It’s all about the patients

Ronnie, born with a fatal immune disorder now leading a normal life thanks to a CIRM-funded stem cell/gene therapy: Photo courtesy of his mum Upasana

Whenever you are designing something new you always have to keep in mind who the end user is. You can make something that works perfectly fine for you, but if it doesn’t work for the end user, the people who are going to work with it day in and day out, you have been wasting your time. And their time too.

At CIRM our end users are the patients. Everything we do is about them. Starting with our mission statement: to accelerate stem cell treatments to patients with unmet medical needs. Everything we do, every decision we make, has to keep the needs of the patient in mind.

So, when we were planning our recent 2020 Grantee Meeting (with our great friends and co-hosts UC Irvine and UC San Diego) one of the things we wanted to make sure didn’t get lost in the mix was the face and the voice of the patients. Often big conferences like this are heavy on science with presentations from some of the leading researchers in the field. And we obviously wanted to make sure we had that element at the Grantee meeting. But we also wanted to make sure that the patient experience was front and center.

And we did just that. But more on that in a minute. First, let’s talk about why the voice of the patient is important.

Some years ago, Dr. David Higgins, a CIRM Board member and patient advocate for Parkinson’s Disease (PD), said that when researchers are talking about finding treatments for PD they often focus on the dyskinesia, the trembling and shaking and muscle problems. However, he said if you actually asked people with PD you’d find they were more concerned with other aspects of the disease, the insomnia, anxiety and depression among other things. The key is you have to ask.

Frances Saldana, a patient advocate for research into Huntington’s disease

So, we asked some of our patient advocates if they would be willing to be part of the Grantee Meeting. All of them, without hesitation, said yes. They included Frances Saldana, a mother who lost three of her children to Huntington’s disease; Kristin MacDonald, who lost her sight to a rare disorder but regained some vision thanks to a stem cell therapy and is hoping the same therapy will help restore some more; Pawash Priyank, whose son Ronnie was born with a fatal immune disorder but who, thanks to a stem cell/gene therapy treatment, is now healthy and leading a normal life.

Because of the pandemic everything was virtual, but it was no less compelling for that. We interviewed each of the patients or patient advocates beforehand and those videos kicked off each session. Hearing, and seeing, the patients and patient advocates tell their stories set the scene for what followed. It meant that the research the scientists talked about took on added significance. We now had faces and names to highlight the importance of the work the scientists were doing. We had human stories. And that gave a sense of urgency to the work the researchers were doing.

But that wasn’t all. After all the video presentations each session ended with a “live” panel discussion. And again, the patients and patient advocates were a key part of that. Because when scientists talk about taking their work into a clinical trial they need to know if the way they are setting up the trial is going to work for the patients they’re hoping to recruit. You can have the best scientists, the most promising therapy, but if you don’t design a clinical trial in a way that makes it easy for patients to be part of it you won’t be able to recruit or retain the people you need to test the therapy.

Patient voices count. Patient stories count.

But more than anything, hearing and seeing the people we are trying to help reminds us why we do this work. It’s so easy to get caught up in the day to day business of our jobs, struggling to get an experiment to work, racing to get a grant application in before the deadline. Sometimes we get so caught up in the minutiae of work we lose sight of why we are doing it. Or who we are doing it for.

At CIRM we have a saying; come to work every day as if lives depend on you, because lives depend on you. Listening to the voices of patients, seeing their faces, hearing their stories, reminds us not to waste a moment. Because lives depend on all of us.

Here’s one of the interviews that was featured at the event. I do apologize in advance for the interviewer, he’s rubbish at his job.

Charting a new course for stem cell research

What are the latest advances in stem cell research targeting cancer? Can stem cells help people battling COVID-19 or even help develop a vaccine to stop the virus? What are researchers and the scientific community doing to help address the unmet medical needs of underserved communities? Those are just a few of the topics being discussed at the Annual CIRM Alpha Stem Cell Clinic Network Symposium on Thursday, October 8th from 9am to 1.30pm PDT.

