Reprogramming brain cells to restore vision after a stroke

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

About one third of stroke survivors experience vision loss. It can be a devastating side effect as most patients will not fully recover their vision and there are currently no reliable treatments available. But thanks to a collaborative effort by two teams of researchers from Purdue University and Jinan University in China, there may be a way to use gene therapy to recover lost vision after a stroke.

A stroke happens when part of the brain is starved of oxygen which can result in death of brain cells or neurons. Oftentimes this is caused by a blockage in an artery in the brain. Given the location of these vital arteries, most strokes lead to loss of motor function and in some cases, permanent vision loss.

The brain is an incredible machine and capable of remapping its neural pathways enough to restore some visual function, but this isn’t always the case. The neurons that are destroyed in the process of experiencing a stroke do not regenerate and lose their ability to communicate/transmit information between different areas of the brain, and between the brain and the rest of the nervous system.

Two research teams, one led by Alexander Chubykin at Purdue University’s and the other led by Gong Chen at Jinan University, have taken a different approach to neural regeneration by reprogramming local glial cells into neurons, therefore restoring connections between the old neurons and the newly reprogrammed neurons.

In a news release, Dr. Chubykin says the results in the lab look promising. “We can watch the mice get their vision back. We don’t have to implant new cells, so there’s no immunogenic rejection. This process is easier to do than stem cell therapy, and there’s less damage.”

The collaborative research, published in the journal Frontiers in Cell and Developmental Biology, is promising not only in aiding with vision restoration after a stroke but could also lead to similar treatment for reestablishing motor function. Visual function is easier than motor skills to measure accurately and the scientists are looking into the effectiveness of this procedure in live mice using advanced optical imaging tools. If the study continues to provide positive results, it might not be long before human trials are started. 

CIRM is also funding clinical trials to help repair vision loss and to help people recovering from a stroke.

Looking back and looking forward: good news for two CIRM-supported studies

Dr. Rosa Bacchetta on the right with Brian Lookofsky (left) and Taylor Lookofsky after CIRM funded Dr. Bacchetta’s work in October 2019. Taylor has IPEX syndrome

It’s always lovely to end the week on a bright note and that’s certainly the case this week, thanks to some encouraging news about CIRM-funded research targeting blood disorders that affect the immune system.

Stanford’s Dr. Rosa Bacchetta and her team learned that their proposed therapy for IPEX Syndrome had been given the go-ahead by the Food and Drug Administration (FDA) to test it in people in a Phase 1 clinical trial.

IPEX Syndrome (it’s more formal and tongue twisting name is Immune dysregulation Polyendocrinopathy Enteropathy X-linked syndrome) is a life-threatening disorder that affects children. It’s caused by a mutation in the FOXP3 gene. Immune cells called regulatory T Cells normally function to protect tissues from damage but in patients with IPEX syndrome, lack of functional Tregs render the body’s own tissues and organs to autoimmune attack that could be fatal in early childhood. 

Current treatment options include a bone marrow transplant which is limited by available donors and graft versus host disease and immune suppressive drugs that are only partially effective. Dr. Rosa Bacchetta and her team at Stanford will use gene therapy to insert a normal version of the FOXP3 gene into the patient’s own T Cells to restore the normal function of regulatory T Cells.

This approach has already been accorded an orphan drug and rare pediatric disease designation by the FDA (we blogged about it last year)

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Under the FDA’s rare pediatric disease designation program, the FDA may grant priority review to Dr. Bacchetta if this treatment eventually receives FDA approval. The FDA defines a rare pediatric disease as a serious or life-threatening disease in which the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years and affects fewer than 200,000 people in the U.S.

Congratulations to the team and we wish them luck as they begin the trial.

Dr. Donald Kohn, Photo courtesy UCLA

Someone who needs no introduction to regular readers of this blog is UCLA’s Dr. Don Kohn. A recent study in the New England Journal of Medicine highlighted how his work in developing a treatment for severe combined immune deficiency (SCID) has helped save the lives of dozens of children.

Now a new study in the journal Blood shows that those benefits are long-lasting, with 90% of patients who received the treatment eight to 11 years ago still disease-free.

