A little history in the making by helping the tiniest patients

Dr. Diana Farmer stands with Dr. Aijun Wang and their UC Davis research team.

It’s appropriate that at the start of Women’s History Month, UC Davis’ Dr. Diana Farmer is making a little history of her own. She launched the world’s first clinical trial using stem cells to treat spina bifida before the child is born.

Spina bifida is a birth defect caused when a baby’s spinal cord fails to develop properly in the womb. In myelomeningocele, the most severe form of spina bifida, a portion of the spinal cord or nerves is exposed in a sac through an opening in the spine. Most people with myelomeningocele have changes in their brain structure, leg weakness, and bladder and bowel dysfunction. 

Illustration of spina bifida

While surgery can help, Dr. Farmer says it is far from perfect: “Currently, the standard of care for our patients is fetal surgery, which, while promising, still leaves more than half of children with spina bifida unable to walk independently. There is an extraordinary need for a treatment that prevents or lessens the severity of this devastating condition. Our team has spent more than a decade working up to this point of being able to test such a promising therapy.” 

The team at UC Davis – in a CIRM-funded study – will use a stem cell “patch” that is placed over the exposed spinal cord, then surgically close the opening, hopefully allowing the stem cells to regenerate and protect the spinal cord.

In a news release Dr. Aijun Wang, a stem cell bioengineer, says the team has been preparing for this trial for years, helping show in animals that it is safe and effective. He is hopeful it will prove equally safe and effective in people: “Our cellular therapy approach, in combination with surgery, should encourage tissue regeneration and help patients avoid devastating impairments throughout their lives.” 

Dr. Farmer says the condition, while rare, disproportionately affects Latinx babies and if the procedure works could have an enormous impact on their lives and the lives of their families: “A successful treatment for MMC would relieve the tremendous emotional and economic cost burden on families. We know it initially costs approximately $532,000 per child with spina bifida. But the costs are likely several million dollars more due to ongoing treatments, not to mention all the pain and suffering, specialized childcare, and lost time for unpaid caregivers such as parents.”

Here is video of two English bulldogs who had their spinal injuries repaired at UC Davis using stem cells. This was part of the research that led to the clinical trial led by Dr. Farmer and Dr. Wang.

Tipping our hat to the good guys (& gals)

A search on Google using the term “stem cell blogs” quickly produces a host of sites offering treatments for everything from ankle, hip and knee problems, to Parkinson’s disease and asthma. Amazingly the therapies for those very different conditions all use the same kind of cells produced in the same way. It’s like magic. Sadly, it’s magic that is less hocus pocus and more bogus bogus.

The good news is there are blogs out there (besides us, of course) that do offer good, accurate, reliable information about stem cells. The people behind them are not in this to make a quick buck selling snake oil. They are in this to educate, inform, engage and enlighten people about what stem cells can, and cannot do.

So, here’s some of our favorites.

The Niche

This blog has just undergone a face lift and is now as colorful and easy to read as it is informative. It bills itself as the longest running stem cell blog around. It’s run by UC Davis stem cell biologist Dr. Paul Knoepfler – full disclosure, we have funded some of Paul’s work – and it’s a constant source of amazement to me how Paul manages to run a busy research lab and post regular updates on his blog.

The power of The Niche is that it’s easy for non-science folk – like me – to read and understand without having to do a deep dive into Google search or Wikipedia. It’s well written, informative and often very witty. If you are looking for a good website to check whether some news about stem cells is real or suspect, this is a great place to start.

Stem Cell Battles

This site is run by another old friend of CIRM’s, Don Reed. Don has written extensively about stem cell research in general, and CIRM in particular. His motivation to do this work is clear. Don says he’s not a doctor or scientist, he’s something much simpler:

“No. I am just a father fighting for his paralyzed son, and the only way to fix him is to advance cures for everyone. Also, my mother died of breast cancer, my sister from leukemia, and I myself am a prostate cancer survivor. So, I have some very personal reasons to support the California Institute for Regenerative Medicine and to want state funding for stem cell and other regenerative medicine research to continue in California!”

The power of Don’s writing is that he always tells human stories, real tales about real people. He makes everything he does accessible, memorable and often very funny. If I’m looking for ways to explain something complex and translate it into everyday English, I’ll often look at Don’s work, he knows how to talk to people about the science without having their eyes cloud over.

A Closer Look at Stem Cells

This is published by the International Society for Stem Cell Research (ISSCR), the leading professional organization for stem cell scientists. You might expect a blog from such a science-focused organization to be heavy going for the ordinary person, but you’d be wrong.

