Treatments, cures and clinical trials: an in-person update on CIRM’s progress

Patients and Patient Advocates are at the heart of everything we do at CIRM. That’s why we are holding three free public events in the next few months focused on updating you on the stem cell research we are funding, and our plans for the future.

Right now we have 33 projects that we have funded in clinical trials. Those range from heart disease and stroke, to cancer, diabetes, ALS (Lou Gehrig’s disease), two different forms of vision loss, spinal cord injury and HIV/AIDS. We have also helped cure dozens of children battling deadly immune disorders. But as far as we are concerned we are only just getting started.

Over the course of the next few years, we have a goal of adding dozens more clinical trials to that list, and creating a pipeline of promising therapies for a wide range of diseases and disorders.

That’s why we are holding these free public events – something we try and do every year. We want to let you know what we are doing, what we are funding, how that research is progressing, and to get your thoughts on how we can improve, what else we can do to help meet the needs of the Patient Advocate community. Your voice is important in helping shape everything we do.

The first event is at the Gladstone Institutes in San Francisco on Wednesday, September 6th from noon till 1pm. The doors open at 11am for registration and a light lunch.

Gladstone Institutes

Here’s a link to an Eventbrite page that has all the information about the event, including how you can RSVP to let us know you are coming.

We are fortunate to be joined by two great scientists, and speakers – as well as being CIRM grantees-  from the Gladstone Institutes, Dr. Deepak Srivastava and Dr. Steve Finkbeiner.

Dr. Srivastava is working on regenerating heart muscle after it has been damaged. This research could not only help people recover from a heart attack, but the same principles might also enable us to regenerate other organs damaged by disease. Dr. Finkbeiner is a pioneer in diseases of the brain and has done ground breaking work in both Alzheimer’s and Huntington’s disease.

We have two other free public events coming up in October. The first is at UC Davis in Sacramento on October 10th (noon till 1pm) and the second at Cedars-Sinai in Los Angeles on October 30th (noon till 1pm). We will have more details on these events in the coming weeks.

We look forward to seeing you at one of these events and please feel free to share this information with anyone you think might be interested in attending.

High school students SPARK an interest in stem cell research

SPARK students at the 2017 Annual Meeting at the City of Hope.

High school is a transformative time for any student. It marks the transition from childhood to adulthood and requires discipline, dedication and determination to excel and get into their desired college or university.

The barrier to entry for college now seems much higher than when I was eighteen, but I am not worried for the current generation of high school students. That’s because I’ve met some of the brightest young minds this past week at the 2017 CIRM SPARK meeting.

SPARK is CIRM’s high school education program, which gives underprivileged students in California the opportunity to train as stem cell scientists for the summer. Students participate in a summer research internship at one of seven programs at leading research institutes in the state. They attend scientific lectures, receive training in basic lab techniques, and do an eight-week stem cell research project under the guidance of a mentor.

At the end of the summer, SPARK students congregate at the annual SPARK poster meeting where they present the fruits of their labor. Meeting these students in person is my favorite time of the year. Their enthusiasm for science and stem cell research is contagious. And when you engage them or listen to them talk about their project, it’s hard to remember that they are still teenagers and not graduate level scientists.

What impresses me most about these students is their communication skills. Each summer, I challenge SPARK students to share their summer research experience through social media and blogging, and each time they go above and beyond with their efforts. Training these students as effective science communicators is important to me. They are the next generation of talented scientists who can help humanize research for the public. They have the power to change the perception of science as a field to be embraced and one that should receive proper funding.

It’s also inspiring to me that this young generation can effectively educate their friends, family and the public about the importance of stem cell research and how it will help save the lives of patients who currently don’t have effective treatments. If you haven’t already, I highly recommend checking out the #CIRMSPARKlab hashtag on Instagram to get a taste of what this year’s group of students accomplished during their internships.

Asking students, many of whom are learning to do research for the first time, to post on Instagram once a week and write a blog about their internship is a tall task. And I believe with any good challenge, there should be a reward. Therefore, at this year’s SPARK meeting held at the City of Hope in Duarte, California, I handed out prizes.

It was very difficult to pick winners for our presentation, social media and blogging awards because honestly, all our students were excellent this year. Even Kevin McCormack, Director of CIRM’s Communications, who helped me read the students’ blogs said,

“This was really tough. The standard of the blogs this year was higher than ever; and previous years had already set the bar really high. It was really difficult deciding which were really good and which were really, really good.”

