Researcher claims to have made first gene-edited baby. But did it really happen?

Raelians

Claude Vorilhorn, founder of Raelism; Photo: courtesy thoughtco.com

Remember the Raelians? Probably not. But way back in 2002 the group, some described them as a cult, claimed it had created the world’s first cloned baby. The news made headlines all around the world raising fears we were stepping into uncharted scientific territory. Several weeks later the scientist brought in by the Raelians to verify their claims called it an “elaborate hoax.”

hejiankui

He Jiankui: Photo courtesy MIT Technology Review

Fast forward 16 years and a Chinese scientist named He Jiankui of Shenzhen claims he has created the first genetically modified humans. Again, it is generating headlines around the world and alarming people. In an interview with CNBC, Hank Greely, a bioethicist at Stanford, said if it happened it was “criminally reckless and I unequivocally condemn the experiment.”

The question now is did it happen, or is this just another “elaborate hoax”?

The concerns about this story are real. The scientist claims he used CRISPR to modify embryos during fertility treatments, resulting in the birth of twin girls.

CRISPR has been making headlines all of its own in the last few years as a fast, cheap and efficient way of editing genes. CIRM supports research using CRISPR for problems such as sickle cell disease. The difference being that our research works with adults so any changes in their genes are just for them. Those changes are not passed on to future generations.

The work making headlines around the world used CRISPR on embryos, meaning a child born from one of those embryos would pass those changes on to future generations. In effect, creating a new kind of human being.

This approach raises all sorts of serious issues – scientific, ethical and moral – not the least of which is that the technique could create unknown mutations down the road that would be passed on to future generations.  That’s why in the US the editing of embryos for pregnancy is banned.

But almost as soon as the news was announced there were questions raised about it. The research was not published anywhere. A hospital that the researchers named in their ethical approval documents is denying any involvement.

If it did happen, it could open a new, and potentially frightening chapter in science. In an interview on CNN, Julian Savulescu, director of the Oxford Uehiro Centre for Practical Ethics at the University of Oxford, called the use of CRISPR in this manner as “genetic Russian Roulette.”

“If true, this experiment is monstrous. Gene editing itself is experimental and is still associated with off-target mutations, capable of causing genetic problems early and later in life, including the development of cancer.”

And in an interview on the BBC, Prof Robert Winston, Professor of Science and Society at Imperial College London, said: “If this is a false report, it is scientific misconduct and deeply irresponsible. If true, it is still scientific misconduct.”

Our best hope right now is that this is just a repeat of the Raelians. Our worst fear, is that it’s not.

Stories that caught our eye: SanBio’s Traumatic Brain Injury trial hits its target; A new approach to endometriosis; and a SCID kid celebrates Halloween in style

TBI

Traumatic brain injury: graphic courtesy Brainline.org

Hopeful signs for treating brain injuries

There are more than 200,000 cases of traumatic brain injury (TBI) in the US every year. The injuries can be devastating, resulting in everything from difficult sleeping to memory loss, depression and severe disability. There is no cure. But this week the SanBio Group had some encouraging news from its Phase 2 STEMTRA clinical trial.

In the trial patients with TBI were given stem cells, derived from the bone marrow of healthy adult donors. When transplanted into the area of injury in the brain, these cells appear to promote recovery by stimulating the brain’s own regenerative ability.

In this trial the cells demonstrated what the company describes as “a statistically significant improvement in their motor function compared to the control group.”

CIRM did not fund this research but we are partnering with SanBio on another clinical trial targeting stroke.

 

Using a woman’s own cells to heal endometriosis

Endometriosis is an often painful condition that is caused when the cells that normally line the inside of the uterus grow outside of it, causing scarring and damaging other tissues. Over time it can result in severe pain, infertility and increase a woman’s risk for ovarian cancer.

There is no effective long-term treatment but now researchers at Northwestern Medicine have developed an approach, using the woman’s own cells, that could help treat the problem.

The researchers took cells from women, turned them into iPS pluripotent stem cells and then converted those into healthy uterine cells. In laboratory tests these cells responded to the progesterone, the hormone that plays a critical role in the uterus.