A Closer Look at Stem Cells is specifically designed for people who want to learn more about stem cells but don’t have the time to get a PhD. They have sections explaining what stem cells are, what they can and can’t do, even a glossary explaining different terms used in the field (I used to think the Islets of Langerhans were small islands off the coast of Germany till I went to this site).

One of the best, and most important, parts of the site is the section on clinical trials, helping people understand what’s involved in these trials and the kinds of things you need to consider before signing up for one.

Signals

Of course, the US doesn’t have a monopoly on stem cell research and that’s reflected in the next two choices. One is the Signals Blog from our friends to the north in Canada. This is an easy-to-read site that describes itself as the “Insiders perspective on the world of stem cells and regenerative medicine.” The ‘Categories ‘dropdown menu allows you to choose what you want to read, and it gives you lots of options from the latest news to a special section for patients, even a section on ethical and legal issues. 

EuroStemCell

As you may have guessed from the title this is by our chums across the pond in Europe. They lay out their mission on page one saying they want to help people make sense of stem cells:

“As a network of scientists and academics, we provide independent, expert-reviewed information and road-tested educational resources on stem cells and their impact on society. We also work with people affected by conditions, educators, regulators, media, healthcare professionals and policymakers to foster engagement and develop material that meets their needs.”

True to their word they have great information on the latest research, broken down by different types of disease, different types of stem cell etc. And like CIRM they also have some great educational resources for teachers to use in the classroom.

Anticipating the Future of Regenerative Medicine: CIRM’s Alpha Stem Cell Clinics Network

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we take a deeper dive into CIRM’s Alpha Stem Cell Clinics Network.  The following is written by Dr. Geoff Lomax, Senior Officer of CIRM Therapeutics and Strategic Infrastructure.

The year 2014 has been described as the regenerative medicine renaissance: the European Union approved its first stem cell-based therapy and the FDA authorized ViaCyte’s CIRM funded clinical trial for diabetes. A path forward for stem cell treatments had emerged and there was a growing pipeline of products moving towards the clinic. At the time, many in the field came to recognize the need for clinical trial sites with the expertise to manage this growing pipeline. Anticipating this demand, CIRM’s provided funding for a network of medical centers capable of supporting all aspect of regenerative medicine clinical trials. In 2015, the Alpha Stem Cell Clinics Network was launched to for this purpose.

The Alpha Clinics Network is comprised of leading California medical centers with specific expertise in delivering patient-centered stem cell and gene therapy treatments. UC San Diego, City of Hope, UC Irvine and UC Los Angeles were included in the initial launch, and UC San Francisco and UC Davis entered the network in 2017. Between 2015 and 2020 these sites supported 105 regenerative medicine clinical trials. Twenty-three were CIRM-funded clinical trials and the remaining 82 were sponsored by commercial companies or the Alpha Clinic site. These trials are addressing unmet medical needs for almost every disease where regenerative medicine is showing promise including blindness, blood disorders (e.g. sickle cell disease) cancer, diabetes, HIV/AIDS, neurological diseases among others.

As of spring of 2020 the network had inked over $57 million in contracts with commercial sponsors. High demand for Alpha Clinics reflects the valuable human and technical resources they provide clinical trial sponsors. These resources include:

  • Skilled patient navigators to educate patients and their families about stem cell and gene therapy treatments and assist them through the clinical trial process.
  • Teams and facilities specialized in the manufacturing and/or processing of patients’ treatments. In some instances, multiple Alpha Clinic sites collaborate in manufacturing and delivery of a personalized treatment to the patient.
  • Nurses and clinicians with experience with regenerative medicine and research protocols to effectively deliver treatments and subsequently monitor the patients.

The multi- site collaborations are an example of how the network operates synergistically to accelerate the development of new treatments and clinical trials. For example, the UC San Francisco Alpha Clinic is collaborating with UC Berkeley and the UC Los Angeles Alpha Clinic to develop a CIRM-funded gene therapy for sickle cell disease. Each partner brings a unique expertise to the program that aims to correct a genetic mutilation in the patients’ blood stem cells to effectively cure the disease. Most recently, City of Hope has partnered with UC Irvine and UC San Diego as part of CIRM’s COVID-19 research program to study how certain immune system antibodies might be used as a treatment for respiratory disease in infected patients. In another COVID-19 study, UC Irvine and UC Davis are working with a commercial sponsor to evaluate a treatment for infected adults.

