dangers of bogus “therapies” being offered by predatory stem cell clinics and the risks they pose to patients.

The first was from the Pew Charitable Trusts entitled: ‘Harms Linked to Unapproved Stem Cell Interventions Highlight Need for Greater FDA Enforcement’ with a subtitle: Unproven regenerative medical products have led to infections, disabilities, and deaths.’

That pretty much says everything you need to know about the report, and in pretty stark terms; need for greater FDA enforcement and infections, disabilities and deaths.

Just two days later, as if in response to the call for greater enforcement, the Food and Drug Administration (FDA) came out with its own paper titled: ‘Important Patient and Consumer Information About Regenerative Medicine Therapies.’ Like the Pew report the FDA’s paper highlighted the dangers of unproven and unapproved “therapies” saying it “has received reports of blindness, tumor formation, infections, and more… due to the use of these unapproved products.”

The FDA runs down a list of diseases and conditions that predatory clinics claim they can cure without any evidence that what they offer is even safe, let alone effective. It says Regenerative Medicine therapies have not been approved for the treatment of:

  • Arthritis, osteoarthritis, rheumatism, hip pain, knee pain or shoulder pain.
  • Blindness or vision loss, autism, chronic pain or fatigue.
  • Neurological conditions like Alzheimer’s and Parkinson’s.
  • Heart disease, lung disease or stroke.

The FDA says it has warned clinics offering these “therapies” to stop or face the risk of legal action, and it warns consumers: “Please know that if you are being charged for these products or offered these products outside of a clinical trial, you are likely being deceived and offered a product illegally.”

It tells consumers if you are offered one of these therapies – often at great personal cost running into the thousands, even tens of thousands of dollars – you should contact the FDA at ocod@fda.hhs.gov.

The Pew report highlights just how dangerous these “therapies” are for patients. They did a deep dive into health records and found that between 2004 and September 2020 there were more than 360 reported cases of patients experiencing serious side effects from a clinic that offered unproven and unapproved stem cell procedures.

Those side effects include 20 deaths as well as serious and even lifelong disabilities such as:

  • Partial or complete blindness (9).
  • Paraplegia (1).
  • Pulmonary embolism (6).
  • Heart attack (5).
  • Tumors, lesions, or other growths (16).
  • Organ damage or failure in several cases that resulted in death.

More than one hundred of the patients identified had to be hospitalized.

The most common type of procedures these patients were given were stem cells taken from their own body and then injected into their eye, spine, hip, shoulder, or knee. The second most common was stem cells from a donor that were then injected.

The Pew report cites the case of one California-based stem cell company that sold products manufactured without proper safety measures, “including a failure to properly screen for communicable diseases such as HIV and hepatitis B and C.” Those products led to at least 13 people being hospitalized due to serious bacterial infection in Texas, Arizona, Kansas, and Florida.

Shocking as these statistics are, the report says this is probably a gross under count of actual harm caused by the bogus clinics. It says the clinics themselves rarely report adverse events and many patients don’t report them either, unless they are so serious that they require medical intervention.

The Pew report concludes by saying the FDA needs more resources so it can more effectively act against these clinics and shut them down when necessary. It says the agency needs to encourage doctors and patients to report any unexpected side effects, saying: “devising effective strategies to collect more real-world evidence of harm can help the agency in its efforts to curb the growth of this unregulated market and ensure that the regenerative medicine field develops into one that clinicians and patients can trust and safely access.”

We completely support both reports and will continue to work with the FDA and anyone else opposed to these predatory clinics. You can read more here about what we have been doing to oppose these clinics, and here is information that will help inform your decision if you are thinking about taking part in a stem cell clinical trial but are not sure if it’s a legitimate one.

CIRM funded trial may pave way for gene therapy to treat different diseases

Image Description: Jordan Janz (left) and Dr. Stephanie Cherqui (right)

According to the  National Organization for Rare Disorders (NORD), a disease is consider rare if it affects fewer than 200,000 people. If you combine the over 7,000 known rare diseases, about 30 million people in the U.S. are affected by one of these conditions. A majority of these conditions have no cure or have very few treatment options, but a CIRM funded trial (approximately $12 million) for a rare pediatric disease has showed promising results in one patient using a gene therapy approach. The hope for the field as a whole is that this proof of concept might pave the way to use gene therapy to treat other diseases.