In a news release Dr. Kohn said: “What we saw in the first few years was that this therapy worked, and now we’re able to say that it not only works, but it works for more than 10 years. We hope someday we’ll be able to say that these results last for 80 years.”

Ten children received the treatment between 2009 and 2012. Nine were babies or very young children, one was 15 years old at the time. That teenager was the only one who didn’t see their immune system restored. Dr. Kohn says this suggests that the therapy is most effective in younger children.

Dr. Kohn has since modified the approach his team uses and has seen even more impressive and, we hope, equally long-lasting results.

Celebrating Stem Cell Awareness Day

THIS BLOD IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

The second Wednesday in October is celebrated as Stem Cell Awareness Day. It’s an event that CIRM has been part of since then Governor Arnold Schwarzenegger launched it back in 2008 saying: ”The discoveries being made today in our Golden State will have a great impact on many around the world for generations to come.”

In the past we would have helped coordinate presentations by scientists in schools and participated in public events. COVID of course has changed all that. So, this year, to help mark the occasion we asked some people who have been in the forefront of making Governor Schwarzenegger’s statement come true, to share their thoughts and feelings about the day. Here’s what they had to say.

What do you think is the biggest achievement so far in stem cell research?

Dr. Jan Nolta

Jan Nolta, PhD., Director of the Stem Cell Program at UC Davis School of Medicine, and directs the new Institute for Regenerative Cures. “The work of Don Kohn and his UCLA colleagues and team members throughout the years- developing stem cell gene therapy cures for over 50 children with Bubble baby disease. I was very fortunate to work with Don for the first 15 years of my career and know that development of these cures was guided by his passion to help his patients.

Dr. Clive Svendsen

Clive Svendsen, PhD. Director, Board of Governors Regenerative Medicine Institute at Cedars-Sinai: “Without a doubt the discovery of how to make human iPSCs by Shinya Yamanaka and Jamie Thomson.”

When people ask you what kind of impact CIRM and stem cell research has had on your life what do you say?

Ronnie and his parents celebrating his 1st birthday. (Photo courtesy of Pawash Priyank)

Pawash Priyank and Upasana Thakur, parents of Ronnie, who was born with a life-threatening immune disorder but is thriving today thanks to a CIRM-funded clinical trial at UC San Francisco. “This is beyond just a few words and sentences but we will give it a shot. We are living happily today seeing Ronnie explore the world day by day, and this is only because of what CIRM does every day and what Stem cell research has done to humanity. Researchers and scientists come up with innovative ideas almost every day around the globe but unless those ideas are funded or brought to implementation in any manner, they are just in the minds of those researchers and would never be useful for humanity in any manner. CIRM has been that source to bring those ideas to the table, provide facilities and mechanisms to get those actually implemented which eventually makes babies like Ronnie survive and see the world. That’s the impact CIRM has. We have witnessed and heard several good arguments back in India in several forums which could make difference in the world in different sectors of lives but those ideas never come to light because of the lack of organizations like CIRM, lack of interest from people running the government. An organization like CIRM and the interest of the government to fund them with an interest in science and technology actually changes the lives of people when some of those ideas come to see the light of real implementation. 

What are your biggest hopes for the future at UC Davis?

Jan Nolta, PhD: “The future of stem cell and gene therapy research is very bright at UC Davis, thanks to CIRM and our outstanding leadership. We currently have 48 clinical trials ongoing in this field, with over 20 in the pipeline, and are developing a new education and technology complex, Aggie Square, next to the Institute for Regenerative Cures, where our program is housed. We are committed to our very diverse patient population throughout the Sacramento region and Northern California, and to expanding and increasing the number of novel therapies that can be brought to all patients who need them.”

What are your biggest hopes for the future at Cedars-Sinai?

Clive Svendsen, PhD: “That young investigators will get CIRM or NIH funding and be leaders in the regenerative medicine field.”

What do you hope is the future for stem cell research?

Pawash Priyank and Upasana Thakur: “We always have felt good about stem cell therapy. For us, a stem cell has transformed our lives completely. The correction of sequencing in the DNA taken out of Ronnie and injecting back in him has given him life. It has given him the immune system to fight infections. Seeing him grow without fear of doing anything, or going anywhere gives us so much happiness every hour. That’s the impact of stem cell research. With right minds continuing to research further in stem cell therapy bounded by certain good processes & laws around (so that misuse of the therapy couldn’t be done) will certainly change the way treatments are done for certain incurable diseases. I certainly see a bright future for stem cell research.”