Ok, enough with the hype, I know you want to read these award-winning blogs so I’ve shared them below. I hope that they inspire you as much as they have inspired me.


Amira Hirara

Amira Hirara (Children’s Hospital Oakland Research Institute)

It was a day like any other. I walked into the room, just two minutes past 10:30am, ready for another adventurous day in the lab. Just as I settle down, I am greeted by my mentor with the most terrifying task I have ever been asked to perform, “Will you passage the cells for me…alone?” Sweat begins to pour down my cemented face as I consider what is at stake.

The procedure was possibly thirty steps long and I have only executed it twice, with the supervision of my mentor of course. To be asked to do the task without the accompaniment of an experienced individual was unthought-of. I feel my breath begin to shorten as I mutter the word “Ok”. Yet it wasn’t just the procedure that left me shaking like a featherless bird, it was the location of my expedition as well. The dreaded tissue culture room. If even a speck of dirt enters the circulating air of the biosafety cabinet, your cells are at risk of death…death! I’ll be a cell murderer. “Alright”, she said, “I’ll just take a look at the cells then you’ll be on your way.” As we walk down the hallway, my eyes began to twitch as I try to recall the first steps of the procedure. I remember freezing our plates with Poly-ornithine and laminin, which essentially simulates the extracellular environment and allows adhesion between the cell and the plate itself. I must first add antibiotics to rid the frozen plate of potential bacteria. Then I should remove my cells from the incubator, and replace the old solution with accutase and new media, to nourish the cells, as well as unbind them from the plate before. Passaging is necessary when the cell density gets too high, as the cells must be relocated to a roomier environment to better promote survival. As we approach the tissue culture room, my jaw unclenches, as I realize the whirlwind of ideas meant I know more than I thought. My mentor retrieves our cells, views them under the microscope, and deems them ‘ready for passaging’.

“Good luck Amira” she says to me with a reassuring smile. I enter the room ready for battle. Placing first my gloves and coat, I then spray my hands and all things placed in the cabinet with 70% ethanol, to insure a sterile work environment. Back to the procedure, I’ll place the cellular solution of accutase and media into a covalent tube. After, I’ll centrifuge it for two minutes until a cellular pellet forms at the bottom, then dissolve the cells in fresh media, check its density using a cell counter, and calculate the volume of cellular solution needed to add to my once frozen plates. Wait, once I do that, I’ll be all done. I eagerly execute all the steps, ensuring both accuracy and sterility in my work. Pride swells within me as I pipette my last milliliter of solution into my plate. The next day, my mentor and I stop by to check on how our sensitive neural stem cells are doing. “Wow Amira, I am impressed, your cells seem very confluent in their new home, great job!” I smile slyly and begin to nod my head. I now walk these hallways, with a puffed chest, brightened smile, and eagerness to learn. My stem cells did not die, and having the amazing opportunity to master their treatment and procedures, is something I can never forget.

 

Gaby Escobar

Gaby Escobar (Stanford University)

Walking into the lab that would become my home for the next 8 weeks, my mind was an empty canvas.  Up to that point, my perception of the realm of scientific research was one-sided. Limited to the monotonous textbook descriptions of experiments that were commonplace in a laboratory, I wanted more. I wanted to experience the alluring call of curiosity. I wanted to experience the flash of discovery and the unnerving drive that fueled our pursuit of the unknown. I was an empty canvas looking for its first artistic stroke.

Being part of the CIRM Research program, I was lucky enough to have been granted such opportunity. Through the patient guidance of my mentor, I was immersed into the limitless world of stem cell biology. From disease modeling to 3D bioprinting, I was in awe of the capabilities of the minds around me. The energy, the atmosphere, the drive all buzzed with an inimitable quest for understanding. It was all I had imagined and so, so much more.

However, what many people don’t realize is research is an arduous, painstaking process. Sample after sample day after day, frustration and doubt loomed above our heads as we tried to piece together a seemingly pieceless puzzle.  Inevitably, I faced the truth that science is not the picture-perfect realm I had imagined it to be. Rather, it is tiring, it is relentless, and it is unforgiving. But at the same time, it is incomparably gratifying. You see, the innumerable samples, the countless gels and PCRS, all those futile attempts to fruitlessly make sense of the insensible, have meaning. As we traversed through the rollercoaster ride of our project, my mentor shared a personal outlook that struck very deeply with me: her motivation to work against obstacle after obstacle comes not from the recognition or prestige of discovering the next big cure but rather from the notion that one day, her perseverance may transform someone’s life for the good.  And in that, I see the beauty of research and science: the coming together of minds and ideas and bewildering intuitions all for the greater good.