In a news release, Dr. Serdar Bulun, a senior author of the study, says this opens the way to testing these cells in women:

“This is huge. We’ve opened the door to treating endometriosis. These women with endometriosis start suffering from the disease at a very early age, so we end up seeing young high school girls getting addicted to opioids, which totally destroys their academic potential and social lives.”

The study is published in the journal Stem Cell Reports.

IMG_20181031_185752

Happy Halloween from a scary SCID kid

A lot of the research we write about on the Stem Cellar focuses on potential treatments or new approaches that show promise. So every once in a while, it’s good to remind ourselves that there are already stem cell treatments that are not just showing promise, they are saving lives.

That is the case with Ja’Ceon Golden. Regular readers of our blog know that Ja’Ceon was diagnosed with Severe Combined Immunodeficiency (SCID) also known as “bubble baby disease” when he was just a few months old. Children born with SCID often die in the first few years of life because they don’t have a functioning immune system and so even a simple infection can prove life-threatening.

Fortunately Ja’Ceon was enrolled in a CIRM-funded clinical trial at UC San Francisco where his own blood stem cells were genetically modified to correct the problem.

IMG_20181030_123500

Today he is a healthy, happy, thriving young boy. These pictures, taken by his great aunt Dannie Hawkins, including one of him in his Halloween costume, show how quickly he is growing. And all thanks to some amazing researchers, an aunt who wouldn’t give up on him, and the support of CIRM.

Living with sickle cell disease: one person’s story of pain and prejudice and their hopes for a stem cell therapy

Whenever we hold an in-person Board meeting at CIRM we like to bring along a patient or patient advocate to address the Board. Hearing from the people they are trying to help, who are benefiting or may benefit from a therapy CIRM is funding, reminds them of the real-world implications of the decisions they make and the impact they have on people’s lives.

At our most recent meeting Marissa Cors told her story.

Marissa at ICOC side view copy

Marissa Cors addressing the CIRM Board

My name is Marissa Cors, I have sickle cell disease. I was diagnosed with sickle cell disease at six months of age. I am now 40. Sickle cell has been a part of my life every day of my life.

The treatments you are supporting and funding here at CIRM are very important. They offer a potential cure to a disease that desperately needs one. I want to tell you just how urgently people with sickle cell need a cure.

I have been hospitalized so many times that my medical record is now more than 8 gigabytes. I have almost 900 pages in my medical record from my personal doctor alone.

I live with pain every day of my life but because you can’t see pain most people have no idea how bad it can be. The pain comes in two forms:

Chronic pain – this comes from the damage that sickle cell disease does to the body over many years. My right knee, my left clavicle, my lower back are all damaged because of the disease. I get chronic headaches. All these are the result of a lifetime of crisis.

Acute pain – this is the actual crisis that can’t be controlled, where the pain is so intense and the risk of damage to my organs so great that it requires hospitalization. That hospitalization can result in yet more pain, not physical but emotional and psychological pain.

But those are just the simple facts. So, let me tell you what it’s really like to live with sickle cell disease.

Marissa at ICOC front, smiling

It means being in a constant state of limbo and a constant state of unknown because you have no idea when the next crisis is going to come and take over and you have to stop your life. You have absolutely no idea how bad the pain will be or how long it will last.

It is a constant state of frustration and upset and even a constant state of guilt because it is your responsibility to put in place all the safety nets and plans order to keep life moving as normally as possible, not just for you but for everyone else around you. And you know that when a crisis comes, and those plans get ripped up that it’s not just your own life that gets put on hold while you try to deal with the pain, it’s the lives of those you love.

It means having to put your life on hold so often that it’s hard to have a job, hard to have a career or lead a normal life. Hard to do the things everyone else takes for granted. For example, in my 30’s, while all my friends from home and college were building careers and getting married and having families, I was in a cancer ward trying to stay alive, because that’s where they put you when you have sickle cell disease. The cancer ward.