Cystinosis is a rare disease that primarily affects children and young adults, and leads to premature death, usually in early adulthood.  Patients inherit defective copies of a gene that results in abnormal accumulation of cystine (hence the name cystinosis) in all cells of the body.  This buildup of cystine can lead to multi-organ failure, with some of earliest and most pronounced effects on the kidneys, eyes, thyroid, muscle, and pancreas.  Many patients suffer end-stage kidney failure and severe vision defects in childhood, and as they get older, they are at increased risk for heart disease, diabetes, bone defects, and neuromuscular problems.  There is currently a drug treatment for cystinosis, but it only delays the progression of the disease, has severe side effects, and is expensive.

Dr. Stephane Cherqui at UC San Diego (UCSD), in partnership with AVROBIO, is conducting a clinical trial that uses a gene therapy approach to modify a patient’s own blood stem cells with a functional version of the defective gene. The corrected stem cells are then reintroduced into the patient with the hope that they will give rise to blood cells that will reduce cystine buildup in the body.  

22 year old Jordan Janz was born with cystinosis and was taking anywhere from 40 to 60 pills a day as part of his treatment. Unfortunately the medication affected his body odor, leaving him smelling like rotten eggs or stinky cheese. In 2019, Jordan was the first of three patients to participate in Dr. Cherqui’s trial and the results have been remarkable. Tests have shown that the cystine in his eyes, skin and muscle have greatly decreased. Instead of the 40-60 pills a day, he just takes vitamins and specific nutrients his body needs. What’s more is that he no longer has a problem with body odor caused by the pills he once had to take. Although it will take much more time know if Jordan was cured of the disease, he says that he feels “essentially cured”.

In an article from the Associated Press, Jordan is optimistic about his future.

“I have more of a life now. I’m going to school. I’m hoping to open up my own business one day.”

You can learn more about Jordan by watching the video below:

Although gene therapy approaches still need to be closely studied, they have enormous potential for treating patients. CIRM has funded other clinical trials that use gene therapy approaches for different genetic diseases including X-SCID, ADA-SCID, ART-SCID, X-CGD, and sickle cell disease.

Friday Round Up

Here’s a look at a couple of stories that caught our eye this week:

Jasper Therapeutics has had a busy couple of weeks. Recently they announced data from their Phase 1 clinical trial treating people with Myelodysplastic syndromes (MDS). This is a group of disorders in which immature blood-forming cells in the bone marrow become abnormal and leads to low numbers of normal blood cells, especially red blood cells. We blogged about that here.

The data showed that six patients were given JSP191 – in combination with low-dose radiation five of the six had no detectable levels of disease and the sixth patient had reduced levels.

This was a big deal for us because CIRM funded the early stage research and even a clinical trial  that led to the development of JSP191.

Now Jasper has announced it is partnering with the National Institute of Allergy and Infectious Disease in a Phase 1/2 clinical trial using JSP191, as part of a treatment for chronic granulomatous disease (CGD). Congratulations to Jasper. And congratulations to us for helping them get there.

Oh, and just to toot our horn a little bit more – it is Friday after all – we have funded other approaches to CGD including one that resulted in curing Brenden Whittaker.

OK, enough about us.

To say that this last year has been a stressful one would be something of an understatement. But it’s not just people who get stressed. Stem cells do too. And, like people, when stem cells get stressed they don’t always behave in the way you would like them to. When some people get stressed they find a cocktail can help take the edge of it. Apparently that works for stem cells as well!

Now we are not talking about slipping a Manhattan or Mai Tai into a petri dish filled with stem cells. We are talking about a very different kind of cocktail.

Researchers at the National Institutes of Health have developed what they describe as a “four-part small molecule cocktail” that can help protect a specific kind of stem cell from stress. The cell is an induced pluripotent stem cell (iPSC), which has the ability to turn into any other kind of cell in the body. iPSC’s have great potential for treating a variety of different diseases and conditions, but they’re also sensitive and without the right conditions and environment they can get stressed and that in turn can damage their DNA and lead to them dying.

In a news release Dr. Ilyas Singeç, the lead researcher, says this NIH “cocktail” could help prevent that: “The small-molecule cocktail is safeguarding cells and making stem cell use more predictable and efficient. In preventing cellular stress and DNA damage that typically occur, we’re avoiding cell death and improving the quality of surviving cells. The cocktail will become a broadly used staple of the stem cell field and boost stem cell applications in both research and the clinic.”  

The team hope this could enhance the potential therapeutic uses of iPSCs in finding treatments for diseases such as diabetes, Parkinson’s and spinal cord injury.

The study is published in the journal Nature Methods.

Join the World Stem Cell Summit for a virtual conference about stem cells and regenerative medicine

Every year Bernie Siegel and his team at the World Stem Cell Summit (WSCS) put together a conference that highlights various topics in the stem cell and regenerative medicine field. This year, because of the coronavirus pandemic, the conference has adopted an entirely virtual format.