As I look back, words cannot express the gratitude I feel for the lessons I have learned. Undoubtedly, I have made countless mistakes (please don’t ask how many gels I’ve contaminated or pipettes I have dropped) but I’ve also created the most unforgettable of memories. Memories that I know I will cherish for the journey ahead of me. Having experienced the atmosphere of a vibrant scientific community, I have found a second home, a place that I can explore and question and thrive. And although not every day will hold the cure to end all diseases or hand an answer on a silver platter, every day is another opportunity.  And with that, I walk away perhaps not with the masterpiece of art that I had envisioned in my mind but rather with a burning spark of passion, ready to ignite.

 

Anh Vo

Ahn Vo (UC Davis)

With college selectivity increasing and acceptance rates plummeting, the competitive nature within every student is pushed to the limit. In high school, students are expected to pad up their resumes and most importantly, choose an academic path sooner rather than later. However, at 15, I felt too young to experience true passion for a field. As I tried to envision myself in the future, I wondered, would I be someone with the adrenaline and spirit of someone who wants to change the world or one with hollow ambitions, merely clinging onto a paycheck with each day passing? At the very least, I knew that I didn’t want to be the latter.

The unrelenting anxiety induced by the uncertainty of my own ambitions was intoxicating. As my high school career reached its halfway mark, I felt the caving pressure of having to choose an academic path.

“What do you want to be?” was one of the first questions that my mentor, Whitney Cary, asked me. When I didn’t have an answer, she assured me that I needed to keep my doors open, and the SPARK program was the necessary first step that I needed to take to discovering my passion.

As I reflected on my experience, the SPARK program was undoubtedly the “first step”. It was the first step into a lab and above all, into a community of scientists, who share a passion for research and a vehement resolve to contribute to scientific merit. It was the integration into a cohort of other high school students, whose brilliance and kindness allowed us to forge deeper bonds with each other that we will hold onto, even as we part ways. It was the first nervous step into the bay where I met the Stem Cell Core, a team, whose warm laughter and vibrancy felt contagious. Finally, it was the first uncertain stumble into the tissue culture room, where I conceived a curiosity for cell culture that made me never stop asking, “Why?”

With boundless patience, my mentor and the Stem Cell Core strove to teach me techniques, such as immunocytochemistry and continually took the time out of their busy day to reiterate concepts. Despite my initial blunders in the hood, I found myself in a place without judgement, and even after discouraging incidents, I felt a sense of consolation in the witty and good-humored banter among the Stem Cell Core. At the end of every day, the unerring encouragement from my mentor strengthened my resolve to continue improving and incited an earnest excitement in me for the new day ahead. From trembling hands, nearly tipping over culture plates and slippery gloves, overdoused in ethanol, I eventually became acquainted with daily cell culture, and most importantly, I gained confidence and pride in my work.

I am grateful to CIRM for granting me this experience that has ultimately cultivated my enthusiasm for science and for the opportunity to work alongside remarkable people, who have given me new perspectives and insights. I am especially thankful to my mentor, whose stories of her career journey have inspired me to face the future with newfound optimism in spite of adversity.

As my internship comes to a close, I know that I have taken my “first step”, and with a revived mental acquisitiveness, I eagerly begin to take my second.

Other 2017 SPARK Awards

Student Speakers: Candler Cusato (Cedars-Sinai), Joshua Ren (Stanford)

Instagram/Social Media: Jazmin Aizpuru (UCSF), Emily Beckman (CHORI), Emma Friedenberg (Cedars-Sinai)

Poster Presentations: Alexander Escudero (Stanford), Jamie Kim (CalTech), Hector Medrano (CalTech), Zina Patel (City of Hope)


Related Links:

Making brain stem cells act more like salmon than bloodhounds

Like salmon swimming against a river current, brain stem cells can travel against their normal migration stream with the help of electrical stimuli, so says CIRM-funded research published this week in Stem Cell Reports. The research, carried out by a team of UC Davis scientists, could one day provide a means for guiding brain stem cells, or neural stem cells (NSCs), to sites of disease or injury in the brain.