People talk about new medications now that are more effective at keeping the disease under control. But let me tell you. As a black woman walking into a hospital Emergency Room saying I am having a sickle cell crisis and need pain medications, and then naming the ones I need, too often I don’t get treated as a patient, I get treated as a drug addict, a drug seeker.

Even when the doctors do agree to give me the medications I need they often act in a way that clearly shows they don’t believe me. They ask, “How do we know this is a crisis, why is it taking you so long for the medication to take effect?” These are people who spent a few days in medical school reading from a textbook about sickle cell disease. I have spent a lifetime living with it and apparently that’s still not enough for them to trust that I do know what I am talking about.

That’s when I usually say, “Goodbye and don’t forget to send in your replacement doctor because I can’t work with you.”

I have had doctors take away my medication because they wanted to see how I would react without it.

If I dare to question what a doctor or nurse does, they frequently tell me they have to go and take care of other patients who are really sick, not like me.

Even when I talk in my “nice white lady” voice they still treat me and call me “an angry black girl”. Girl. I’m a 40 year old woman but I get treated like a child.

It’s hard to be in the hospital surrounded by doctors and nurses and yet feel abandoned by the medical staff around you.

This month alone 25 people have died from sickle cell in the US. It’s not because we don’t have treatments that can help. It’s due to negligence, not getting the right care at the right time.

I know the work you do here at CIRM won’t change those attitudes. But maybe the research you support could find a cure for sickle cell, so people like me don’t have to endure the pain, the physical, emotional and spiritual pain, that the disease brings every day.

You can read about the work CIRM is funding targeting sickle cell disease, including two clinical trials, on this page on our website.

Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Join us tomorrow at noon for “Ask the Stem Cell Team about Sickle Cell Disease”, a FaceBook Live Event

As an early kick off to National Sickle Cell Awareness Month – which falls in September every year – CIRM is hosting a “Ask the Stem Cell Team” FaceBook Live event tomorrow, August 28th, from noon to 1pm (PDT).

CIRMFaceBookLiveIcon4BeliveTV_v2

The live broadcast will feature two scientists and a patient advocate who are working hard to bring an end to sickle cell disease, a devastating, inherited blood disorder that largely targets the African-American community and to a lesser degree the Hispanic community.

You can join us by logging onto Facebook and going to this broadcast link: https://bit.ly/2o4aCAd

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you miss tomorrow’s broadcast, not to worry. We’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

For a sneak preview here’s a short video featuring our patient advocate speaker, Adrienne Shapiro. And see below for more details about Ms. Shapiro and our two other guests.

Adrienne Shapiro [Video: Todd Dubnicoff/CIRM]

  • Dr. Donald B. KohnUCLA MIMG BSCRC Faculty 180118

    Donald Kohn, MD

    Don Kohn, M.D. is a professor in the departments of Pediatrics and Microbiology, Immunology and Molecular Genetics in UCLA’s Broad Stem Cell Research Center. Dr. Kohn has a CIRM Clinical Stage Research grant in support of his team’s Phase 1 clinical trial which is genetically modifying a patient’s own blood stem cells to produce a correct version of hemoglobin, the protein that is mutated in these patients, which causes abnormal sickle-like shaped red blood cells. These misshapen cells lead to dangerous blood clots, debilitating pain and even death. The genetically modified stem cells will be given back to the patient to create a new sickle cell-free blood supply.

  • Walters_Mark_200x250

    Mark Walters, MD

    Mark Walters, M.D., is a pediatric hematologist/oncologist and is director of the Blood & Marrow Transplantation Program at UCSF Benioff Children’s Hospital Oakland. Dr. Walters has a CIRM-funded Therapeutic Translation Research grant which aims to improve Sickle Cell Disease (SCD) therapy by preparing for a clinical trial that might cure SCD after giving back sickle gene-corrected blood stem cells – using cutting-edge CRISPR gene editing technology – to a person with SCD. If successful, this would be a universal life-saving and cost-saving therapy.