On a personal note what is the moment that touched you the most in this journey.

Jan Nolta, PhD: “Each day a new patient or their story touches my heart. They are our inspiration for working hard to bring new options to their care through cell and gene therapy.”

Clive Svendsen, PhD: “When I realized we would get the funding to try and treat ALS with stem cells”

How important is it to raise awareness about stem cell research and to educate the next generation about it?

Pawash Priyank and Upasana Thakur: “Implementing stem cell therapy as a curriculum in the educational systems right from the beginning of middle school and higher could prevent false propaganda of it through social media. Awareness among people with accurate articles right from the beginning of their education is really important. This will also encourage the new generation to choose this as a subject in their higher studies and contribute towards more research to bring more solutions for a variety of diseases popping up every day.”

Tiny tools for the smallest of tasks, editing genes

YOU CAN LISTEN TO THIS BLOG AS AN AUDIOCAST ON SPOTIFY

Developing new tools to edit genes

Having the right tools to do a job is important. Try using a large screwdriver to tighten the screws on your glasses and you quickly appreciate that it’s not just the type of tool that’s important, it’s also the size. The same theory applies to gene editing. And now researchers at Stanford have developed a tool that can take on even the tiniest of jobs.

The tool involves the use of CRISPR. You may well have heard about CRISPR. The magazine New Scientist described it this way: “CRISPR is a technology that can be used to edit genes and, as such, will likely change the world.” For example, CIRM is funding research using CRISPR to help children born with severe combined immunodeficiency, a rare, fatal immune disorder.  

There’s just one problem. Right now, CRISPR is usually twinned with a protein called Cas9. Together they are used to remove unwanted genes and insert a corrected copy of the bad gene. However, that CRISPR-Cas9 combination is often too big to fit into all our cells. That may seem hard to understand for folks like me with a limited science background, but trust the scientists, they aren’t making this stuff up.

To address that problem, Dr. Stanley Qi and his team at Stanford created an even smaller version, one they call CasMINI, to enable them to go where Cas9 can’t go. In an article on Fierce Biotech, Dr. Qi said this mini version has some big benefits: “If people sometimes think of Cas9 as molecular scissors, here we created a Swiss knife containing multiple functions. It is not a big one, but a miniature one that is highly portable for easy use.”

How much smaller is the miniature version compared to the standard Cas9? About half the size, 529 amino acids, compared to Cas9’s 1,368 amino acids.”

The team conclude their study in the journal Molecular Cell saying this could have widespread implications for the field: “This provides a new method to engineer compact and efficient CRISPR-Cas effectors that can be useful for broad genome engineering applications, including gene regulation, gene editing, base editing, epigenome editing, and chromatin imaging.”

Mother and daughter team up to fight bias and discrimination in treatment for people with sickle cell disease

LISTEN TO AN AUDIO VERSION OF THIS BLOG

Adrienne Shapiro and Marissa Cors are a remarkable pair by any definition. The mother and daughter duo share a common bond, and a common goal. And they are determined not to let anyone stop them achieving that goal.

Marissa was born with sickle cell disease (SCD) a life-threatening genetic condition where normally round, smooth red blood cells are instead shaped like sickles. These sickle cells are brittle and can clog up veins and arteries, blocking blood flow, damaging organs, and increasing the risk of strokes. It’s a condition that affects approximately 100,000 Americans, most of them Black.

Adrienne became a patient advocate, founding Axis Advocacy, after watching Marissa get poor treatment in hospital Emergency Rooms.  Marissa often talks about the way she is treated like a drug-seeker simply because she knows what medications she needs to help control excruciating pain on her Sickle Cell Experience Live events on Facebook.

Now the two are determined to ensure that no one else has to endure that kind of treatment. They are both fierce patient advocates, vocal both online and in public. And we recently got a chance to sit down with them for our podcast, Talking ‘Bout (re) Generation. These ladies don’t pull any punches.

Enjoy the podcast.

CIRM is funding four clinical trials aimed at finding new treatments and even a cure for sickle cell disease.