The Virtual World Stem Cell Summit, as it is known, is a global event, broad in scope, covering a wide variety of topics and issues. It is designed to breakdown silos, expand our knowledge about stem cell research, even to help create collaborations between researchers and patient advocates. The overall goal is simple, to improve health and deliver cures. 

You can register for the conference by clicking the link here and you might recognize some friendly and familiar CIRM faces in the list of speakers!

CIRM President and CEO Dr. Maria Millan will be providing an update on CIRM following the passage of Proposition 14, which authorized an additional $5.5 billion in funding for the state agency.

CIRM Chairman Jonathan Thomas will participate in a panel titled Health Literacy: Stem Cell Science, Vaccine Development & Confidence in the Age of the Covid Pandemic and Infodemic.

CIRM Board Member Ysabel Duron, a patient advocate for cancer, will be moderating a panel that will discuss the importance of Diversity, Equity, and Inclusion (DEI) and how to better incorporate DEI into clinical research.

There will also be panel moderated by Melissa King from Americans for Cures that will discuss the important role that patient advocacy plays in advancing the field of regenerative medicine.

The conference is from June 14 – 18, 2021 which is fast approaching so be sure to register soon!

Paving the Way

When someone scores a goal in soccer all the attention is lavished on them. Fans chant their name, their teammates pile on top in celebration, their agent starts calling sponsors asking for more money. But there’s often someone else deserving of praise too, that’s the player who provided the assist to make the goal possible in the first place. With that analogy in mind, CIRM just provided a very big assist for a very big goal.

The goal was scored by Jasper Therapeutics. They have just announced data from their Phase 1 clinical trial treating people with Myelodysplastic syndromes (MDS). This is a group of disorders in which immature blood-forming cells in the bone marrow become abnormal and leads to low numbers of normal blood cells, especially red blood cells. In about one in three patients, MDS can progress to acute myeloid leukemia (AML), a rapidly progressing cancer of the bone marrow cells.

The most effective way to treat, and even cure, MDS/AML is with a blood stem cell transplant, but this is often difficult for older patients, because it involves the use of toxic chemotherapy to destroy their existing bone marrow blood stem cells, to make room for the new, healthy ones. Even with a transplant there is often a high rate of relapse, because it’s hard for chemotherapy to kill all the cancer cells.

Jasper has developed a therapy, JSP191, which is a monoclonal antibody, to address this issue. JSP191 helps supplement the current treatment regimen by clearing all the remaining abnormal cells from the bone marrow and preventing relapse. In addition it also means the patients gets smaller doses of chemotherapy with lower levels of toxicity. In this Phase 1 study six patients, between the ages of 65 and 74, were given JSP191 – in combination with low-dose radiation and chemotherapy – prior to getting their transplant. The patients were followed-up at 90 days and five of the six had no detectable levels of MDS/AML, and the sixth patient had reduced levels. None of the patients experienced serious side effects.

Clearly that’s really encouraging news. And while CIRM didn’t fund this clinical trial, it wouldn’t have happened without us paving the way for this research. That’s where the notion of the assist comes in.

CIRM support led to the development of the JSP191 technology at Stanford. Our CIRM funds were used in the preclinical studies that form the scientific basis for using JSP191 in an MDS/AML setting.

Not only that, but this same technique was also used by Stanford’s Dr. Judy Shizuru in a clinical trial for children born with a form of severe combined immunodeficiency, a rare but fatal immune disorder in children. A clinical trial that CIRM funded.

It’s a reminder that therapies developed with one condition in mind can often be adapted to help treat other similar conditions. Jasper is doing just that. It hopes to start clinical trials this year using JSP191 for people getting blood stem cell transplants for severe autoimmune disease, sickle cell disease and Fanconi anemia.

Latest CIRM TRAN1 awards focus on CAR-based cell therapy to treat cancer

Earlier this week the CIRM ICOC Board awarded $14.5 million to fund three translational stage research projects (TRAN1), whose goal is to support early development activities necessary for advancement to a clinical study or broad end use of a potential therapy. Although all three projects have their distinct area of focus, they all utilize CAR-based cell therapy to treat a certain type of cancer. This approach involves obtaining T cells, which are an immune system cell that can destroy foreign or abnormal cells, and modifying them with a chimeric antigen receptor (CAR). This enables the newly created CAR-engineered cells to identify specific tumor signals and destroy the cancer. In the sections below we will take a deeper look at each one of these recently approved projects.

TRAN1-12245

Image Description: Hideho Okada, M.D., Ph.D.