  • e90e6-adrienneshapiro

    Adrienne Shapiro

    Adrienne Shapiro is a patient advocate for SCD and the co-founder of the Axis Advocacy SCD patient education and support website. Shapiro is the fourth generation of mothers in her family to have children born with sickle cell disease.  She is vocal stem cell activist, speaking to various groups about the importance of CIRM’s investments in both early stage research and clinical trials. In January, she was awarded a Stem Cell and Regenerative Medicine Action Award at the 2018 World Stem Cell Summit.

Stem cell therapy offers a glimpse of hope for a student battling a deadly cancer

ribastrialcancer

Daniel Apodaca Image credit: CNN

“About a week later they gave me a call and mentioned the word ‘cancer’ to me. For a long time, I was depressed and then, I guess you accept it and try to make the most out of the time you have now.’

That is not something you expect to hear from a 24 year old. But for Daniel Apodaca that became, very suddenly, his reality. He was diagnosed with a rare, soft tissue cancer called epithelioid sarcoma. Fortunately for Daniel help was at hand, and a lot closer than he could ever have possibly anticipated.

Daniel is a student at UCLA. CIRM is funding a clinical trial run by UCLA’s Dr. Antoni Ribas that targets the same cancer Daniel is battling. The therapy re-programs a person’s own immune system to help fight the disease.

Daniel became patient #1 in that trial.

CNN reporter Rachel Crane profiled Dr. Ribas and the treatment he hopes will save Daniel’s life.

 

 

CRISPR Gene Editing Tool Linked to Unexpected Collateral DNA Damage

crispr-2-21-18-1024x682

Photo Credit: Genetic Literacy Project

 

CRISPR–Cas9 has been widely hailed as the gene editing tool of the future. But research, published in the journal Nature Biotechnology,  about the effects of CRISPR/Cas9, have found it can cause unexpected genetic damage which could lead to dangerous changes in some cells.

Scientists have also learned there may be some safety implications for gene therapies that are being developed using CRISPR/Cas9.

These results come on the heels of a few studies published last month which suggested the CRISPR gene editing tool may inadvertently increase cancer risk in some cells.

“We found that changes in the DNA have been seriously underestimated before now,” said Allan Bradley, a professor at Britain’s Wellcome Sanger Institute who co-led the research published on Monday.

CRISPR/Cas9 can alter sections of DNA in cells by cutting at specific points and introducing changes at that location and is seen by many as a promising way to create treatments for diseases such as HIV or cancer.

Bradley’s team carried out a full systematic study in both mouse and human cells and discovered that CRISPR/Cas9 frequently caused extensive mutations including large genetic rearrangements such as DNA deletions and insertions.

These could lead to important genes being switched on or off – as intended by the therapies – but could also have major unexpected implications, the scientists said.

While experts say treatments like these could inactivate a disease-causing gene, or correct a genetic mutation, much more research is still needed to ensure techniques are safe.

For the first time, scientists entirely reprogram human skin cells to iPSCs using CRISPR

Picture1

CRISPR iPSC colony of human skin cells showing expression of SOX2 and TRA-1-60, markers of human embryonic pluripotent stem cells

Back in 2012, Shinya Yamanaka was awarded the Nobel Prize in Physiology or Medicine for his group’s identification of “Yamanaka Factors,” a group of genes that are capable of turning ordinary skin cells into induced pluripotentent stem cells (iPSCs) which have the ability to become any type of cell within the body. Discovery of iPSCs was, and has been, groundbreaking because it not only allows for unprecedented avenues to study human disease, but also has implications for using a patient’s own cells to treat a wide variety of diseases.

Recently, Timo Otonkoski’s group at the University of Helsinki along with Juha Kere’s group at the Karolinska Institutet and King’s College, London have found a way to program iPSCs from skin cells using CRISPR, a gene editing technology. Their approach allows for the induction, or turning on of iPSCs using the cells own DNA, instead of introducing the previously identified Yamanka Factors into cells of interest.

As detailed in their study, published in the journal Nature Communications, this is the first instance of mature human cells being completely reprogrammed into pluripotent cells using only CRISPR. Instead of using the canonical CRISPR system that allows the CAS9 protein (an enzyme that is able to cut DNA, thus rendering a gene of interest dysfunctional) to mutate any gene of interest, this group used a modified version of the CAS9 protein, which allows them to turn on or off the gene that CAS9 is targeted to.