Celebrating a young life that almost wasn’t

Often on the Stem Cellar we feature CIRM-funded work that is helping advance the field, unlocking some of the secrets of stem cells and how best to use them to develop promising therapies. But every once in a while it’s good to remind ourselves that this work, while it may often seem slow, is already saving lives.

Meet Ja’Ceon Golden. He was one of the first patients treated at U.C. San Francisco, in partnership with St. Jude Children’s Hospital in Memphis, as part of a CIRM-funded study to treat a rare but fatal disorder called Severe Combined Immunodeficiency (SCID). Ja’Ceon was born without a functioning immune system, so even a simple cold could have been fatal.

At UCSF a team led by Dr. Mort Cowan, took blood stem cells from Ja’Ceon and sent them to St. Jude where another team corrected the genetic mutation that causes SCID. The cells were then returned to UCSF and re-infused into Ja’Ceon.  

Over the next few months those blood stem cells grew in number and eventually helped heal his immune system.

He recently came back to UCSF for more tests, just to make sure everything is OK. With him, as she has been since his birth, was his aunt and guardian Dannie Hawkins. She says Ja’Ceon is doing just fine, that he has just started pre-K, is about to turn five years old and in January will be five years post-therapy. Effectively, Ja’Ceon is cured.

SCID is a rare disease, there are only around 70 cases in the US every year, but CIRM funding has helped produce cures for around 60 kids so far. A recent study in the New England Journal of Medicine showed that a UCLA approach cured 95 percent of the children treated.

The numbers are impressive. But not nearly as impressive, or as persuasive of the power of regenerative medicine, as Ja’Ceon and Dannie’s smiles.

Ja’Ceon on his first day at pre-K. He loved it.

City of Hope researchers discover potential therapy to treat brain tumors

Glioblastoma (GBM) is a common type of aggressive brain tumor that is found in adults.  Survival of this type of brain cancer is poor with just 40% survival in the first-year post diagnosis and 17% in the second year, according to the American Association of Neurological Surgeons.  This disease has taken the life of former U.S. Senator John McCain and Beau Biden, the late son of U.S. President Joe Biden.

In a CIRM supported lab that conducted the study, Dr. Yanhong Shi and her team at City of Hope, a research and treatment center for cancer, have discovered a potential therapy that they have tested that has been shown to suppress GBM tumor growth and extend the lifespan of tumor-bearing mice. 

Dr. Shi and her team first started by looking at PUS7, a gene that is highly expressed in GBM tissue in comparison to normal brain tissue.  Dr. Qi Cui, a scientist in Dr. Shi’s team and the first author of the study, analyzed various databases and found that high levels of PUS7 have also been associated with worse survival in GBM patients.  The team then studied different glioblastoma stem cells (GSCs), which play a vital role in brain tumor growth, and found that shutting off the PUS7 gene prevented GSC growth and self-renewal. 

The City of Hope team then transplanted two kinds of GSCs, some with the PUS7 gene and some with the PUS7 gene turned off, into immunodeficient mice.  What they found was that the mice implanted with the PUS7-lacking GSCs had less tumor growth and survived longer compared to the mice with the control GSCs that had PUS7 gene.

The team then proceeded to look for an inhibitor of PUS7 from a database of thousands of different compounds and drugs approved by the Food and Drug Administration (FDA).  After identifying a promising compound, the researchers tested the potential therapy in mice implanted with GSCs with the PUS7 gene.  What they found was remarkable.  The therapy inhibited the growth of brain tumors in the mice and their survival was significantly prolonged.

“This is one of the most important studies in my lab in recent years and the first paper to show a causal link between PUS7-mediated modification and cancer in general and GBM in particular” says Dr. Shi.  “It will be a milestone study for RNA modification in cancer.”

The full study was published in Nature Cancer.

Dr. Shi has previously worked on several CIRM-funded research projects, such as looking at a potential link between COVID-19 and a gene for Alzheimer’s as well as the development of a therapy for Canavan disease.