The examples above are a small sample of the variety of collaborations CIRM funding has enabled. As the Alpha Clinics track record grown, sponsors are increasingly coming to California to enable the success of their research programs. Sponsors with trials running across the country have noted a desire to expand their number of Alpha Clinic sties because they consistently perform at the highest level.

Back in 2014, it was hard to imagine over one hundred clinical trials would be served by the CIRM network in just five years. Fortunately, CIRM was able to draw on the knowledge of its internal team, external advisors and the ICOC to anticipate this need and provide California infrastructure to rise to the occasion.

CIRM Board Approves Four New Clinical Trials

A breakdown of CIRM’s clinical trials by disease area

This past Thursday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved four new clinical trials in addition to ten new discovery research awards.

These new awards bring the total number of CIRM-funded clinical trials to 68.  Additionally, these new additions have allowed the state agency to exceed the goal of commencing 50 new trials outlined in its five year strategic plan.

$8,970,732 was awarded to Dr. Steven Deeks at the University of California San Francisco (UCSF) to conduct a clinical trial that modifies a patient’s own immune cells in order to treat and potentially cure HIV. 

Current treatment of HIV involves the use of long-term antiretroviral therapy (ART).  However, many people are not able to access and adhere to long-term ART.

Dr. Deeks and his team will take a patient’s blood and extract T cells, a type of immune cell.  The T cells are then genetically modified to express two different chimeric antigen receptors (CAR), which enable the newly created duoCAR-T cells to recognize and destroy HIV infected cells.  The modified T cells are then reintroduced back into the patient.

The goal of this one time therapy is to act as a long-term control of HIV with patients no longer needing to take ART, in effect a form of HIV cure.  This approach would also address the needs of those who are not able to respond to current approaches, which is estimated to be 50% of those affected by HIV globally. 

$3,728,485 was awarded to Dr. Gayatri Rao from Rocket Pharmaceuticals to conduct a clinical trial using a gene therapy for infantile malignant osteopetrosis (IMO), a rare and life-threatening disorder that develops in infancy.  IMO is caused by defective bone cell function, which results in blindness, deafness, bone marrow failure, and death very early in life. 

The trial will use a gene therapy that targets IMO caused by mutations in the TCIRG1 gene.  The team will take a young child’s own blood stem cells and inserting a functional version of the TCIRG1 gene.  The newly corrected blood stem cells are then introduced back into the child, with the hope of halting or preventing the progression of IMO in young children before much damage can occur. 

Rocket Pharmaceuticals has used the same gene therapy approach for modifying blood stem cells in a separate CIRM funded trial for a rare pediatric disease, which has shown promising results.

$8,996,474 was awarded to Dr. Diana Farmer at UC Davis to conduct a clinical trial of in utero repair of myelomeningocele (MMC), the most severe form of spina bifida.  MMC is a birth defect that occurs due to incomplete closure of the developing spinal cord, resulting in neurological damage to the exposed cord.  This damage leads to lifelong lower body paralysis, and bladder and bowel dysfunction.

Dr. Farmer and her team will use placenta tissue to generate mesenchymal stem cells (MSCs).  The newly generated MSCs will be seeded onto an FDA approved dural graft and the product will be applied to the spinal cord while the infant is still developing in the womb.  The goal of this therapy is to help promote proper spinal cord formation and improve motor function, bladder function, and bowel function. 

The clinical trial builds upon the work of CIRM funded preclinical research.

$8,333,581 was awarded to Dr. David Williams at Boston Children’s Hospital to conduct a gene therapy clinical trial for sickle cell disease (SCD).  This is the second project that is part of an agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, to co-fund cell and gene therapy programs under the NHLBI’s  “Cure Sickle Cell” Initiative.  The goal of this agreement is to markedly accelerate clinical development of cell and gene therapies to cure SCD.

SCD is an inherited disease caused by a single gene mutation resulting in abnormal hemoglobin, which causes red blood cells to ‘sickle’ in shape.  Sickling of red blood cells clogs blood vessels and leads to progressive organ damage, pain crises, reduced quality of life, and early death. 

The team will take a patient’s own blood stem cells and insert a novel engineered gene to silence abnormal hemoglobin and induce normal fetal hemoglobin expression.  The modified blood stem cells will then be reintroduced back into the patient.  The goal of this therapy is to aid in the production of normal shaped red blood cells, thereby reducing the severity of the disease.

