Know Your Stem Cell History with Gladstone’s Interactive Timeline Tool

Stem cell biology is such a young area of research. It was only in 1998 that the first human embryonic stem cell line was generated by Jamie Thomson. A dizzying amount of breakthrough research has occurred in that short span of time, including the Nobel Prize winning work of Shinya Yamanaka for devising a method for reprogramming adult cells into an embryonic stem cell-like state (aka the induced pluripotent stem cell (iPS) cell technique). Because of the compressed time frame of these discoveries, it’s hard to keep track of the key highlights and the order in which they occurred. And there are plenty of fundamental, decades-old studies which our non-scientist stem cell champions may not be aware of.


The Gladstone’s stem cell timeline tool is fun and informative. Check it out!

That’s where the Gladstone Institutes’ new online stem cell timeline comes to the rescue. Released on October 12th, in celebration of Stem Cell Awareness Day, as well as the tenth anniversary of iPS cells, the timeline has a nifty interactive feature that allows you to swipe through a quick glance of the key milestones over the years. Then, simply tapping on a particular event gives you more detailed information. Check out it on the Gladstone Institutes website. Who knows, it might come in handy at your next pub trivia night or your next crossword puzzle.


Creating a “Pitching Machine” to speed up our delivery of stem cell treatments to patients


When baseball players are trying to improve their hitting they’ll use a pitching machine to help them fine tune their stroke. Having a device that delivers a ball at a consistent speed can help a batter be more consistent and effective in their swing, and hopefully get more hits.

That’s what we are hoping our new Translating and Accelerating Centers will do. We call these our “Pitching Machine”, because we hope they’ll help researchers be better prepared when they apply to the Food and Drug Administration (FDA) for approval to start a clinical trial, and be more efficient and effective in the way they set up and run that clinical trial once they get approval.

The CIRM Board approved the Accelerating Center earlier this summer. The $15 million award went to QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider.

The Accelerating Center will provide key core services for researchers who have been given approval to run a clinical trial, including:

  • Regulatory support and management services
  • Clinical trial operations and management services
  • Data management, biostatistical and analytical services

The reason why these kinds of service are needed is simple, as Randy Mills, our President and CEO explained at the time:

“Many scientists are brilliant researchers but have little experience or expertise in navigating the regulatory process; this Accelerating Center means they don’t have to develop those skills; we provide them for them.”

The Translating Center is the second part of the “Pitching Machine”. That is due to go to our Board for a vote tomorrow. This is an innovative new center that will support the stem cell research, manufacturing, preclinical safety testing, and other activities needed to successfully apply to the FDA for approval to start a clinical trial.

The Translating Center will:

  • Provide consultation and guidance to researchers about the translational process for their stem cell product.
  • Initiate, plan, track, and coordinate activities necessary for preclinical Investigational New Drug (IND)-enabling development projects.
  • Conduct preclinical research activities, including pivotal pharmacology and toxicology studies.
  • Manufacture stem cell and gene modified stem cell products under the highest quality standards for use in preclinical and clinical studies.

The two centers will work together, helping researchers create a comprehensive development plan for every aspect of their project.

For the researchers this is important in giving them the support they need. For the FDA it could also be useful in ensuring that the applications they get from CIRM-funded projects are consistent, high quality and meet all their requirements.

We want to do everything we can to ensure that when a CIRM-funded therapy is ready to start a clinical trial that its application is more likely to be a hit with the FDA, and not to strike out.

Just as batting practice is crucial to improving performance in baseball, we are hoping our “Pitching Machine” will raise our game to the next level, and enable us to deliver some game-changing treatments to patients with unmet medical needs.


Trash talking and creating a stem cell community


Imilce Rodriguez-Fernandez likes to talk trash. No, really, she does. In her case it’s cellular trash, the kind that builds up in our cells and has to be removed to ensure the cells don’t become sick.

Imilce was one of several stem cell researchers who took part in a couple of public events over the weekend, on either side of San Francisco Bay, that served to span both a geographical and generational divide and create a common sense of community.