Board Funds Fifteen Bridges to Stem Cell Research and Therapy Programs Across California and New Sickle Cell Disease Trial

Yesterday the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $8.39 million to the University of California, San Francisco (UCSF) to fund a clinical trial for sickle cell disease (SCD).  An additional $51.08 million was awarded to fifteen community colleges and universities across California to fund undergraduate and master’s level programs that will help train the next generation of stem cell researchers. 

SCD is an inherited blood disorder caused by a single gene mutation that changes a single base in the B globin gene leading to the production of defective hemoglobin that polymerizes and damages red blood cells thus the “sickle” shaped red blood cells.  The damaged cells cause blood vessels to occlude/close up and that can lead to multiple organ damage as well as reduced quality of life and life expectancy. 

Mark Walters, M.D., and his team at UCSF Benioff Children’s Hospital Oakland will be conducting a clinical trial that uses CRISPR-Cas9 gene editing technology to correct the genetic mutation in the blood stem cells of patients with severe SCD.  The corrected blood stem cells will then be reintroduced back into patients with the goal of correcting the defective hemoglobin and thus producing functional, normal shaped red blood cells.

This clinical trial will be eligible for co-funding under the landmark agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI) of the NIH.  The CIRM-NHLBI agreement is intended to co-fund cell and gene therapy programs under the NHLBI’s “Cure Sickle Cell” initiative.  The goal is to markedly accelerate the development of cell and gene therapies for SCD. CIRM has previously funded the preclinical development of this therapy through a Translational award as well as its IND-enabling studies through a Late Stage Preclinical award in partnership with NHLBI.

The CIRM Bridges to Stem Cell Research and Therapy program provides undergraduate and master’s students with the opportunity to take stem cell related courses and receive hands on experience and training in a stem cell research related laboratory at a university or biotechnology company.  Fifteen institutions received a total of $51.08 million to carry out these programs to train the next generation of scientists.

The awards are summarized in the table below.

ApplicationTitleInstitutionAward Amount
  EDUC2-12607Bridges to Stem Cell Research and Therapy at Pasadena City College  Pasadena City College$3,605,500
  EDUC2-12611CIRM Bridges to Stem Cell Research and Therapy Training Grant  CSU San Marcos$3,606,500
  EDUC2-12617Bridges to Stem Cell Research Internship Program  San Diego State University$3,606,500
EDUC2-12620CIRM Bridges 3.0  Humboldt State$3,605,495
  EDUC2-12638CIRM Regenerative Medicine and Stem Cell Research Biotechnology Training Program  CSU Long Beach$3,276,500
    EDUC2-12677Stem Cell Internships in Laboratory-based Learning (SCILL) continue to expand the scientific workforce for stem cells research and therapies.  San Jose State University$3,606,500
  EDUC2-12691Strengthening the Pipeline of Master’s-level Scientific and Laboratory Personnel in Stem Cell Research  CSU Sacramento$2,946,500
EDUC2-12693CIRM Bridges Science Master’s Program  San Francisco State University$3,606,500
      EDUC2-12695CIRM Graduate Student Training in Stem Cell Sciences in the Stem Cell Technology and Lab Management Emphasis of the MS Biotechnology Program  CSU Channel Islands$3,606,500
  EDUC2-12718CSUN CIRM Bridges 3.0 Stem Cell Research & Therapy Training Program  CSU Northridge$3,606,500
      EDUC2-12720Stem Cell Scholars: a workforce development pipeline, educating, training and engaging students from basic research to clinical translation.  CSU San Bernardino$3,606,500
  EDUC2-12726Training Master’s Students to Advance the Regenerative Medicine Field  Cal Poly San Luis Obispo$3,276,500
  EDUC2-12730Building Career Pathways into Stem Cell Research and Therapy Development  City College of San Francisco$2,706,200
      EDUC2-12734Bridges to Stem Cell Research and Therapy: A Talent Development Program for Training Diverse Undergraduates for Careers in Regenerative Medicine  CSU Fullerton$3,606,500
  EDUC2-12738CIRM Bridges to Stem Cell Research and Therapy  Berkeley City College  $2,806,896

“We are pleased to fund a promising trial for sickle cell disease that uses the Nobel Prize winning gene editing technology CRISPR-Cas9,” says Maria T. Millan, M.D., President and CEO of CIRM.  “This clinical trial is a testament to how the CIRM model supports promising early-stage research, accelerates it through translational development, and advances it into the clinics. As the field advances, we must also meet the demand for promising young scientists.  The CIRM Bridges programs across the state of California will provide students with the tools and resources to begin their careers in regenerative medicine.”