Like pretty nearly everything these days the symposium is going to be a virtual event, so you can watch it from the comfort of your own home on a phone or laptop. And it’s free.

The CIRM Alpha Clinics are a network of leading medical centers here in California. They specialize in delivering stem cell and gene therapies to patients. So, while many conferences look at the promise of stem cell therapies, here we deal with the reality; what’s in the clinic, what’s working, what do we need to do to help get these therapies to patients in need?

It’s a relatively short meeting, with short presentations, but that doesn’t mean it will be short on content. Some of the best stem cell researchers in the U.S. are taking part so you’ll learn an awful lot in a short time.

We’ll hear what’s being done to find therapies for

  • Rare diseases that affect children
  • Type 1 diabetes
  • HIV/AIDS
  • Glioblastoma
  • Multiple myeloma

We’ll discuss how to create a patient navigation system that can address social and economic determinants that impact patient participation? And we’ll look at ways that the Alpha Clinic Network can partner with community care givers around California to increase patient access to the latest therapies.

It’s going to be a fascinating day. And did I mention it’s free!

All you have to do is go to this Eventbrite page to register.

And feel free to share this with your family, friends or anyone you think might be interested.

We look forward to seeing you there.

Graphite Bio launches and will prepare for clinical trial based on CIRM-funded research

Josh Lehrer, M.D., CEO of Graphite Bio

This week saw the launch of the 45th startup company enabled by CIRM funding of translational research at California academic institutions. Graphite Bio officially launched with the help of $45M in funding led by bay area venture firms Versant Ventures and Samsara BioCapital to spinout a novel CRISPR gene editing platform from Stanford University to treat severe diseases. Graphite Bio’s lead candidate is for sickle cell disease and it harnesses CRISPR gene correction technology to correct the single DNA mutation in sickle cell disease and to restore normal hemoglobin expression in the red blood cells of sickle cell patients (Learn more about CRISPR from a previous blog post linked here).

Matt Porteus, M.D., Ph.D (left) and Maria Grazia Roncarolo, M.D. (right)
Graphite Bio scientific founders

Matt Porteus, M.D., Ph.D and Maria Grazia Roncarolo, M.D., both from Stanford University, are the company’s scientific founders. Dr. Porteus, Dr. Roncarolo, and the Stanford team are currently supported by a CIRM  late stage preclinical grant  to complete the final preclinical studies and to file an Investigational New Drug application with the FDA, which will enable Graphite Bio to commence clinical studies of the CRISPR sickle cell disease gene therapy candidate in sickle cell patients in 2021.

Josh Lehrer, M.D., was appointed CEO of Graphite Bio and elaborated on the company’s gene editing approach in a news release.

“Our flexible, site-specific approach is extremely powerful and could be used to definitively correct the underlying causes of many severe genetic diseases, and also is applicable to broader disease areas. With backing from Versant and Samsara, we look forward to progressing our novel medicines into the clinic for patients with high unmet needs.”

In a press release, Dr. Porteus take a retrospective look on his preclinical research and its progress towards a clinical trial.

“It is gratifying to see our work on new gene editing approaches being translated into novel therapies. I’m very excited to be working with Versant again on a start-up and I look forward to collaborating with Samsara and the Graphite Bio team to bring a new generation of genetic treatments to patients.”

CIRM’s funding of late stage preclinical projects such this one is critical to its funding model, which de-risks the discovery, translational development and clinical proof of concept of innovative stem cell-based treatments until they can attract industry partnerships. You can learn more about CIRM-enabled spinout companies and CIRM’s broader effort to facilitate industry partnering for its portfolio projects on CIRM’s Industry Alliance Program website.

You can contact CIRM’s Director of Business Development at the email below to learn more about the Industry Alliance Program.

Shyam Patel, Ph.D.
Director, Business Development
Email: spatel@cirm.ca.gov

Building a progressive pipeline

Dr. Kelly Shepard

By Dr. Kelly Shepard

One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.

But there are equally exciting signs of progress that are not always so obvious to the untrained eye-  those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.

These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”.  For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.

A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use. 

Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.