Min_SCR full

Human neural stem cells (green) guided by electrical stimulation migrated to and colonized the subventricular zone of rats’ brains. This image was taken three weeks after stimulation. Image: Jun-Feng Feng/UC DAVIS, Sacramento and Ren Ji Hospital, Shanghai.

NSCs are a key ingredient in the development of therapies that aim to repair damaged areas of the brain. Given the incredibly intricate structure of nerve connections, targeting these stem cells to their intended location is a big challenge for therapy development. One obstacle is mobility. Although resident NSCs can travel long distances within the brain, the navigation abilities of transplanted NSCs gets disrupted and becomes very limited.

In earlier work, the research team had shown that electrical currents could nudge NSCs to move in a petri dish (watch team lead Dr. Min Zhao describe this earlier work in the 30 second video below) so they wanted to see if this technique was possible within the brains of living rats. By nature, NSCs are more like bloodhounds than salmon, moving from one location to another by sensing an increasing gradient of chemicals within the brain. In this study, the researchers transplanted human NSCs in the middle of such a such gradient, called the rostral migration stream, that normally guides the cells to the olfactory bulb, the area responsible for our sense of smell.

Electrodes were implanted into the brains of the rats and an electrical current flowing in the opposite direction of the rostral migration stream was applied. This stimulus caused the NSCs to march in the direction of the electrical current. Even at three and four weeks after the stimulation, the altered movement of the NSCs continued. And there was indication that the cells were specializing into various types of brain cells, an important observation for any cell therapy meant to replace diseased cells.

The Scientist interviewed Dr. Alan Trounson, of the Hudson Institute of Australia, who was not involved in study, to get his take on the results:

“This is the first study I’ve seen where stimulation is done with electrodes in the brain and has been convincing about changing the natural flow of cells so they move in the opposite direction. The technique has strong possibilities for applications because the team has shown you can move cells, and you could potentially move them into seriously affected brain areas.”

Though it’s an intriguing proof-of-concept, much works remains to show this technique is plausible in the clinic. Toward that goal, the team has plans to repeat the studies in primates using a less invasive method that transmits the electrical signals through the skull.

Stem Cell Stories That Caught Our Eye: Plasticity in the pancreas and two cool stem cell tools added to the research toolbox

There’s more plasticity in the pancreas than we thought. You’re taught a lot of things about the world when you’re young. As you get older, you realize that not everything you’re told holds true and it’s your own responsibility to determine fact from fiction. This evolution in understanding happens in science too. Scientists do research that leads them to believe that biological processes happen a certain way, only to sometimes find, a few years later, that things are different or not exactly what they had originally thought.

There’s a great example of this in a study published this week in Cell Metabolism about the pancreas. Scientists from UC Davis found that the pancreas, which secretes a hormone called insulin that helps regulate the levels of sugar in your blood, has more “plasticity” than was originally believed. In this case, plasticity refers to the ability of a tissue or organ to regenerate itself by replacing lost or damaged cells.

The long-standing belief in this field was that the insulin producing cells, called beta cells, are replenished when beta cells actively divide to create more copies of themselves. In patients with type 1 diabetes, these cells are specifically targeted and killed off by the immune system. As a result, the beta cell population is dramatically reduced, and patients have to go on life-long insulin treatment.

UC Davis researchers have identified another type of insulin-producing cell in the islets, which appears to be an immature beta cell shown in red. (UC Davis)

But it turns out there is another cell type in the pancreas that is capable of making beta cells and they look like a teenage, less mature version of beta cells. The UC Davis team identified these cells in mice and in samples of human pancreas tissue. These cells hangout at the edges of structures called islets, which are clusters of beta cells within the pancreas. Upon further inspection, the scientists found that these immature beta cells can secrete insulin but cannot detect blood glucose like mature beta cells. They also found their point of origin: the immature beta cells developed from another type of pancreatic cell called the alpha cell.

Diagram of immature beta cells from Cell Metabolism.