The first event was at the Buck Institute for Research on Aging in Marin County, near San Francisco. It was titled “Stem Cell Celebration” and that’s pretty much what it was. It featured some extraordinary young scientists from the Buck talking about the work they are doing in uncovering some of the connections between aging and chronic diseases, and coming up with solutions to stop or even reverse some of those changes.

One of those scientists was Imilce. She explained that just as it is important for people to get rid of their trash so they can have a clean, healthy home, so it is important for our cells to do the same. Cells that fail to get rid of their protein trash become sick, unhealthy and ultimately stop working.

Imilce is exploring the cellular janitorial services our bodies have developed to deal with trash, and trying to find ways to enhance them so they are more effective, particularly as we age and those janitorial services aren’t as efficient as they were in our youth.

Unlocking the secrets of premature aging

Chris Wiley, another postdoctoral researcher at the Buck, showed that some medications that are used to treat HIV may be life-saving on one level, preventing the onset of full-blown AIDS, but that those benefits come with a cost, namely premature aging. Chris said the impact of aging doesn’t just affect one cell or one part of the body, but ripples out affecting other cells and other parts of the body. By studying the impact those medications have on our bodies he’s hoping to find ways to maintain the benefits of those drugs, but get rid of the downside.

Creating a Community


Across the Bay, the U.C. Berkeley Student Society for Stem Cell Research held it’s 4th annual conference and the theme was “Culturing a Stem Cell Community.”

The list of speakers was a Who’s Who of CIRM-funded scientists from U.C. Davis’ Jan Nolta and Paul Knoepfler, to U.C. Irvine’s Henry Klassen and U.C. Berkeley’s David Schaffer. The talks ranged from progress in fighting blindness, to how advances in stem cell gene editing are cause for celebration, and concern.

What struck me most about both meetings was the age divide. At the Buck those presenting were young scientists, millennials; the audience was considerably older, baby boomers. At UC Berkeley it was the reverse; the presenters were experienced scientists of the baby boom generation, and the audience were keen young students representing the next generation of scientists.

Bridging the divide

But regardless of the age differences there was a shared sense of involvement, a feeling that regardless of which side of the audience we are on we all have something in common, we are all part of the stem cell community.

All communities have a story, something that helps bind them together and gives them a sense of common purpose. For the stem cell community there is not one single story, there are many. But while those stories all start from a different place, they end up with a common theme; inspiration, determination and hope.


Using skin cells to repair damaged hearts


Heart muscle  cells derived from skin cells

When someone has a heart attack, getting treatment quickly can mean the difference between life and death. Every minute delay in getting help means more heart cells die, and that can have profound consequences. One study found that heart attack patients who underwent surgery to re-open blocked arteries within 60 minutes of arriving in the emergency room had a six times greater survival rate than people who had to wait more than 90 minutes for the same treatment.

Clearly a quick intervention can be life-saving, which means an approach that uses a patient’s own stem cells to treat a heart attack won’t work. It simply takes too long to harvest the healthy heart cells, grow them in the lab, and re-inject them into the patient. By then the damage is done.

Now a new study shows that an off-the-shelf approach, using donor stem cells, might be the most effective way to go. Scientists at Shinshu University in Japan, used heart muscle stem cells from one monkey, to repair the damaged hearts of five other monkeys.

In the study, published in the journal Nature, the researchers took skin cells from a macaque monkey, turned those cells into induced pluripotent stem cells (iPSCs), and then turned those cells into cardiomyocytes or heart muscle cells. They then transplanted those cardiomyocytes into five other monkeys who had experienced an induced heart attack.

After 3 months the transplanted monkeys showed no signs of rejection and their hearts showed improved ability to contract, meaning they were pumping blood around the body more powerfully and efficiently than before they got the cardiomyocytes.

It’s an encouraging sign but it comes with a few caveats. One is that the monkeys used were all chosen to be as close a genetic match to the donor monkey as possible. This reduced the risk that the animals would reject the transplanted cells. But when it comes to treating people, it may not be feasible to have a wide selection of heart stem cell therapies on hand at every emergency room to make sure they are a good genetic match to the patient.

