Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691  

Two reasons to remember June 19th

Today marks two significant events for the Black community. June 19th is celebrated as Juneteenth, the day when federal troops arrived in Galveston, Texas to ensure that the enslaved people there were free. That moment came two and a half years after President Abraham Lincoln signed the Emancipation Proclamation into law.

June 19th is also marked as World Sickle Cell Awareness Day. It’s an opportunity to raise awareness about a disease that affects around 100,000 Americans, most of them Black, and the impact it has on the whole family and entire communities.

Sickle cell disease (SCD) is an inherited blood disorder that is caused by a genetic mutation. Instead of red blood cells being smooth and round and flowing easily through arteries and veins, the cells are sickle shaped and brittle. They can clog up arteries and veins, cutting off blood to vital organs, causing intense pain, organ damage and leading to premature death.

SCD can be cured with a bone marrow transplant, but that’s a risky procedure and most people with SCD don’t have a good match. Medications can help keep it under control but cannot cure it. People with SCD live, on average, 30 years less than a healthy adult.

CIRM has invested almost $60 million in 13 different projects, including five clinical trials, to try and develop a cure for SCD. There are encouraging signs of progress. For example, in July of 2020, Evie Junior took part in a CIRM-funded clinical trial where his own blood stem cells were removed then, in the laboratory, were genetically modified to repair the genetic mutation that causes the disease. Those cells were returned to him, and the hope is they’ll create a sickle cell-free blood supply. Evie hasn’t had any crippling bouts of pain or had to go to the hospital since his treatment.

Evie Junior: Photo by Jaquell Chandler

CIRM has also entered into a unique partnership with the National Heart, Lung and Blood Institute (NHLBI) to co-fund cell and gene therapy programs under the NIH “Cure Sickle Cell” initiative.  The goal is to markedly accelerate the development of cell and gene therapies for SCD.

“There is a real need for a new approach to treating SCD and making life easier for people with SCD and their families,” says Adrienne Shapiro, the mother of a daughter with SCD and the co-founder of Axis Advocacy, a sickle cell advocacy and education organization. “Finding a cure for Sickle Cell would mean that people like my daughter would no longer have to live their life in short spurts, constantly having their hopes and dreams derailed by ER visits and hospital stays.  It would mean they get a chance to live a long life, a healthy life, a normal life.”

We will all keep working together to advance this research and develop a cure. Until then Juneteenth will be a reminder of the work that still lies ahead.

Creating a ‘bespoke’ approach to rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Up until recently the word “bespoke” meant just one thing to me, a hand-made suit, customized and fitted to you. There’s a street in London, Saville Row, that specializes in these suits. They’re gorgeous. They’re also very expensive and so I thought I’d never have a bespoke anything.

I was wrong. Because CIRM is now part of a bespoke arrangement. It has nothing to do with suits, it’s far more important than that. This bespoke group is aiming to create tailor-made gene therapies for rare diseases.

It’s called the Bespoke Gene Therapy Consortium (BGTC). Before we go any further I should warn you there’s a lot of acronyms heading your way. The BGTC is part of the Accelerating Medicines Partnership® (AMP®) program. This is a public-private partnership between the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA), and multiple public and private organizations, such as CIRM.

The program is managed by the Foundation for the NIH (FNIH) and it aims to develop platforms and standards that will speed the development and delivery of customized or ‘bespoke’ gene therapies that could treat the millions of people affected by rare diseases.

Why is it necessary? Well, it’s estimated that there are around 7,000 rare diseases and these affect between 25-30 million Americans. Some of these diseases affect only a few hundred, or even a few dozen people. With so few people they almost always struggle to raise the funds needed to do research to find an effective therapy. However, many of these rare diseases are linked to a mutation or defect in a single gene, which means they could potentially be treated by highly customizable, “bespoke” gene therapy approaches.

Right now, individual disease programs tend to try individual approaches to developing a treatment. That’s time consuming and expensive. The newly formed BGTC believes that if we create a standardized approach, we could develop a template that can be widely used to develop bespoke gene therapies quickly, more efficiently and less expensively for a wide array of rare diseases.

“At CIRM we have funded several projects using gene therapy to help treat, and even cure, people with rare diseases such as severe combined immunodeficiency,” says Dr. Maria T. Millan, the President and CEO of CIRM. “But even an agency with our resources can only do so much. This agreement with the Bespoke Gene Therapy Consortium will enable us to be part of a bigger partnership, one that can advance the field, overcome obstacles and lead to breakthroughs for many rare diseases.”