In coverage by EurekAlert, Dr Andrew Rakeman, the director of discovery research at the Juvenile Diabetes Research Foundation, commented on the importance of this study’s findings and how it could be translated into a new approach for treating type 1 diabetes patients:

“The concept of harnessing the plasticity in the islet to regenerate beta cells has emerged as an intriguing possibility in recent years. The work from Dr. Huising and his team is showing us not only the degree of plasticity in islet cells, but the paths these cells take when changing identity. Adding to that the observations that the same processes appear to be occurring in human islets raises the possibility that these mechanistic insights may be able to be turned into therapeutic approaches for treating diabetes.”

 

Say hello to iPSCORE, new and improved tools for stem cell research. Stem cells are powerful tools to model human disease and their power got a significant boost this week from a new study published in Stem Cell Reports, led by scientists at UC San Diego School of Medicine.

The team developed a collection of over 200 induced pluripotent stem cell (iPS cell) lines derived from people of diverse ethnic backgrounds. They call this stem cell tool kit “iPSCORE”, which stands for iPSC Collection for Omic Research (omics refers to a field of study in biology ending in -omics, such as genomics or proteomics). The goal of iPSCORE is to identify particular genetic variants (unique differences in DNA sequence between people’s genomes) that are associated with specific diseases and to understand why they cause disease at the molecular level.

In an interview with Phys.org, lead scientist on the study, Dr. Kelly Frazer, further explained the power of iPSCORE:

“The iPSCORE collection contains 75 lines from people of non-European ancestry, including East Asian, South Asian, African American, Mexican American, and Multiracial. It includes multigenerational families and monozygotic twins. This collection will enable us to study how genetic variation influences traits, both at a molecular and physiological level, in appropriate human cell types, such as heart muscle cells. It will help researchers investigate not only common but also rare, and even family-specific variations.”

This research is a great example of scientists identifying a limitation in stem cell research and expanding the stem cell tool kit to model diseases in a diverse human population.

A false color scanning electron micrograph of cultured human neuron from induced pluripotent stem cell. Credit: Mark Ellisman and Thomas Deerinck, UC San Diego.

Stem cells that can grow into ANY type of tissue. Embryonic stem cells can develop into any cell type in the body, earning them the classification of pluripotent. But there is one type of tissue that embryonic stem cells can’t make and it’s called extra-embryonic tissue. This tissue forms the supportive tissue like the placenta that allows an embryo to develop into a healthy baby in the womb.

Stem cells that can develop into both extra-embryonic and embryonic tissue are called totipotent, and they are extremely hard to isolate and study in the lab because scientists lack the methods to maintain them in their totipotent state. Having the ability to study these special stem cells will allow scientists to answer questions about early embryonic development and fertility issues in women.

Reporting this week in the journal Cell, scientists from the Salk Institute in San Diego and Peking University in China identified a cocktail of chemicals that can stabilize human stem cells in a totipotent state where they can give rise to either tissue type. They called these more primitive stem cells extended pluripotent stem cells or EPS cells.

Salk Professor Juan Carlos Izpisua Bemonte, co–senior author of the paper, explained the problem their study addressed and the solution it revealed in a Salk news release:

“During embryonic development, both the fertilized egg and its initial cells are considered totipotent, as they can give rise to all embryonic and extra-embryonic lineages. However, the capture of stem cells with such developmental potential in vitro has been a major challenge in stem cell biology. This is the first study reporting the derivation of a stable stem cell type that shows totipotent-like bi-developmental potential towards both embryonic and extra-embryonic lineages.”

Human EPS cells (green) can be detected in both the embryonic part (left) and extra-embryonic parts (placenta and yolk sac, right) of a mouse embryo. (Salk Institute)

Using this new method, the scientists discovered that human EPS stem cells were able to develop chimeric embryos with mouse stem cells more easily than regular embryonic stem cells. First author on the study, Jun Wu, explained why this ability is important:

“The superior chimeric competency of both human and mouse EPS cells is advantageous in applications such as the generation of transgenic animal models and the production of replacement organs. We are now testing to see whether human EPS cells are more efficient in chimeric contribution to pigs, whose organ size and physiology are closer to humans.”

The Salk team reported on advancements in generating interspecies chimeras earlier this year. In one study, they were able to grow rat organs – including the pancreas, heart and eyes – in a mouse. In another study, they grew human tissue in early-stage pig and cattle embryos with the goal of eventually developing ways to generate transplantable organs for humans. You can read more about their research in this Salk news release.