The second caveat is that all the transplanted monkeys experienced an increase in arrhythmias or irregular heartbeats. However, Yuji Shiba, one of the researchers, told the website ResearchGate that he didn’t think this was a serious issue:

“Ventricular arrhythmia was induced by the transplantation, typically within the first four weeks. However, this post-transplant arrhythmia seems to be transient and non-lethal. All five recipients of [the stem cells] survived without any abnormal behaviour for 12 weeks, even during the arrhythmia. So I think we can manage this side effect in clinic.”

Even with the caveats, this study demonstrates the potential for a donor-based stem cell therapy to treat heart attacks. This supports an approach already being tested by Capricor in a CIRM-funded clinical trial. In this trial the company is using donor cells, derived from heart stem cells, to treat patients who developed heart failure after a heart attack. In early studies the cells appear to reduce scar tissue on the heart, promote blood vessel growth and improve heart function.

The study from Japan shows the possibilities of using a ready-made stem cell approach to helping repair damage caused by a heart attacks. We’re hoping Capricor will take it from a possibility, and turn it into a reality.

If you would like to read some recent blog posts about Capricor go here and here.

Funding stem cell research targeting a rare and life-threatening disease in children


Photo courtesy Cystinosis Research Network

If you have never heard of cystinosis you should consider yourself fortunate. It’s a rare condition caused by an inherited genetic mutation. It hits early and it hits hard. Children with cystinosis are usually diagnosed before age 2 and are in end-stage kidney failure by the time they are 9. If that’s not bad enough they also experience damage to their eyes, liver, muscles, pancreas and brain.

The genetic mutation behind the condition results in an amino acid, cystine, accumulating at toxic levels in the body. There’s no cure. There is one approved treatment but it only delays progression of the disease, has some serious side effects of its own, and doesn’t prevent the need for a  kidney transplant.

Researchers at UC San Diego, led by Stephanie Cherqui, think they might have a better approach, one that could offer a single, life-long treatment for the problem. Yesterday the CIRM Board agreed and approved more than $5.2 million for Cherqui and her team to do the pre-clinical testing and work needed to get this potential treatment ready for a clinical trial.

Their goal is to take blood stem cells from people with cystinosis, genetically-modify them and return them to the patient, effectively delivering a healthy, functional gene to the body. The hope is that these genetically-modified blood stem cells will integrate with various body organs and not only replace diseased cells but also rescue them from the disease, making them healthy once again.

In a news release Randy Mills, CIRM’s President and CEO, said orphan diseases like cystinosis may not affect large numbers of people but are no less deserving of research in finding an effective therapy:

“Current treatments are expensive and limited. We want to push beyond and help find a life-long treatment, one that could prevent kidney failure and the need for kidney transplant. In this case, both the need and the science were compelling.”

The beauty of work like this is that, if successful, a one-time treatment could last a lifetime, eliminating or reducing kidney disease and the need for kidney transplantation. But it doesn’t stop there. The lessons learned through research like this might also apply to other inherited multi-organ degenerative disorders.

Asterias’ stem cell clinical trial shows encouraging results for spinal cord injury patients

jake and family

Jake Javier; Asterias spinal cord injury clinical trial participant

When researchers are carrying out a clinical trial they have two goals: first, show that it is safe (the old “do no harm” maxim) and second, show it works. One without the other doesn’t do anyone any good in the long run.

A few weeks ago Asterias Biotherapeutics showed that their CIRM-funded stem cell therapy for spinal cord injuries appeared to be safe. Now their data suggests it’s working. And that is a pretty exciting combination.

Asterias announced the news at the annual scientific meeting of the International Spinal Cord Society in Vienna, Austria. These results cover five people who got a transplant of 10 million cells. While the language is muted, the implications are very encouraging:

“While early in the study, with only 4 of the 5 patients in the cohort having reached 90 days after dosing, all patients have shown at least one motor level of improvement so far and the efficacy target of 2 of 5 patients in the cohort achieving two motor levels of improvement on at least one side of their body has already been achieved.”