With gene therapy the goal is to identify the genetic defect that is causing the disease and then deliver a normal copy of the gene to the right tissues and organs in the body, replacing or correcting the mutation that caused the problem. But what is the best way to deliver that gene? 

The BGTC’s is focusing on using an adeno-associated virus (AAV) as a delivery vehicle. This approach has already proven effective in Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and spinal muscular atrophy. The consortium will test several different approaches using AAV gene therapies starting with basic research and supporting those all the way to clinical trials. The knowledge gained from this collaborative approach, including developing ways to manufacture these AAVs and creating a standard regulatory approach, will help build a template that can then be used for other rare diseases to copy.

As part of the consortium CIRM will identify specific rare disease gene therapy research programs in California that are eligible to be part of the AMP BGTC. CIRM funding can then support the IND-enabling research, manufacturing and clinical trial activities of these programs.

“This knowledge network/consortium model fits in perfectly with our mission of accelerating transformative regenerative medicine treatments to a diverse California and world,” says Dr. Millan. “It is impossible for small, often isolated, groups of patients around the world to fund research that will help them. But pooling our resources, our skills and knowledge with the consortium means the work we support here may ultimately benefit people everywhere.”

Join us to hear how stem cell and gene therapy are taking on diseases of aging

It is estimated that as many as 90 percent of people in industrialized countries who die every day, die from diseases of aging such as heart disease, stroke, and cancer. Of those still alive the numbers aren’t much more reassuring. More than 80 percent of people over the age of 65 have a chronic medical condition, while 68 percent have two or more.

Current medications can help keep some of those conditions, such as high blood pressure, under control but regenerative medicine wants to do a lot more than that. We want to turn back the clock and restore function to damaged organs and tissues and limbs. That research is already underway and we are inviting you to a public event to hear all about that work and the promise it holds.

On June 16th from 3p – 4.30p PST we are holding a panel discussion exploring the impact of regenerative medicine on aging. We’ll hear from experts on heart disease and stroke; we will look at other ground breaking research into aging; and we’ll discuss the vital role patients and patient advocates play in helping advance this work.

The discussion is taking place in San Francisco at the annual conference of the International Society for Stem Cell Research. But you can watch it from the comfort of your own home. That’s because we are going to live stream the event.

Here’s where you can see the livestream: https://www.youtube.com/watch?v=CaUgsc5alDI

And if you have any questions you would like the panel to answer feel free to send them to us at info@cirm.ca.gov

Celebrating National DNA Day Together

DNA provides the code of life for nearly all living organisms. So, it’s no wonder that scientists have been studying DNA and the human genome (complete set of DNA) for decades.

In April 1953, James Watson and Francis Crick, in collaboration with Rosalind Franklin, first described the structure of DNA as a double helix. In April 2003, exactly 50 years later, scientists completed the Human Genome Project- a massive research effort to sequence and map all the genes that comprise the human genome.

That same year, Congress approved the first National DNA Day to commemorate both the discovery of the double helix and the completion of the Human Genome Project. The goal of National DNA Day is to offer students, educators, and the public an opportunity to learn about the DNA molecule and genomic research.

You can celebrate National DNA Day this year by following scientists Lilly Lee and Tom Quinn at Takara Bio as they demonstrate how to extract DNA from strawberries. Their lesson plan guides mentors to teach about DNA and genomic research, starting with having students extract DNA on their own.

Laurel Barchas, one of the people behind the video has also played an important role at the California Institute for Regenerative Medicine (CIRM). She has collaborated with us on many projects over the years, including helping us build CIRM’s own education portal with lessons for high school students that meet Next Generation Science Standards.

Watch the video below and Click Here for the full lesson plan!

Turning back the clock to make old skin cells young again

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Diljeet Gill, photo courtesy Babraham Institute, Cambridge UK

Sometimes when I am giving public presentations people ask if stem cells are good for the face. I always say that if stem cells could help improve people’s faces would I look like this. It’s a line that gets a laugh but it’s also true. The ads you see touting stem cells as being beneficial for skin are all using plant stem cells. But now some new research has managed to turn back the clock for skin cells, and it might do a lot more than just help skin look younger.