License to heal: UC Davis deal looks to advance stem cell treatment for bone loss and arthritis

Nancy Lane

Wei Yao and Nancy Lane of UC Davis: Photo courtesy UC Davis

There are many challenges in taking even the most promising stem cell treatment and turning it into a commercial product approved by the Food and Drug Administration (FDA). One of the biggest is expertise. The scientists who develop the therapy may be brilliant in the lab but have little experience or expertise in successfully getting their work through a clinical trial and ultimately to market.

That’s why a team at U.C. Davis has just signed a deal with a startup company to help them move a promising stem cell treatment for arthritis, osteoporosis and fractures out of the lab and into people.

The licensing agreement combines the business acumen of Regenerative Arthritis and Bone Medicine (RABOME) with the scientific chops of the UC Davis team, led by Nancy Lane and Wei Yao.

They plan to test a hybrid molecule called RAB-001 which has shown promise in helping direct mesenchymal stem cells (MSCs) – these are cells typically found in the bone marrow and fat tissue – to help stimulate bone growth and increase existing bone mass and strength. This can help heal people suffering from conditions like osteoporosis or hard to heal fractures. RAB-001 has also shown promise in reducing inflammation and so could prove helpful in treating people with inflammatory arthritis.

Overcoming problems

In a news article on the UC Davis website, Wei Yao, said RAB-001 seems to solve a problem that has long puzzled researchers:

“There are many stem cells, even in elderly people, but they do not readily migrate to bone.  Finding a molecule that attaches to stem cells and guides them to the targets we need provides a real breakthrough.”

The UC Davis team already has approval to begin a Phase 1 clinical trial to test this approach on people with osteonecrosis, a disease caused by reduced blood flow to bones. CIRM is funding this work.

The RABOME team also hopes to test RAB-001 in clinical trials for healing broken bones, osteoporosis and inflammatory arthritis.

CIRM solution

To help other researchers overcome these same regulatory hurdles in developing stem cell therapies CIRM created the Stem Cell Center with QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider that has deep experience and therapeutic expertise. The Stem Cell Center will help researchers overcome the challenges of manufacturing and testing treatments to meet FDA standards, and then running a clinical trial to test that therapy in people.

Life after SPARK: CIRM high school intern gets prestigious scholarship to Stanford

As part of our CIRM scholar blog series, we’re featuring the research and career accomplishments of CIRM funded students.

Ranya Odeh

Ranya Odeh

Meet Ranya Odeh. She is a senior at Sheldon high school in Elk Grove, California, and a 2016 CIRM SPARK intern. The SPARK program provides stem cell research internships to underprivileged high school students at leading research institutes in California.

This past summer, Ranya worked in Dr. Jan Nolta’s lab at UC Davis improving methods that turn mesenchymal stem cells into bone and fat cells. During her internship, Ranya did an excellent job of documenting her journey in the lab on Instagram and received a social media prize for her efforts.

Ranya is now a senior in high school and was recently accepted into Stanford University through the prestigious QuestBridge scholarship program. She credits the CIRM SPARK internship as one of the main reasons why she was awarded this scholarship, which will pay for all four years of her college.

I reached out to Ranya after I heard about her exciting news and asked her to share her story so that other high school students could learn from her experience and be inspired by her efforts.


How did you learn about the CIRM SPARK program?

At my high school, one of our assignments is to build a website for the Teen Biotech Challenge (TBC) program at UC Davis. I was a sophomore my first year in the program, and I didn’t feel passionate about my project and website. The year after, I saw that some of my friends had done the CIRM SPARK internship after they participated in the TBC program. They posted pictures about their internship on Instagram, and it looked like a really fun and interesting thing to do. So I decided to build another website (one that I was more excited about) in my junior year on synthetic biology. Then I entered my website in the TBC and got first prize in the Nanobiotechnology field. Because I was one of the winners, I got the SPARK internship.

What did you enjoy most about your SPARK experience?

For me, it was seeing that researchers aren’t just scientists in white lab coats. The Nolta lab (where I did my SPARK internship) had a lot of personality that I wasn’t really expecting. Working with stem cells was so cool but it was also nice to see at the same time that people in the lab would joke around and pull pranks on each other. It made me feel that if I wanted to have a future in research, which I do, it wouldn’t be doing all work all the time.

What was it like to do research for the first time?

Ranya taking care of her stem cells!