A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.

These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.

The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.

Caption for Graphic: This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).

The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.

We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.

Project: stem cell therapy to enhance bone healing in the elderly

– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by preIND-enabling studies, TRAN1-09270 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by discovery stage research grant TR1-01249 (Dr. Longaker and Dr. Helm, Stanford)

Project: embryonic stem cell derived neural cell therapy for Huntington Disease

– Currently funded stage: IND enabling development, CLIN1-10953 (Dr. Thompson, UC Irvine)

– Preceded by preIND-enabling studies, PC1-08117 (Dr. Thompson, UC Irvine)

– Preceded by discovery stage research grant (TR2-01841) (Dr. Thompson, UC Irvine)

Project: gene-modified hematopoietic stem cells for Artemis Deficient severe combined immunodeficiency (SCID)

– Currently funded stage: Phase 1 clinical trial CLIN2-10830 (Dr. Cowan, UC San Francisco)

– Preceded by IND enabling development, CLIN1-08363 (Dr. Puck, UC San Francisco)

– Preceded by discovery stage research grant, TR3-05535  (Dr. Cowan, UC San Francisco)

Project: retinal progenitor cell therapy for retinitis pigmentosa

– Currently funded stage: Phase 2 and 2b clinical trials, CLIN2-11472, CLIN2-09698 (Dr. Klassen, JCyte, Inc.)

– Preceded by IND enabling development, DR2A-05739 (Dr. Klassen, UC Irvine)

– Preceded by discovery stage research grant, TR2-01794 (Dr. Klassen, UC Irvine)

CIRM Funded Trial for Parkinson’s Treats First Patient

Dr. Krystof Bankiewicz

Brain Neurotherapy Bio, Inc. (BNB) is pleased to announce the treatment of the first patient in its Parkinson’s gene therapy study.  The CIRM-funded study, led by Dr. Krystof Bankiewicz, is one of the 64 clinical trials funded by the California state agency to date.

Parkinson’s is a neurodegenerative movement disorder that affects one million people in the U.S alone and leads to shaking, stiffness, and problems with walking, balance, and coordination.  It is caused by the breakdown and death of dopaminergic neurons, special nerve cells in the brain responsible for the production of dopamine, a chemical messenger that is crucial for normal brain activity.

The patient was treated at The Ohio State University Wexner Medical Center with a gene therapy designed to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The treatment seeks to increase dopamine production in the brain, alleviating Parkinson’s symptoms and potentially slowing down the disease progress.

“We are pleased to support this multi-institution California collaboration with Ohio State to take a novel first-in-human gene therapy into a clinical trial for Parkinson’s Disease.” says Maria T. Millan, M.D., President and CEO of CIRM.  “This is the culmination of years of scientific research by the Bankiewicz team to improve upon previous attempts to translate the potential therapeutic effect of GDNF to the neurons damaged in the disease. We join the Parkinson’s community in following the outcome of this vital research opportunity.”

CIRM Board Member and patient advocate David Higgins, Ph.D. is also excited about this latest development.  For Dr. Higgins, advocating for Parkinson’s is a very personal journey since he, his grandmother, and his uncle were diagnosed with the disease.

“Our best chance for developing better treatments for Parkinson’s is to test as many logical approaches as possible. CIRM encourages out-of-the-box thinking by providing funding for novel approaches. The Parkinson’s community is a-buzz with excitement about the GDNF approach and looks to CIRM to identify, fund, and promote these kinds of programs.”

In a news release Dr. Sandra Kostyk, director of the Movement Disorders Division at Ohio State Wexner Medical Center said this approach involves infusing a gene therapy solution deep into a part of the brain affected by Parkinson’s: “This is a onetime treatment strategy that could have ongoing lifelong benefits. Though it’s hoped that this treatment will slow disease progression, we don’t expect this strategy to completely stop or cure all aspects of the disease. We’re cautiously optimistic as this research effort moves forward.” 