Back in 2007 Japanese scientist Shinya Yamanaka discovered a way to turn ordinary skin cells back into an embryonic-like state, meaning those cells could then be turned into any other cell in the body. He called these cells induced pluripotent stem cells or iPSCs. Dr. Yamanaka was later awarded the Nobel Prize for Medicine for this work.

Using this work as their starting point, a team at Cambridge University in the UK, have developed a technique that can rewind the clock on skin cells but stop it less than a third of the way through, so they have made the cells younger but didn’t erase their identity as skin cells.

The study, published in the journal ELifeSciences, showed the researchers were able to make older skin cells 30 years younger. This wasn’t about restoring a sense of youthful beauty to the skin, instead it was about something far more important, restoring youthful function to the skin.

In a news release, Dr Diljeet Gill, a lead author on the study, said: “Our understanding of ageing on a molecular level has progressed over the last decade, giving rise to techniques that allow researchers to measure age-related biological changes in human cells. We were able to apply this to our experiment to determine the extent of reprogramming our new method achieved.”

The team proved the potential for their work using fibroblasts, the most common kind of cell found in connective tissues such as skin. Fibroblasts are important because they produce collagen which helps provide support and structure to tissues and also helps in healing wounds. When the researchers examined the rejuvenated skin cells they found they were producing more collagen than cells that had not been rejuvenated. They also saw signs that these rejuvenated cells could help heal wounds better than the old cells.

The researchers also noted that this approach had an effect on other genes linked to age-related conditions, such Alzheimer’s disease and the development of cataracts.

The researchers acknowledge that this is all very early on, but the fact that they were able to make the cells behave and act like younger cells, without losing their identity as skin cells, holds tremendous promise not just for conditions affecting the skin, but for regenerative medicine as a whole.

Dr. Diljeet concluded: “Our results represent a big step forward in our understanding of cell reprogramming. We have proved that cells can be rejuvenated without losing their function and that rejuvenation looks to restore some function to old cells. The fact that we also saw a reverse of ageing indicators in genes associated with diseases is particularly promising for the future of this work.”

Stem Cell Agency Board Approves Funding for Rare Immune Disorder

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Taylor Lookofsky (center), a person with IPEX syndrome, with his father Brian and Dr. Rosa Bacchetta

IPEX syndrome is a rare condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. The syndrome mostly affects boys, is diagnosed in the first year of life and is often fatal. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) invested almost $12 million in a therapy being tested in a clinical trial to help these patients.

Children born with IPEX syndrome have abnormalities in the FOXP3 gene. This gene controls the production of a type of immune cell called a T Regulatory or Treg cell. Without a normal FOXP3 +Treg cells other immune cells attack the body leading to the development of IPEX syndrome, Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive.

Current treatments involve the use of steroids to suppress the immune system – which helps ease symptoms but doesn’t slow down the progression of the disease – or a bone marrow stem cell transplant.  However, a transplant requires a healthy, closely matched donor to reduce the risk of a potentially fatal transplant complication called graft vs host disease, in which the donated immune cells attack the recipient’s tissues.

Dr. Rosa Bacchetta and her team at Stanford University have developed a therapy using the patient’s own natural CD4 T cells that, in the lab, have been genetically modified to express the FoxP3 gene and converted into Treg cells. Those cells are then re-infused into the patient with a goal of determining if this approach is both safe and beneficial. Because the cells come from the patients there will be fewer concerns about the need for immunosuppressive treatment to stop the body rejecting the cells. It will also help avoid the problems of finding a healthy donor and graft vs host disease.

Dr. Bacchetta has received approval from the Food and Drug Administration (FDA) to test this approach in a Phase 1 clinical trial for patients suffering with IPEX syndrome.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives,” says Dr. Maria T. Millan, the President and CEO of CIRM. “Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders resulting from dysfunctional regulatory T cells.”

In addition to a strong scientific recommendation to fund the project the review team also praised it for the applicants’ commitment to the principles of Diversity, Equity and Inclusion in their proposal. The project proposes a wide catchment area, with a strong focus on enrolling people who are low-income, uninsured or members of traditionally overlooked racial and ethnic minority communities.

CIRM-Funded Study Helping Babies Battle a Deadly Immune Disorder Gets Boost from FDA

Hataalii Begay, age 4, first child treated with UCSF gene therapy for Artemis-SCID

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

When Hataalii Begay was born in a remote part of the Navajo nation he was diagnosed with a rare, usually fatal condition. Today, thanks to a therapy developed at UCSF and funded by CIRM, he’s a normal healthy four year old boy running around in cowboy boots.