“Today is a momentus occasion as CIRM reaches 51 new clinical trials, surpassing one of the goals outlined in its five year strategic plan,” says Maria T. Millan, M.D., President and CEO of CIRM.  “These four new trials, which implement innovative approaches in the field of regenerative medicine, reflect CIRM’s ever expanding and diverse clinical portfolio.”

The Board also approved ten awards that are part of CIRM’s Quest Awards Prgoram (DISC2), which promote promising new technologies that could be translated to enable broad use and improve patient care.

The awards are summarized in the table below:

  APPLICATION  TITLE  INSTITUTION  AWARD AMOUNT  
    DISC2-12169  Human-induced pluripotent stem cell-derived glial enriched progenitors to treat white matter stroke and vascular dementia.  UCLA  $250,000
  DISC2-12170Development of COVID-19 Antiviral Therapy Using Human iPSC-Derived Lung Organoids  UC San Diego  $250,000
  DISC2-12111Hematopoietic Stem Cell Gene Therapy for X-linked Agammaglobulinemia  UCLA  $250,000
  DISC2-12158Development of a SYF2 antisense oligonucleotide (ASO) treatment for ALSUniversity of Southern California  $249,997
    DISC2-12124Dual angiogenic and immunomodulating nanotechnology for subcutaneous stem cell derived islet transplantation for the treatment of diabetes  Lundquist Institute  $250,000
  DISC2-12105Human iPSC-derived chimeric antigen receptor-expressing macrophages for cancer treatment  UC San Diego  $250,000
  DISC2-12164Optimization of a human interneuron cell therapy for traumatic brain injury  UC Irvine  $250,000
  DISC2-12172Combating COVID-19 using human PSC-derived NK cells  City of Hope  $249,998
  DISC2-12126The First Orally Delivered Cell Therapy for the Treatment of Inflammatory Bowel Disease  Vitabolus Inc.  $249,000
    DISC2-12130Transplantation of Pluripotent Stem Cell Derived Microglia for the Treatment of Adult-onset Leukoencephalopathy (HDLS/ALSP)  UC Irvine  $249,968

Cures, clinical trials and unmet medical needs

When you have a great story to tell there’s no shame in repeating it as often as you can. After all, not everyone gets to hear first time around. Or second or third time. So that’s why we wanted to give you another opportunity to tune into some of the great presentations and discussions at our recent CIRM Alpha Stem Cell Clinic Network Symposium.

It was a day of fascinating science, heart-warming, and heart-breaking, stories. A day to celebrate the progress being made and to discuss the challenges that still lie ahead.

There is a wide selection of topics from “Driving Towards a Cure” – which looks at some pioneering work being done in research targeting type 1 diabetes and HIV/AIDS – to Cancer Clinical Trials, that looks at therapies for multiple myeloma, brain cancer and leukemia.

The COVID-19 pandemic also proved the background for two detailed discussions on our funding for projects targeting the coronavirus, and for how the lessons learned from the pandemic can help us be more responsive to the needs of underserved communities.

Here’s the agenda for the day and with each topic there’s a link to the video of the presentation and conversation.

Thursday October 8, 2020

View Recording: CIRM Fellows Trainees

9:00am Welcome Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director  

Catriona Jamieson, MD,  View Recording: ASCC Network Value Proposition

9:10am Session I:  Cures for Rare Diseases Innovation in Action 

Moderator: Mark Walters, MD, UCSF, ASCC Program Director 

Don Kohn, MD, UCLA – View Recording: Severe combined immunodeficiency (SCID) 

Mark Walters, MD, UCSF, ASCC Program Director – View Recording: Thalassemia 

Pawash Priyank, View Recording: Patient Experience – SCID

Olivia and Stacy Stahl, View Recording: Patient Experience – Thalassemia

10 minute panel discussion/Q&A 

BREAK

9:55am Session II: Addressing Unmet Medical Needs: Driving Towards a Cure 

Moderator: John Zaia, MD, City of Hope, ASCC Program Direction 

Mehrdad Abedi, MD, UC Davis Health, ASCC Program Director – View Recording: HIV

Manasi Jaiman, MD, MPH, ViaCyte, Vice President, Clinical Development – View Recording: Diabetes

Jeff Taylor, Patient Experience – HIV

10 minute panel discussion/Q&A 

BREAK

10:40am Session III: Cancer Clinical Trials: Networking for Impact 

Moderator: Catriona Jamieson, MD, UC San Diego, ASCC Program Director 

Daniela Bota, MD, PhD, UC Irvine, ASCC Program Director – View Recording:  Glioblastoma 

Michael Choi, MD, UC San Diego – View Recording: Cirmtuzimab

Matthew Spear, MD, Poseida Therapeutics, Chief Medical Officer – View Recording: Multiple Myeloma  

John Lapham, Patient Experience –  View Recording: Chronic lymphocytic leukemia (CLL) 

10 minute panel discussion/Q&A 

BREAK

11:30am Session IV: Responding to COVID-19 and Engaging Communities

Two live “roundtable conversation” sessions, 1 hour each.