What does that mean for the people treated? A lot. Remember these are people who qualified for this clinical trial because of an injury that left them pretty much paralyzed from the chest down. Seeing an improvement of two motor levels means they are regaining some use of their arms, hands and fingers, and that means they are regaining the ability to do things like feeding, dressing and bathing themselves. In effect, it is not only improving their quality of life but it is also giving them a chance to lead an independent life.


Kris Boesen, Asterias clinical trial participant

One of those patients is Kris Boesen who regained the use of his arms and hands after becoming the first patient in this trial to get a transplant of 10 million cells. We blogged about Kris here

Asterias says of the 5 patients who got 10 million cells, 4 are now 90 days out from their transplant. Of those:

  • All four have improved one motor level on at least one side
  • 2 patients have improved two motor levels on one side
  • One has improved two motor levels on both sides

What’s also encouraging is that none of the people treated experienced any serious side effects or adverse events from the transplant or the temporary use of immunosuppressive drugs.

Steve Cartt, CEO of Asterias, was understandably happy with the news and that it allows them to move to the next phase:

“We are quite encouraged by this first look at efficacy results and look forward to reporting six-month efficacy data as planned in January 2017.  We have also just recently been cleared to begin enrolling a new cohort and administering to these new patients a much higher dose of 20 million cells.  We look forward to begin evaluating efficacy results in this higher-dose cohort in the coming months as well.”

People with spinal cord injuries can regain some function spontaneously so no one is yet leaping to the conclusion that all the progress in this trial is due to the stem cells. But to see all of the patients in the 10 million stem cell group do well is at the very least a positive sign. Now the hope is that these folks will continue to do well, and that the next group of people who get a 20 million cell transplant will also see improvements.


Roman Reed, spinal cord injury patient advocate

While the team at Asterias were being cautiously optimistic, Roman Reed, whose foundation helped fund the early research that led to this clinical trial, was much less subdued in his response. He was positively giddy:

“If one patient only improves out of the five, it can be an outlier, but with everyone improving out of the five this is legit, this is real. Cures are happening!”


CIRM’s Randy Mills: New FDA rules for stem cells won’t fix the problem

For the last two days the Food and Drug Administration (FDA) has been holding a hearing in Bethesda, Maryland on new regulations that would tighten control over stem cell treatments. The FDA invited public testimony during the hearing on the regulations that would impact many of the clinics that currently offer unproven therapies

The testimony has been impassioned to say the least. Supporters of the clinics say they offer a valuable service and that patients should be allowed to decide for themselves how they want their own cells to be used. Opponents say the clinics are little more than snake oil sales people, offering bogus, unproven treatments.

One of those presenting was Randy Mills, CIRM’s President and CEO. Randy has been very vocal in the past about the need for the FDA to change the way it regulates stem cell therapies.

In California Healthline Randy explained why he thinks the rules the FDA is proposing will not fix the problem, and may even make it worse:

FDA Must Find A Middle Ground For Sake Of Patients


Randy Mills

We aren’t happy, as a lot of people aren’t happy, with the proliferation of these stem cell clinics — some of which are probably doing good work. But some are clearly making rather outlandish claims for which there’s no real data. 

There are a couple of conditions coming together to create this storm.

One is that the need is very real. These patients are really struggling. They don’t have alternatives. They’re desperate and they need help. It’s not in the realm of possibility to talk to somebody who is suffering as badly as these patients are and to say, ‘You have to wait a few more decades for the science to catch up.’

On the other hand, we have a regulatory paradigm that only provides two pathways to put a cell therapy onto the market. One pathway is the most intense regulatory requirement anywhere in the world for any product — the biologics license application through the FDA, which takes 10 to 20 years and costs over $1 billion.

The other is through the exemptions the FDA has made, which require absolutely no pre-market approval whatsoever. You can be on the market in days, with no data.