Gene therapy is life-changing for children with a life-threatening brain disorder

If you have never heard of AADC deficiency count yourself lucky. It’s a rare, incurable condition that affects only around 135 children worldwide but it’s impact on those children and their families is devastating. The children can’t speak, can’t feed themselves or hold up their head, they have severe mood swings and often suffer from insomnia.

But Dr. Krystof Bankiewicz, a doctor and researcher at the University of California San Francisco (UCSF), is using techniques he developed treating Parkinson’s disease to help those children. Full disclosure here, CIRM is funding Dr. Bankiewicz’s Parkinson’s clinical trial.

In AADC deficiency the children lack a critical enzyme that helps the brain make serotonin and dopamine, so called “chemical messengers” that help the cells in the brain communicate with each other. In his AADC clinical trial Dr. Bankiewicz and his team created a tiny opening in the skull and then inserted a functional copy of the AADC gene into two regions of the brain thought to have most benefit – the substantia nigra and ventral tegmental area of the brainstem.

Image showing target areas for AADC gene insertion: Courtesy UCSF

When the clinical trial began none of the seven children were able to sit up on their own, only two had any ability to control their head movement and just one could grasp an object in their hands. Six of the seven were described as moody or irritable and six suffered from insomnia.

In a news release Dr. Bankiewicz says the impact of the gene therapy was quite impressive: “Remarkably, these episodes were the first to disappear and they never returned. In the months that followed, many patients experienced life-changing improvements. Not only did they begin laughing and have improved mood, but some were able to start speaking and even walking.”

Those weren’t the only improvements, at the end of one year:

  • All seven children had better control of their head and body.
  • Four of the children were able to sit up by themselves.
  • Three patients could grasp and hold objects.
  • Two were able to walk with some support.

Two and a half years after the surgery:

  • One child was able to walk without any support.
  • One child could speak with a vocabulary of 50 words.
  • One child could communicate using an assistive device.

The parents also reported big improvements in mood and ability to sleep.

UCSF posted some videos of the children before and after the surgery and you can see for yourself the big difference in the children. It’s not a cure, but for families that had nothing in the past, it is a true gift.

The study is published in the journal Nature Communications.

A new way to evade immune rejection in transplanting cells

Immune fluorescence of HIP cardiomyocytes in a dish; Photo courtesy of UCSF

Transplanting cells or an entire organ from one person to another can be lifesaving but it comes with a cost. To avoid the recipient’s body rejecting the cells or organ the patient has to be given powerful immunosuppressive medications. Those medications weaken the immune system and increase the risk of infections. But now a team at the University of California San Francisco (UCSF) have used a new kind of stem cell to find a way around that problem.

The cells are called HIP cells and they are a specially engineered form of induced pluripotent stem cell (iPSC). Those are cells that can be turned into any kind of cell in the body. These have been gene edited to make them a kind of “universal stem cell” meaning they are not recognized by the immune system and so won’t be rejected by the body.

The UCSF team tested these cells by transplanting them into three different kinds of mice that had a major disease; peripheral artery disease; chronic obstructive pulmonary disease; and heart failure.

The results, published in the journal Proceedings of the National Academy of Science, showed that the cells could help reduce the incidence of peripheral artery disease in the mice’s back legs, prevent the development of a specific form of lung disease, and reduce the risk of heart failure after a heart attack.

In a news release, Dr. Tobias Deuse, the first author of the study, says this has great potential for people. “We showed that immune-engineered HIP cells reliably evade immune rejection in mice with different tissue types, a situation similar to the transplantation between unrelated human individuals. This immune evasion was maintained in diseased tissue and tissue with poor blood supply without the use of any immunosuppressive drugs.”

Deuse says if this does work in people it may not only be of great medical value, it may also come with a decent price tag, which could be particularly important for diseases that affect millions worldwide.

“In order for a therapeutic to have a broad impact, it needs to be affordable. That’s why we focus so much on immune-engineering and the development of universal cells. Once the costs come down, the access for all patients in need increases.”