Roundtable 1: Moderator Maria Millan, MD, CIRM 

CIRM’s / ASCC Network’s response to COVID-19 Convalescent Plasma, Cell Therapy and Novel Vaccine Approaches

Panelists

Michael Matthay, MD, UC San Francisco: ARDS Program

Rachael Callcut, MD, MSPH, FACS, UC Davis: ARDS Program 

John Zaia, MD, City of Hope: Convalescent Plasma Program 

Daniela Bota, MD, PhD, UC Irvine: Natural Killer Cells as a Treatment Strategy 

Key questions for panelists: 

  • Describe your trial or clinical program?
  • What steps did you take to provide access to disproportionately impacted communities?
  • How is it part of the overall scientific response to COVID-19? 
  • How has the ASCC Network infrastructure accelerated this response? 

Brief Break

Roundtable 2: Moderator Ysabel Duron, The Latino Cancer Institute and Latinas Contra Cancer

View Recording: Roundtable 2

Community Engagement and Lessons Learned from the COVID Programs.  

Panelists

Marsha Treadwell, PhD, UC San Francisco: Community Engagement  

Sheila Young, MD, Charles R. Drew University of Medicine and Science: Convalescent Plasma Program in the community

David Lo, MD, PhD,  UC Riverside: Bringing a public health perspective to clinical interventions

Key questions for panelists: 

  • What were important lessons learned from the COVID programs? 
  • How can CIRM and the ASCC Network achieve equipoise among communities and engender trust in clinical research? 
  • How can CIRM and the ASCC Network address structural barriers (e.g. job constrains, geographic access) that limit opportunities to participate in clinical trials?

Partners in health

From left to right: Heather Dahlenburg, Jan Nolta, Jeannine Logan White, Sheng Yang
From left to right: Heather Dahlenburg, staff research associate; Jan Nolta, director of the Stem Cell Program; Jeannine Logan White, advanced cell therapy project manager; Sheng Yang, graduate student, Bridges Program, Humboldt State University, October 18, 2019. (AJ Cheline/UC Davis)

At CIRM we are modest enough to know that we can’t do everything by ourselves. To succeed we need partners. And in UC Davis we have a terrific partner. The work they do in advancing stem cell research is exciting and really promising. But it’s not just the science that makes them so special. It’s also their compassion and commitment to caring for patients.

What follows is an excerpt from an article by Lisa Howard on the work they do at UC Davis. When you read it you’ll see why we are honored to be a part of this research.

Gene therapy research at UC Davis

UC Davis’ commitment to stem cell and gene therapy research dates back more than a decade.

In 2010, with major support from the California Institute for Regenerative Medicine (CIRM), UC Davis launched the UC Davis Institute for Regenerative Cures, which includes research facilities as well as a Good Manufacturing Practice (GMP) facility.

In 2016, led by Fred Meyers, a professor in the School of Medicine, UC Davis launched the Center for Precision Medicine and Data Sciences, bringing together innovations such as genomics and biomedical data sciences to create individualized treatments for patients.

Last year, the university launched the Gene Therapy Center, part of the IMPACT Center program.

Led by Jan Nolta, a professor of cell biology and human anatomy and the director of the UC Davis Institute for Regenerative Cures, the new center leverages UC Davis’ network of expert researchers, facilities and equipment to establish a center of excellence aimed at developing lifelong cures for diseases.

Nolta began her career at the University of Southern California working with Donald B. Kohn on a cure for bubble baby disease, a condition in which babies are born without an immune system. The blood stem cell gene therapy has cured more than 50 babies to date.

Work at the UC Davis Gene Therapy Center targets disorders that potentially can be treated through gene replacement, editing or augmentation.

“The sectors that make up the core of our center stretch out across campus,” said Nolta. “We work with the MIND Institute a lot. We work with the bioengineering and genetics departments, and with the Cancer Center and the Center for Precision Medicine and Data Sciences.”