The regulatory burden associated with one is massive and the other is almost nonexistent.

So it’s not at all surprising that we’re seeing a proliferation of these stem cell clinics popping up that are operating under the assumption that they fall under the exemption.

What the FDA is doing now is saying, ‘We’re not happy with this. We’re going to define some terms more narrowly than in the past … and make it more difficult to legally be on the market under the less burdensome regulatory pathway.’

That’s what this meeting is about.

The problem with their strategy is twofold. It doesn’t address the patients, or the need side of the equation. And I don’t think it has a chance of actually working because the FDA will acknowledge that they do not have the resources to enforce these types of regulations at the clinic level.

They would have to be essentially regulating the practice of physicians, which is well beyond their capabilities. Even if they were able to enforce it, it would just drive these patients somewhere else.

We’re advocating for the creation of some middle pathway that would bring essentially unregulated therapies into the regulatory fold, but in a manner which could be complied with.

I would rather know these clinics are being regulated and collecting data than have them operating under the radar screen of the FDA. I would like there to be a formal pre-market review of these therapies before they’re put on the market. I would like there to be safety and efficacy data.

I’m going to try hard to get the FDA to see that just plugging this hole won’t make the problem go away.

Thinking that they’re going to strengthen the regulation and that patients are going to be satisfied that there’s absolutely no chance for help is naive.

There isn’t a lot of evidence to suggest these types of procedures are overly risky. It’s not that they don’t have risk, but everything in medicine does. If you’re a patient who has absolutely no alternative, you’re probably willing to take the chance.

Salk scientists explain why brain cells are genetically diverse


I’ve always wondered why some sets of genetically identical twins become not so identical later in life. Sometimes they differ in appearance. Other times, one twin is healthy while the other is plagued with a serious disease. These differences can be explained by exposure to different environmental factors over time, but there could also be a genetic explanation involving our brains.

The brain is composed of approximately 100 billion cells called neurons, each with a DNA blueprint that contains instructions that determine the function of these neurons in the brain. Originally it was thought that all cells, including neurons, have the same DNA. But more recently, scientists discovered that the brain is genetically diverse and that neurons within the same brain can have slightly different DNA blueprints, which could give them slightly different functions.

Jumping genes and genetic diversity


Fred “Rusty” Gage: Photo courtesy Salk Institute

Why and how neurons have differences in their DNA are questions that Salk Institute professor Fred Gage has pursued for more than a decade. In 2005, his lab discovered a mechanism during neural development that causes differences in the DNA of neurons. As a brain stem cell develops into a neuron, long interspersed nuclear elements (L1s), which are small pieces of DNA, copy and paste themselves, seemingly at random, throughout a neuron’s genome.

These elements were originally dubbed “jumping genes” because of their ability to hop around and insert themselves into DNA. It turns out that L1s do more than copy and paste themselves to create changes in DNA, they also can delete chunks of DNA. In a CIRM-funded study published this week in the journal Nature Neuroscience, Gage and colleagues at the Salk Institute reported new insights into L1 activity and how it creates genetic diversity in the brain.

Copy, paste, delete

Gage and his team had clues that L1s can cause DNA deletions in neurons back in 2013. They used a technique called single-cell sequencing to record the sequence of individual neuronal genomes and saw that some of their genomes had large sections of DNA added or missing.

They thought that L1s could be the reason for these insertions and deletions, but didn’t have proof until their current study, which used an improved method to identify areas of the neuronal genome modified by L1s. This method, combined with a computer algorithm that can easily tell the difference between various types of L1 modifications, revealed that areas of the genome with L1s were susceptible to DNA cutting caused by enzymes that home in on the L1 sequences. These breaks in the DNA then cause the observed deletions.

Gage explained their findings in a news release:

“In 2013, we discovered that different neurons within the same brain have various complements of DNA, suggesting that they function slightly differently from each other even within the same person. This recent study reveals a new and surprising form of variation that will help us understand the role of L1s, not only in healthy brains but in those affected by schizophrenia and autism.”