$2,663,144 was awarded to the University of California, San Francisco (UCSF) to develop specialized CAR-T cells that are able to recognize and destroy tumor cells in glioblastoma, an aggressive type of cancer that occurs in the brain and spinal cord. The specialized CAR-T cells have been created such that they are able to detect two specific signals expressed in glioblastoma. Hideho Okada, M.D., Ph.D. and his team at UCSF will test the therapy in mice with human glioblastoma grafts. They will be looking at preclinical safety and if the CAR-T cell therapy is able to produce a desired or intended result.

TRAN1-12250

Image Description: Lili Yang, Ph.D.

$5,949,651 was awarded to the University of California, Los Angeles (UCLA) to develop specialized CAR-engineered cells from human blood stem cells to treat multiple myeloma, a type of blood cancer. Lili Yang, Ph.D. and her team have developed a method using human blood stem cells to create invariant natural killer T (iNKT) cells, a special kind of T cell with unique features that can more effectively attack tumor cells using multiple mechanisms and migrate to and infiltrate tumor sites. After being modified with CAR, the newly created CAR-iNKT cells are able to target a specific signal present in multiple myeloma. The team will test the therapy in mice with human multiple myeloma. They will be looking at preclinical safety and if the CAR-iNKT cells are able to produce a desired or intended result.

TRAN1-12258

Image Description: Cristina Puig-Saus, Ph.D.

Another $5,904,462 was awarded to UCLA to develop specialized CAR-T cells to treat melanoma, a form of skin cancer. Cristina Puig-Saus, Ph.D. and her team will use naïve/memory progenitor T cells (TNM), a subset of T cells enriched with stem cells and memory T cells, an immune cell that remains long after an infection has been eliminated. After modification with CAR, the newly created CAR-TNM cells will target a specific signal present in melanoma. The team will test the therapy in mice with human melanoma. They will be looking at preclinical safety and if the CAR-TNM cells are able to produce a desired or intended result.

CIRM Board Approves Continued Funding for SPARK and Alpha Stem Cell Clinics

Yesterday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved $8.5 million to continue funding of the Summer Program to Accelerate Regenerative Medicine Knowledge (SPARK) and Alpha Stem Cell Clinics (ASCC).

This past February, the Board approved continued funding for stem cell focused educational programs geared towards undergraduate, masters, pre/postdoctoral, and medical students. The SPARK program is an existing CIRM educational program that provides for a summer internship for high school students.

To continue support for SPARK, the Board has approved $5.1 million to be allocated to ten new awards ($509,000 each) with up to a five-year duration to support 500 trainees.  The funds will enable high school students all across California to directly take part in summer research at various institutions with a stem cell, gene therapy, or regenerative medicine focus.  The goal of these programs is to prepare and inspire the next generation of scientists and provide opportunities for California’s diverse population, including those who might not have the opportunity to take part in summer research internships due to socioeconomic constraints.

CIRM’s ASCC Network is a unique regenerative medicine-focused clinical trial network that currently consists of five medical centers across California who specialize in accelerating stem cell and gene-therapy clinical trials by leveraging of resources to promote efficiency, sharing expertise, and enhancing chances of success for the patients. To date, over 105 trials in various disease indications have been supported by the ASCC Network.  While there are plans being developed for a significant ASCC Network expansion by some time next year, funding for all five sites has ended or are approaching the end of their current award period. To maintain the level of activity of the ASCC Network until expansion funding is available next year, the Board approved $3.4 million to be allocated to five supplemental awards (up to $680,000 each) in order to provide continued funding to all five sites; the host institutions will be required to match the CIRM award.  These funds will support talent retention and program key activities such as the coordination of clinical research, management of patient and public inquiries, and other operational activities vital to the ASCC Network.

“Education and infrastructure are two funding pillars critical for creating the next generation of researchers and conducting stem cell based clinical trials” says Maria T. Millan, M.D., President and CEO of CIRM.  “The importance of these programs was acknowledged in Proposition 14 and we expect that they will continue to be important components of CIRM’s programs and strategic direction in the years to come.”

The Board also awarded $14.5 million to fund three translational stage research projects (TRAN1), whose goal is to support early development activities necessary for advancement to a clinical study or broad end use of a potential therapy.

The awards are summarized in the table below:

ApplicationTitleInstitution Award
TRAN1-12245  Development of novel synNotch CART cell therapy in patients with recurrent EGFRvIII+ glioblastoma    UCSF    $2,663,144
TRAN1-12258  CAR-Tnm cell therapy for melanoma targeting TYRP-1    UCLA  $5,904,462  
TRAN1-12250HSC-Engineered Off-The-Shelf CAR-iNKT Cell Therapy for Multiple Myeloma  UCLA  $5,949,651