That stem cell therapy could now help save the lives of other children born with this deadly immune disorder because it has been granted fast-track review status by the US Food and Drug Administration (FDA).

The California Institute for Regenerative Medicine (CIRM) has invested $12 million to test this therapy in a clinical trial at UC San Francisco.

The disorder is Artemis-SCID, a form of severe combined immunodeficiency disease. Children born with this condition have no functioning immune system so even a simple infection can prove life-threatening or fatal.

Currently, the only approved treatment for Artemis-SCID is a bone-marrow transplant, but many children are unable to find a healthy matched donor for that procedure. Even when they do find a donor they often need regular injections of immunoglobulin to boost their immune system.

In this clinical trial, UCSF Doctors Mort Cowan and Jennifer Puck are using the patient’s own blood stem cells, taken from their bone marrow. In the lab, the cells are modified to correct the genetic mutation that causes Artemis-SCID and then re-infused back into the patients. The goal is that over the course of several months these cells will create a new blood supply, one that is free of Artemis-SCID, and that will in turn help repair the child’s immune system.

So far the team has treated ten newly-diagnosed infants and three older children who failed transplants. Dr. Cowan says early data from the trial is encouraging. “With gene therapy, we are seeing these babies getting older. They have normal T-cell immunity and are getting immunized and vaccinated. You wouldn’t know they had any sort of condition if you met them; it’s very heartening.”

Because of that encouraging data, the FDA is granting this approach Regenerative Medicine Advanced Therapy (RMAT) designation. RMAT is a fast-track designation that can help speed up the development, review and potential approval of treatments for serious or life-threatening diseases.

“This is great news for the team at UCSF and in particular for the children and families affected by Artemis-SCID,” says Dr. Maria T. Millan, the President and CEO of CIRM. “The RMAT designation means that innovative forms of cell and gene therapies like this one may be able to accelerate their route to full approval by the FDA and be available to all the patients who need it.”

First Patient Dosed in Phase 1 Clinical Trial for T1D

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

There’s some good news for a company and a therapeutic approach that CIRM has been supporting for many years.

In September 2018, CRISPR Theraputics and ViaCyte entered a partnership to discover, develop and market gene-edited stem cell-derived therapies to treat type 1 diabetes (T1D). Today, they may stand one step closer to their goal. 

Last week the companies jointly announced that they have dosed the first subject in the Phase 1 clinical trial of VCTX210 for the treatment of T1D. VCTX210 is an investigational stem cell-based therapy. It was developed combining CRISPR’s gene-editing technology with ViaCyte’s stem cell expertise to generate pancreatic beta cells that can evade the immune system.

ViaCyte, a regenerative medicine company long backed by CIRM, has developed an implantable device which contains pancreatic endoderm cells that mature over a few months and turn into insulin-producing pancreatic islet cells, the kind destroyed by T1D. 

ViaCyte’s implantable stem cell pouch

Using CRISPR technology, the genetic code of the implanted cells is modified to create beta cells that avoid all recognition by the immune system. This collaboration aims to eliminate the requirement of patients taking daily immunosuppressants to stop the immune system from attacking the implanted cells. 

The first phase of the VCTX210 clinical trial will assess the safety, tolerability, and immune evasion in patients with T1D. 

“We are excited to work with CRISPR Therapeutics and ViaCyte to carry out this historic, first-in-human transplant of gene-edited, stem cell-derived pancreatic cells for the treatment of diabetes designed to eliminate the need for immune suppression,” said James Shapiro, a clinical investigator in the trial. “If this approach is successful, it will be a transformative treatment for patients with all insulin-requiring forms of diabetes.”

CIRM has been a big investor in ViaCyte’s work for many years and has invested more than $72 million in nine different awards.  

Two Early-Stage Research Programs Targeting Cartilage Damage Get Funding from Stem Cell Agency

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Darryl D’Lima: Scripps Health

Every year millions of Americans suffer damage to their cartilage, either in their knee or other joints, that can eventually lead to osteoarthritis, pain and immobility. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two projects targeting repair of damaged cartilage.

The projects were among 17 approved by CIRM as part of the DISC2 Quest Discovery Program. The program promotes the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

Dr. Darryl D’Lima and his team at Scripps Health were awarded $1,620,645 to find a way to repair a torn meniscus. Every year around 750,000 Americans experience a tear in their meniscus, the cartilage cushion that prevents the bones in the knee grinding against each other. These injuries accelerate the early development of osteoarthritis, for which there is no effective treatment other than total joint replacement, which is a major operation. There are significant socioeconomic benefits to preventing disabling osteoarthritis. The reductions in healthcare costs are also likely to be significant.