Jennifer Erwin, first author on the study, further elaborated:

“The surprising part was that we thought all L1s could do was insert into new places. But the fact that they’re causing deletions means that they’re affecting the genome in a more significant way,” says Erwin, a staff scientist in Gage’s group.”

Insights into brain disorders

It’s now known that L1s are important for the brain’s genetic diversity, but Gage also believes that L1s could play a role in causing brain disorders like schizophrenia and autism where there is heightened L1 activity in the neurons of these patients. In future work, Gage and his team will study how L1s can cause changes in genes associated with schizophrenia and autism and how these changes can effect brain function and cause disease.

Young man with spinal cord injury regains use of hands and arms after stem cell therapy


Kris Boesen – Photo courtesy USC

Hope is such a fragile thing. We cling to it in bad times. It offers us a sense that we can bear whatever hardships we are facing today, and that tomorrow will be better.

Kris Boesen knows all about holding on to hope during bad times. On March 6th of this year he was left paralyzed from the neck down after a car accident. Kris and his parents were warned the damage might be permanent.

Kris says at that point, life was pretty bleak:

“I couldn’t drink, couldn’t feed myself, couldn’t text or pretty much do anything, I was basically just existing. I wasn’t living my life, I was existing.”

For Kris and his family hope came in the form of a stem cell clinical trial, run by Asterias Biotherapeutics and funded by CIRM. The Asterias team had already enrolled three patients in the trial, each of whom had 2 million cells transplanted into their necks, primarily to test for safety. In early April Kris became the first patient in the trial to get a transplant of 10 million stem cells.

Within two weeks he began to show signs of improvement, regaining movement and strength in his arms and hands:

“Now I have grip strength and do things like open a bottle of soda and feed myself. Whereas before I was relying on my parents, now after the stem cell therapy I am able to live my life.”

The therapy involves human embryonic stem cells that have been differentiated, or converted, into cells called oligodendrocyte progenitors. These are capable of becoming the kind of cells which help protect nerve cells in the central nervous system, the area damaged in spinal cord injury.

The surgery was performed by Keck Medicine of USC’s Dr. Charles Liu. In a news release about the procedure, he says improvements of the kind Kris has experienced can make a huge difference in someone’s life:


Dr. Charles Liu, Keck School of Medicine: Photo courtesy USC

“As of 90 days post-treatment, Kris has gained significant improvement in his motor function, up to two spinal cord levels. In Kris’ case, two spinal cord levels means the difference between using your hands to brush your teeth, operate a computer or do other things you wouldn’t otherwise be able to do, so having this level of functional independence cannot be overstated.”

We blogged about this work as recently as last week, when Asterias announced that the trial had passed two important safety hurdles.  But Kris’ story is the first to suggest this treatment might actually be working.

Randy Mills, CIRM’s President & CEO, says:

 “With each patient treated in this clinical trial we learn.  We gain more experience, all of which helps us put into better context the significance of this type of event for all people afflicted with debilitating spinal cord injuries. But let us not lose sight of the individual here.  While each participant in a clinical trial is part of the group, for them success is binary.  They either improve or they do not.  Kris bravely and selflessly volunteered for this clinical trial so that others may benefit from what we learn.  So it is fitting that today we celebrate Kris’ improvements and stop to thank all those participating in clinical trials for their selfless efforts.”

For patient advocates like Roman Reed, this was a moment to celebrate. Roman has been championing stem cell research for years and through his Roman Reed Foundation helped lay the groundwork for the research that led to this clinical trial:

This is clear affirmative affirmation that we are making Medical History!  We were able to give a paralyzed quadriplegic patient back the use of his hands! With only half a clinical dosage. Now this person may hold and grasp his loved ones hands in his own hands because of the actions of our last two decades for medical research for paralysis CURE! CARPE DIEM!”

It’s not unheard of for people with the kind of injury Kris had to make a partial recovery, to regain some use of their arms and hands, so it’s impossible to know right now if the stem cell transplant was the deciding factor.