The robustness of their approach lies in the researcher’s identification of a DNA sequence that is commonly found near genes involved in embryonic development. As CAS9 needs to be guided to genes of interest to do its job, identification of this common motif allows multiple genes associated with pluripotency to be activated in mature human skin cells, and greatly increased the efficiency and effectiveness of this approach.

In a press release, Dr. Otonkoski further highlights the novelty and viability of this approach:

“…Reprogramming based on activation of endogenous genes rather than overexpression of transgenes is…theoretically a more physiological way of controlling cell fate and may result in more normal cells…”

 

Gene-editing Technique in Mice Shows Promise for Genetic Disorder in Utero

 

180709120133_1_540x360

New research presents a promising new avenue for research into treating genetic conditions during fetal development.
Credit: © llhedgehogll / Fotolia

Each year roughly 16 million parents receive the heartbreaking news that their child is likely to be born with a severe genetic disorder or birth defect. And while these genetic conditions can often be detected during pregnancy, using amniocentesis, there haven’t been any treatment options to correct these genetic conditions before birth. Well – thanks to a group of researchers at Carnegie Mellon University and Yale University that could one day change and offer alternative treatment options for children with genetic disorders while they are still in the womb.

For the first time ever, according to a Carnegie Melon press release, scientists used a gene editing technique to successfully cure a genetic condition in a mouse in utero. Their findings, published in Nature Communications, not only present a promising new avenue for research into treating genetic conditions, but they also open the doors for additional treatment options in the future.

In this study, the researchers used a synthetic molecule called a peptide nucleic acid (PNA) as the basis for a gene editing technique. They had previously used this method to cure beta-thalassemia, a genetic blood disorder that results in the reduced production of hemoglobin, in adult mice. Their technique uses an FDA-approved nanoparticle to deliver PNA molecules, paired with donor DNA, to the site of a genetic mutation. When the PNA-DNA complex identifies a designated mutation, the PNA molecule binds to the DNA and unzips its two strands. The donor DNA then binds with the faulty DNA and spurs the cell’s DNA repair pathways into action, correcting the error.

The researchers believe that their technique might even be able to achieve higher success rates if they can administer it multiple times during gestation. They also hope to see if their technique can be applied to other conditions.

While this research is promising there is a long way to go before the team will be ready to test it in people. However, one CIRM-supported project has already reached that milestone. Dr. Tippi MacKenzie and her team at UCSF are using in utero blood stem cell transplants from the mother to the fetus to help treat alpha thalassemia major, a blood disorder that is almost always fatal.

We recently blogged about this research and how it helped one couple deliver a healthy baby.

https://blog.cirm.ca.gov/2018/06/04/cirm-funded-study-results-in-the-first-ever-in-utero-stem-cell-transplant-to-treat-alpha-thalassemia/

 

 

Video: Behind the scenes of a life-saving gene therapy stem cell treatment

“We were so desperate. When we heard about this treatment were willing to do anything to come here.”

In the above quote from Zahraa El Kerdi, “here” refers to UCLA, a world away from her hometown in Lebanon. In September 2015, Zahree gave birth to a son, Hussein, who appeared perfectly healthy. But by six months, he was barely clinging to life due to an inherited blood disorder, ADA-SCID, also called Bubble Baby disease. The disorder left Hussein without a functioning immune system so even a common cold could prove deadly. In fact, SCID babies rarely survive past one year of age. Up until now, no treatment options existed for the disease.

But Zahraa and her husband Ali heard about a CIRM-funded clinical trial, led by Donald Kohn, M.D. at UCLA, that could modify Hussein’s blood stem cells to fix the gene problem that’s causing his disease. The El Kerdi’s 7500-mile journey to save Hussein’s life is captured in a wonderful, five-minute video produced by UCLA’s Broad Stem Cell Research Center.

With before and after scenes of Hussein’s treatment as well as animation describing how the therapy works, the short documentary is equal parts heart wrenching, uplifting and educational. Basically, what I’m trying to say is, it’s a must-see and available to view above.