The team will use stem cells to produce meniscal cells in the lab. Those are then seeded onto a scaffold made from collagen fibers to create tissue that resembles the knee meniscus. The goal is to show that, when placed in the knee joint, this can help regenerate and repair the damaged tissue.

This research is based on an earlier project that CIRM funded. It highlights our commitment to helping good science progress, hopefully from the bench to the bedside where it can help patients.

Dr. Kevin Stone: Photo courtesy Stone Research Foundation

Dr. Kevin Stone and his team at The Stone Research Foundation for Sports Medicine and Arthritis were awarded $1,316,215 to develop an approach to treat and repair damaged cartilage using a patient’s own stem cells.

They are using a paste combining the patient’s own articular tissue as well as Mesenchymal Stem Cells (MSC) from their bone marrow. This mixture is combined with an adhesive hydrogel to form a graft that is designed to support cartilage growth and can also stick to surfaces without the need for glue. This paste will be used to augment the use of a microfracture technique, where micro-drilling of the bone underneath the cartilage tear brings MSCs and other cells to the fracture site. The hope is this two-pronged approach will produce an effective and functional stem cell-based cartilage repair procedure.

If effective this could produce a minimally invasive, low cost, one-step solution to help people with cartilage injuries and arthritis.

The full list of DISC2 grantees is:

ApplicationTitlePrincipal Investigator and InstitutionAmount
DISC2-13212Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy  Ansuman Satpathy – Stanford University    $ 1,420,200  
DISC2-13051Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering  Julia Carnevale – UC San Francisco  $ 1,463,368  
DISC2-13020Injectable, autologous iPSC-based therapy for spinal cord injury  Sarah Heilshorn – Stanford University    $789,000
DISC2-13009New noncoding RNA chemical entity for heart failure with preserved ejection fraction.  Eduardo Marban – Cedars-Sinai Medical Center  $1,397,412  
DISC2-13232Modulation of oral epithelium stem cells by RSpo1 for the prevention and treatment of oral mucositis  Jeffrey Linhardt – Intact Therapeutics Inc.  $942,050  
DISC2-13077Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)  Mathew Blurton-Jones – UC Irvine    $1,199,922  
DISC2-13201Matrix Assisted Cell Transplantation of Promyogenic Fibroadipogenic Progenitor (FAP) Stem Cells  Brian Feeley – UC San Francisco  $1,179,478  
DISC2-13063Improving the efficacy and tolerability of clinically validated remyelination-inducing molecules using developable combinations of approved drugs  Luke Lairson – Scripps Research Inst.  $1,554,126  
DISC2-13213Extending Immune-Evasive Human Islet-Like Organoids (HILOs) Survival and Function as a Cure for T1D  Ronald Evans – The Salk Institute for Biological Studies    $1,523,285  
DISC2-13136Meniscal Repair and Regeneration  Darryl D’Lima – Scripps Health      $1,620,645  
DISC2-13072Providing a cure for sphingosine phosphate lyase insufficiency syndrome (SPLIS) through adeno-associated viral mediated SGPL1 gene therapy  Julie Saba – UC San Francisco  $1,463,400  
DISC2-13205iPSC-derived smooth muscle cell progenitor conditioned medium for treatment of pelvic organ prolapse  Bertha Chen – Stanford University  $1,420,200  
DISC2-13102RNA-directed therapy for Huntington’s disease  Gene Wei-Ming Yeo  – UC San Diego  $1,408,923  
DISC2-13131A Novel Therapy for Articular Cartilage Autologous Cellular Repair by Paste Grafting  Kevin Stone – The Stone Research Foundation for Sports Medicine and Arthritis    $1,316,215  
DISC2-13013Optimization of a gene therapy for inherited erythromelalgia in iPSC-derived neurons  Ana Moreno – Navega Therapeutics    $1,157,313  
DISC2-13221Development of a novel stem-cell based carrier for intravenous delivery of oncolytic viruses  Edward Filardo – Cytonus Therapeutics, Inc.    $899,342  
DISC2-13163iPSC Extracellular Vesicles for Diabetes Therapy  Song Li – UC Los Angeles  $1,354,928