Other trial sites located in California that are currently recruiting patients are the University of California, Irvine (UCI) and the University of California, San Francisco (UCSF). Specifically, the Irvine trial site is using the UCI Alpha Stem Cell Clinic, one of five leading medical centers throughout California that make up the CIRM Alpha Stem Cell Clinic (ASSC) Network.  The ASSC Network specializes in the delivery of stem cell therapies by providing world-class, state of the art infrastructure to support clinical research.

For more information on the trial and enrollment eligibility, you can directly contact the study coordinators by email at the trial sites listed:

  1. The Ohio State University: OSUgenetherapyresearch@osumc.edu
  2. University of California, San Francisco: GDNF@ucsf.edu
  3. University of California, Irvine: chewbc@hs.uci.edu

Meet the people who are changing the future

Kristin MacDonald

Every so often you hear a story and your first reaction is “oh, I have to share this with someone, anyone, everyone.” That’s what happened to me the other day.

I was talking with Kristin MacDonald, an amazing woman, a fierce patient advocate and someone who took part in a CIRM-funded clinical trial to treat retinitis pigmentosa (RP). The disease had destroyed Kristin’s vision and she was hoping the therapy, pioneered by jCyte, would help her. Kristin, being a bit of a pioneer herself, was the first person to test the therapy in the U.S.

Anyway, Kristin was doing a Zoom presentation and wanted to look her best so she asked a friend to come over and do her hair and makeup. The woman she asked, was Rosie Barrero, another patient in that RP clinical trial. Not so very long ago Rosie was legally blind. Now, here she was helping do her friend’s hair and makeup. And doing it beautifully too.

That’s when you know the treatment works. At least for Rosie.

There are many other stories to be heard – from patients and patient advocates, from researchers who develop therapies to the doctors who deliver them. – at our CIRM 2020 Grantee Meeting on next Monday September 14th Tuesday & September 15th.

It’s two full days of presentations and discussions on everything from heart disease and cancer, to COVID-19, Alzheimer’s, Parkinson’s and spina bifida. Here’s a link to the Eventbrite page where you can find out more about the event and also register to be part of it.

Like pretty much everything these days it’s a virtual event so you’ll be able to join in from the comfort of your kitchen, living room, even the backyard.

And it’s free!

You can join us for all two days or just one session on one day. The choice is yours. And feel free to tell your friends or anyone else you think might be interested.

We hope to see you there.

Stem Cell All-Stars, All For You

goldstein-larry

Dr. Larry Goldstein, UC San Diego

It’s not often you get a chance to hear some of the brightest minds around talk about their stem cell research and what it could mean for you, me and everyone else. That’s why we’re delighted to be bringing some of the sharpest tools in the stem cell shed together in one – virtual – place for our CIRM 2020 Grantee Meeting.

The event is Monday September 14th and Tuesday September 15th. It’s open to anyone who wants to attend and, of course, it’s all being held online so you can watch from the comfort of your own living room, or garden, or wherever you like. And, of course, it’s free.

BotaDaniela2261

Dr. Daniela Bota, UC Irvine

The list of speakers is a Who’s Who of researchers that CIRM has funded and who also happen to be among the leaders in the field. Not surprising as California is a global center for regenerative medicine. And you will of course be able to post questions for them to answer.

srivastava-deepak

Dr. Deepak Srivastava, Gladstone Institutes

The key speakers include:

Larry Goldstein: the founder and director of the UCSD Stem Cell Program talking about Alzheimer’s research

Irv Weissman: Stanford University talking about anti-cancer therapies

Daniela Bota: UC Irvine talking about COVID-19 research

Deepak Srivastava: Gladsone Institutes, talking about heart stem cells

Other topics include the latest stem cell approaches to COVID-19, spinal cord injury, blindness, Parkinson’s disease, immune disorders, spina bifida and other pediatric disorders.

You can choose one topic or come both days for all the sessions. To see the agenda for each day click here. Just one side note, this is still a work in progress so some of the sessions have not been finalized yet.

And when you are ready to register go to our Eventbrite page. It’s simple, it’s fast and it will guarantee you’ll be able to be part of this event.

We look forward to seeing you there.

Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

CIRM progression award to support research towards immunodeficiency

Dr. Caroline Kuo, a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA

In 2017, CIRM funded a discovery or early stage research project for Dr. Caroline Kuo at UCLA for a hereditary immune disorder known as X-Linked Hyper IgM Syndrome. The work has gone so well that Dr. Kuo and her team are now preparing the pre-clinical work needed to launch a clinical trial.

Thanks to the success of her discovery stage project (these are intended to promote promising new technologies that could be translated to enable broad use and improve patient care), Dr. Kuo received a CIRM progression award to launch a new project for DOCK8 deficiency, a different type of Hyper IgE Syndrome. This new project will compare two gene therapy techniques as potential treatments for DOCK8 deficiency.

Hyper IgM Syndrome is a genetic disorder that occurs when there are abnormal levels of different types of antibodies (Ig) in the body.  Antibodies combat infections by attaching to germs and other foreign substances, marking them for destruction.  In infants with Hyper IgM Syndrome , there are normal or high levels of antibody IgM but low levels of antibodies IgG, IgA, and IgE.  The low level of these antibodies make it difficult to fight off infection, resulting in frequent pneumonia, sinus infections, ear infections, and parasitic infections.  Additionally, these infants have an increased risk of cancerous growths.

While X-Linked Hyper IgM Syndrome is caused by a mutation in the X gene, DOCK8 deficiency is caused by a mutation in the DOCK8 gene. More than 95% of patients with DOCK8 deficiency die by age 40.

To determine the best approach to treat DOCK8 deficiency, Dr. Kuo will compare a traditional gene therapy method with another gene therapy approach that uses CRISPR-Cas9, which work like scissors and can be directed to cut DNA at specific sites to disable, repair, or make other alterations to genes.

In a press release from UCLA, Dr. Kuo describes what inspired her to pursue this research.

“I wanted to research new treatment options for DOCK8 deficiency because I see how debilitating it can be for my patients. It’s already bad enough that my patients feel sick but then add to that visible skin infections on their hands and face that are difficult to treat, I think that’s the hardest part for a lot of the children I see. The prospect of developing a curative therapy for patients definitely brings a lot more meaning to the work.”

Celebrating a life that almost didn’t happen

Evie Vaccaro

You can’t look at this photo and not smile. This is Evie Vaccaro, and it’s clear she is just bursting with energy and vitality. Sometimes it feels like I have known Evie all her life. In a way I have. And I feel so fortunate to have done so, and that’s why this photo is so powerful, because it’s a life that almost ended before it had a chance to start.

Evie was born with a rare condition called Severe Combined Immunodeficiency (SCID). Children with this condition lack a functioning immune system so even a simple cold or diaper rash can prove fatal. Imagine how perilous their lives are in a time of COVID-19. These children used to be called “bubble babies” because they were often kept inside sterile plastic bubbles to keep them alive. Many died before their second birthday.

Today there is no need for plastic bubbles. Today, we have a cure. That’s a word we use very cautiously, but in Evie’s case, and the case of more than 40 other children, we use it with pride.

Dr. Don Kohn and a child born with SCID

Dr. Don Kohn at UCLA has developed a method of taking the child’s own blood stem cells and, in the lab, inserting a corrected copy of the gene that caused SCID, and then returning those cells to the child. Because they are stem cells they multiply and renew and replicate themselves, creating a new blood supply, one free of the SCID mutation. The immune system is restored. The children are cured.

This is a story we have told several times before, but we mention it again because, well, it never gets old, and because Evie is on the front and back cover of our upcoming Annual Report. The report is actually a look back on the last 18 months in CIRM’s life, reporting on the progress we have made in advancing stem cell research, in saving and changing lives, and in producing economic benefits for California (billions of dollars in sales revenue and taxes and thousands of jobs).  

Evie’s story, Evie’s photo, is a reminder of what is possible thanks to the voters of California who created CIRM back in 2004. Hers is just one of the stories in the report. I think,  you’ll enjoy reading all of them.

Of course, I might be just a little bit biased.