A recent UC Davis stem cell study shows a potential breakthrough for healing diabetic foot ulcers with a bioengineered scaffold made up of human mesenchymal stem cells (MSCs). Another recent study revealed that blocking an enzyme linked with inflammation enables stem cells to repair damaged heart tissue. A cell gene therapy study demonstrated restored enzyme activity in Tay-Sachs disease affected cells in humanized mouse models.

Several cell and gene therapies have progressed to the point that ongoing clinical trials are being conducted at UC Davis for diseases, including sickle-cell anemia, retinopathy, muscle injury, dysphasia, advanced cancer, and Duchenne muscular dystrophy, among others.

“Some promising and exciting research right now at the Gene Therapy Center comes from work with hematopoietic stem cells and with viral vector delivery,” said Nolta.

Hematopoietic stem cells give rise to other blood cells. A multi-institutional Phase I clinical trial using hematopoietic stem cells to treat HIV-lymphoma patients is currently underway at UC Davis.

.Joseph Anderson

Joseph Anderson

“We are genetically engineering a patient’s own blood stem cells with genes that block HIV infection,” said Joseph Anderson, an associate professor in the UC Davis Department of Internal Medicine. The clinical trial is a collaboration with Mehrdad Abedi, the lead principal investigator.

“When the patients receive the modified stem cells, any new immune system cell, like T-cell or macrophage, that is derived from one of these stem cells, will contain the HIV-resistant genes and block further infection,” said Anderson.

He explained that an added benefit with the unique therapy is that it contains an additional gene that “tags” the stem cells. “We are able to purify the HIV-resistant cells prior to transplantation, thus enriching for a more protective cell population.

Kyle David Fink

Kyle David Fink

Kyle David Fink, an assistant professor of neurology at UC Davis, is affiliated with the Stem Cell Program and Institute for Regenerative Cures. His lab is focused on leveraging institutional expertise to bring curative therapies to rare, genetically linked neurological disorders.

“We are developing novel therapeutics targeted to the underlying genetic condition for diseases such as CDKL5 deficiency disorder, Angelman, Jordan and Rett syndromes, and Juvenile Huntington’s disease,” said Fink.

The lab is developing therapies to target the underlying genetic condition using DNA-binding domains to modify gene expression in therapeutically relevant ways. They are also creating novel delivery platforms to allow these therapeutics to reach their intended target: the brain.

“The hope is that these highly innovative methods will speed up the progress of bringing therapies to these rare neurodegenerative disease communities,” said Fink.Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program.

Jasmine Carter, a graduate research assistant at the UC Davis Stem Cell Program, October 18, 2019. (AJ Cheline/UC Davis)

Developing potential lifetime cures

Among Nolta’s concerns is how expensive gene therapy treatments can be.

“Some of the therapies cost half a million dollars and that’s simply not available to everyone. If you are someone with no insurance or someone on Medicare, which reimburses about 65 percent, it’s harder for you to get these life-saving therapies,” said Nolta.

To help address that for cancer patients at UC Davis, Nolta has set up a team known as the “CAR T Team.”

Chimeric antigen receptor (CAR) T-cell therapy is a type of immunotherapy in which a patient’s own immune cells are reprogrammed to attack a specific protein found in cancer cells.

“We can develop our own homegrown CAR T-cells,” said Nolta. “We can use our own good manufacturing facility to genetically engineer treatments specifically for our UC Davis patients.”

Although safely developing stem cell treatments can be painfully slow for patients and their families hoping for cures, Nolta sees progress every day. She envisions a time when gene therapy treatments are no longer considered experimental and doctors will simply be able to prescribe them to their patients.

“And the beauty of the therapy is that it can work for the lifetime of a patient,” said Nolta.

Battling COVID and turning back the clock on stem cell funding

Coronavirus

Battling the virus that causes COVID-19 is something that is top of everyone’s mind right now. That’s why CIRM is funding 17 different projects targeting the virus. But one of the most valuable tools in helping develop vaccines against a wide variety of diseases in the past is now coming under threat. We’ll talk about both issues in a live broadcast we’re holding on Wednesday, October 14th at noon (PDT).

That date is significant because it’s Stem Cell Awareness Day and we thought it appropriate to host a meeting looking at two of the most important issues facing the field.

The first part of the event will focus on the 17 projects that CIRM is funding that target COVID-19. This includes three clinical trials aiming to treat people who have been infected with the virus and are experiencing some of the more severe effects, such as damaged lungs.