Kris at home: photo courtesy USC

Kris’ dad, Rodney, says he doesn’t care how it happened, he’s just delighted it did:

“He’s going to have a life, even if (the progress) stops just this second, and this is what he has, he’s going to have a better life than he would have definitely had before, because there are so many things that this opens up the world for him, he’s going to be able to use his hands.”

Related Articles:

CIRM jumped on the iPS cell bandwagon before it had wheels

Part of The Stem Cellar series on ten years of iPS cells

The first press release I issued that announced new research grants after arriving at CIRM in 2008 detailed 18 “New Cell Line” awards. Ten of those grants, announced in June that year, were for a type of stem cell that had not even been proven to exist until November the year before. Those induced pluripotent stem cells (iPS cells) so dramatically changed our field that their discovery led to the Nobel prize for Shinya Yamanaka just four years later.

Even though California voters approved the creation of CIRM in November 2004 and the agency’s first office opened just a few months later, the first grants for research projects did not get approved until February 2007. Litigation by opponents of stem cell research and the monumental task of setting up a granting agency from scratch resulted in a two-year gap between the vote and getting down to the business the voters resoundingly supported.


One of the first videos we placed on CIRMTV on YouTube was on iPSCs

Those first research grants sought to increase the sparse number of California researchers actually doing research with human embryonic stem cells. But just eight months later, in October 2007, CIRM staff had enough confidence in the mettle of California’s researchers that they went to our Board with a concept proposal for the New Cell Line awards that included the option of developing human iPS cells. While Yamanaka had first reprogrammed mouse skin cells to iPS cells in 2006, at the time of the Board presentation it was only speculated to be possible with human tissue. Not until the following month did he and Wisconsin’s James Thomson simultaneous publish the creation of human iPS cells, which CIRM staff annotated into the New Cell Line Request for Applications before they posted it in December 2007.

Former colleague Uta Grieshammer managed the New Cell Line awards as a CIRM senior science officer. In a recent interview she said the scientific questions posed by those grants showed the value of these awards.

 “The types of research we ended up funding under this call reflected the breadth of the questions important to embryonic stem cell and iPS cell work.”

Those projects included:

  • Creating early stage embryonic stem cells (ESCs), called ICM stage, which had been done in mice but not humans;
  • creating “clinical grade” ESCs fit for use in patients;
  • creating ESCs from embryos discarded by families at IVF clinics because they carried mutations for inherited diseases with the goal of developing better models for those diseases;
  • creating iPS cells from people with diseases, also to develop better models of disease;
  • ways to make iPS cells that did not result in the reprogramming factors being integrated into the cell’s genes permanently, which could render them unfit for human therapy;
  • looking to see if the age of the adult cell used to make iPS cells matters in the resulting stem cell;
  • comparing iPS and ESC lines to see if they are truly equivalent.

Those all turned out to be critical questions for the field, many still dominating much of the research today.  One of the most robust areas of iPS research involves creating disease-in-a-dish models using patient-derived stem cells for diseases that have been historically difficult to model in animals. One of the New Cell Line grantees, Fred Gage at the Salk Institute in San Diego, became one of the first researchers anywhere to report physiological differences between nerves grown from normal individuals versus nerves grown from patients with mental health conditions.

uta-grieshammer “The excitement to me personally with the result of our New Cell Lines is access to understanding complex genetic diseases through iPS cells,” said Uta, who currently is helping us untangle even more complex diseases as part of the management team for California’s personalized medicine initiative.

Gage, along with a co-investigator at Johns Hopkins, just last week received a $15 million grant from the National Institutes of Health to screen drug libraries against iPS cell-derived nerves to look for treatments for schizophrenia and bi-polar disorder. Clearly the CIRM team was onto something back in 2007.

Footnote:  This will be my last regular post for The Stem Cellar. I will be retiring from CIRM later this month, though I may heed the call if my colleagues ask me to do a guest post from my new base on Cape Cod.