We’ll also look at some of the earlier stage research that includes:

  • Work to help develop a vaccine
  • Using muscle stem cells to help repair damage to the diaphragm in patients who have spent an extended period on a ventilator
  • Boosting immune system cells to help fight the virus

The second part of the event will look at ways that funding for stem cell research at the federal level is once again coming into question. The federal government has already imposed new restrictions on funding for fetal tissue research, and now there are efforts in Congress to restrict funding for embryonic stem cell research.

The impacts could be significant. Fetal tissue has been used for decades to help develop some of the most important vaccines used today including rubella, chickenpox, hepatitis A, and shingles. They have also been used to make approved drugs against diseases including hemophilia, rheumatoid arthritis, and cystic fibrosis.

We’ll look at some of the reasons why we are seeing these potential restrictions on the medical research and what impact they could have on the ability to develop new treatments for the coronavirus and other deadly diseases.

You can watch the CIRM Stem Cell Awareness Day live event by going here: https://www.youtube.com/c/CIRMTV/videos at noon on Wednesday, October 14th.

Feel free to share news about this event with anyone you think might be interested.

We look forward to seeing you there.

Exploring tough questions, looking for answers

COVID-19 and social and racial injustice are two of the biggest challenges facing the US right now. This Thursday, October 8th, we are holding a conversation that explores finding answers to both.

The CIRM Alpha Stem Cell Clinic Network Symposium is going to feature presentations about advances in stem cell and regenerative research, highlighting treatments that are already in the clinic and being offered to patients.

But we’re also going to dive a little deeper into the work we support, and use it to discuss two of the most pressing issues of the day.

One of the topics being featured is research into COVID-19. To date CIRM has funded 17 different projects, including three clinical trials. We’ll talk about how these are trying to find ways to help people infected with the virus, seeing if stem cells can help restore function to organs and tissues damaged by the virus, and if we can use stem cells to help develop safe and effective vaccines.

Immediately after that we are going to use COVID-19 as a way of exploring how the people most at risk of being infected and suffering serious consequences, are also the ones most likely to be left out of the research and have most trouble accessing treatments and vaccines.

Study after study highlights how racial and ethnic minorities are underrepresented in clinical trials and disproportionately affected by debilitating diseases. We have a responsibility to change that, to ensure that the underserved are given the same opportunity to take part in clinical trials as other communities.

How do we do that, how do we change a system that has resisted change for so long, how do we overcome the mistrust that has built up in underserved communities following decades of abuse? We’ll be talking about with experts who are on the front lines of this movement.

It promises to be a lively meeting. We’d love to see you there. It’s virtual – of course – it’s open to everyone, and it’s free.

Here’s where you can register and find out more about the Symposium

Remembering a stem cell pioneer in the fight against HIV/AIDS

Timothy Ray Brown. Photo courtesy Seattle Times

Timothy Ray Brown, a man who was the first person to be cured of HIV, giving hope to millions of people around the world, died at his home in Palm Springs this week. He was just 54 years old.

For years Brown was known simply as “the Berlin patient” because that was where he was living when he made medical history. He was diagnosed with HIV in 1995 and began taking medications to keep the virus under control. He was later also diagnosed with leukemia. He underwent several rounds of treatment for the leukemia, but it kept recurring.

By 2007 Brown’s physician decided the best way to treat the leukemia was with a blood stem cell transplant. But the doctor also wanted to see if using the stem cells from a donor who had a natural immunity to the AIDS virus could help treat Brown’s HIV. While such donors are very rare, the doctor succeeded in finding one whose bone marrow carried the CCR5 gene, a mutation that is believed to provide resistance to HIV. The transplant was a success, putting Brown’s leukemia into remission and eliminating detectable traces of HIV. For the first time in years he was able to stop taking the medications that had helped keep the virus under control.

The procedure quickly garnered world-wide attention. But not everyone was convinced it was real. Some questioned if Brown’s HIV had really been eradicated and speculated that the virus was merely suppressed. But with each passing year, and no signs of the virus recurring, more and more people came to believe it was a cure.

Initially Brown remained in the background, preferring not to be identified. But three years after his transplant he decided he had to come forward and put a face on “the Berlin patient”. In an interview with the website ContagionLive he explained why:

“At some point, I decided I didn’t want to be the only person in the world cured of H.I.V.,” I wanted there to be more. And the way to do that was to show the world who I am and be an advocate for H.I.V.”

He proved to be a powerful advocate, talking at international conferences and serving as living-proof that stem cells could help lead to a cure for HIV.

But while he managed to beat HIV, he could not beat leukemia. He suffered relapses that required another transplant and a difficult recovery. When it returned again this time, there was little physicians could do.

But Timothy Ray Brown did get to see his hope of not being the only patient cured seemingly come true. In September of last year researchers announced they had successfully treated a second person, known as “the London patient” using the same technique that cured Brown.

While it wasn’t the role he would have chosen Brown was a pioneer. His experience showed that a deadly virus could be cured. His courage in not just overcoming the virus but in overcoming his own reluctance to take center stage and becoming a symbol of hope for millions remain and will never die.  

Since Brown’s transplant many other scientists have attempted to replicate the procedure that cured Brown, in the hopes of making it available to many more people.

CIRM has funded three clinical trials targeting HIV, two of which are still active. Dr. Mehrdad Abedi at UC Davis and Dr. John Zaia at City of Hope are both using the patient’s own blood forming stem cells to try and defeat the virus.

If they succeed, some of the credit should go to Timothy Ray Brown, the man who led the way.

It’s all about the patients

Ronnie, born with a fatal immune disorder now leading a normal life thanks to a CIRM-funded stem cell/gene therapy: Photo courtesy of his mum Upasana

Whenever you are designing something new you always have to keep in mind who the end user is. You can make something that works perfectly fine for you, but if it doesn’t work for the end user, the people who are going to work with it day in and day out, you have been wasting your time. And their time too.

At CIRM our end users are the patients. Everything we do is about them. Starting with our mission statement: to accelerate stem cell treatments to patients with unmet medical needs. Everything we do, every decision we make, has to keep the needs of the patient in mind.

So, when we were planning our recent 2020 Grantee Meeting (with our great friends and co-hosts UC Irvine and UC San Diego) one of the things we wanted to make sure didn’t get lost in the mix was the face and the voice of the patients. Often big conferences like this are heavy on science with presentations from some of the leading researchers in the field. And we obviously wanted to make sure we had that element at the Grantee meeting. But we also wanted to make sure that the patient experience was front and center.

And we did just that. But more on that in a minute. First, let’s talk about why the voice of the patient is important.

Some years ago, Dr. David Higgins, a CIRM Board member and patient advocate for Parkinson’s Disease (PD), said that when researchers are talking about finding treatments for PD they often focus on the dyskinesia, the trembling and shaking and muscle problems. However, he said if you actually asked people with PD you’d find they were more concerned with other aspects of the disease, the insomnia, anxiety and depression among other things. The key is you have to ask.

Frances Saldana, a patient advocate for research into Huntington’s disease

So, we asked some of our patient advocates if they would be willing to be part of the Grantee Meeting. All of them, without hesitation, said yes. They included Frances Saldana, a mother who lost three of her children to Huntington’s disease; Kristin MacDonald, who lost her sight to a rare disorder but regained some vision thanks to a stem cell therapy and is hoping the same therapy will help restore some more; Pawash Priyank, whose son Ronnie was born with a fatal immune disorder but who, thanks to a stem cell/gene therapy treatment, is now healthy and leading a normal life.

Because of the pandemic everything was virtual, but it was no less compelling for that. We interviewed each of the patients or patient advocates beforehand and those videos kicked off each session. Hearing, and seeing, the patients and patient advocates tell their stories set the scene for what followed. It meant that the research the scientists talked about took on added significance. We now had faces and names to highlight the importance of the work the scientists were doing. We had human stories. And that gave a sense of urgency to the work the researchers were doing.

But that wasn’t all. After all the video presentations each session ended with a “live” panel discussion. And again, the patients and patient advocates were a key part of that. Because when scientists talk about taking their work into a clinical trial they need to know if the way they are setting up the trial is going to work for the patients they’re hoping to recruit. You can have the best scientists, the most promising therapy, but if you don’t design a clinical trial in a way that makes it easy for patients to be part of it you won’t be able to recruit or retain the people you need to test the therapy.

Patient voices count. Patient stories count.

But more than anything, hearing and seeing the people we are trying to help reminds us why we do this work. It’s so easy to get caught up in the day to day business of our jobs, struggling to get an experiment to work, racing to get a grant application in before the deadline. Sometimes we get so caught up in the minutiae of work we lose sight of why we are doing it. Or who we are doing it for.

At CIRM we have a saying; come to work every day as if lives depend on you, because lives depend on you. Listening to the voices of patients, seeing their faces, hearing their stories, reminds us not to waste a moment. Because lives depend on all of us.

Here’s one of the interviews that was featured at the event. I do apologize in advance for the interviewer, he’s rubbish at his job.