Ranya taking care of her stem cells!

The SPARK internship was my first introduction to research. During my first experiment, I remember I was changing media and I thought that I was throwing my cells away by mistake. So I freaked out, but then my mentor told me that I hadn’t and everything was ok. That was still a big deal and I learned a lesson to ask more questions and pay more attention to what I was doing.

Did the SPARK program help you when you applied to college?

Yes, I definitely feel like it did. I came into the internship wanting to be a pharmacist. But my research experience working with stem cells made me want to change my career path. Now I’m looking into a bioengineering degree, which has a research aspect to it and I’m excited for that. Having the SPARK internship on my college application definitely helped me out. I also got to have a letter of recommendation from Dr. Nolta, which I think played a big part as well.

Tell us about the scholarship you received!

I got the QuestBridge scholarship, which is a college match scholarship for low income, high achieving students. I found out about this program because my career counselor gave me a brochure. It’s actually a two-part scholarship. The first part was during my junior year of high school and that one didn’t involve a college acceptance. It was an award that included essay coaching and a conference that told you about the next step of the scholarship.

The second part during my senior year was called the national college match scholarship. It’s an application on its own that is basically like a college application. I submitted it and got selected as a finalist. After I was selected, they have partner colleges that offer full scholarships. You rank your choice of colleges and apply to them separately with a common application. If any of those colleges want to match you and agree to pay for all four years of your college, then you will get matched to your top choice. There’s a possibility that more than one college would want to match you, but you will only get matched with the one that you rank the highest. That was Stanford for me, and I am very happy about that.

Why did you pick Stanford as your top choice?

It’s the closest university to where I grew up that is very prestigious. It was also one of the only colleges I’ve visited. When I was walking around on campus, I felt I could see myself there as a student and with the Stanford community. Also, it will be really nice to be close to my family.

What do you do in your free time?

I don’t have a lot of free time because I’m in Academic Decathalon and I spend most of my time doing that. When I do have free time, I like to watch Netflix, blogs on YouTube, and I try to go to the gym [laughs].

Did you enjoy posting about your SPARK internship on Instagram?

I had a lot of fun posting pictures of me in the lab on Instagram. It was also nice during the summer to see other SPARK students in different programs talk about the same things. We shared jokes about micropipettes and culturing stem cells. It was really cool to see that you’re not the only one posting nerdy science pictures. I also felt a part of a larger community outside of the SPARK program. Even people at my school were seeing and commenting on what I was doing.

UC Davis CIRM SPARK program 2016

UC Davis CIRM SPARK program 2016

I also liked that I got feedback about what I was doing in the lab from other SPARK students. When I posted pictures during my internship, I talked about working with mesenchymal stem cells. Because we all post to the same #CIRMSPARKlab hashtag, I saw students from CalTech commenting that they worked with those stem cells too. That motivated me to work harder and accomplish more in my project. Instagram also helped me with my college application process. I saw that there were other students in the same position as me that were feeling stressed out. We also gave each other feedback on college essays and having advice about what I was doing really helped me out.

Do you think it’s important for students to be on social media?

Yes, I think it’s important with boundaries of course. There are probably some people who are on social media too often, and you should have a balance. But it’s nice to see what other students are doing to prepare for college and to let loose and catch up with your friends.

What advice would you give to younger high school students about pursuing science?

I feel like students can’t expect things to be brought to them. If they are interested in science, they need to take the initiative to find something that they are going to want to do. The CIRM internship was brought to my attention. But I have friends that were interested in medicine and they found their own internships and ways to learn more about what they wanted to do. So my advice is to take initiative and not be scared of rejection, because if you’re scared of rejection you’re not going to do anything.

To hear more about Ranya’s SPARK internship experience, read her blog “Here’s what you missed this summer on the show coats.” You can also follow her on Instagram and Twitter. For more information about the CIRM SPARK internship program, please visit the CIRM website.


Related Links:

Key Steps Along the Way To Finding Treatments for HIV on World AIDS Day

Today, December 1st,  is World AIDS Day. It’s a day to acknowledge the progress that is being made in HIV prevention and treatment around the world but also to renew our commitment to a future free of HIV. This year’s theme is Leadership. Commitment. Impact.  At CIRM we are funding a number of projects focused on HIV/AIDS, so we asked Jeff Sheehy, the patient advocate for HIV/AIDS on the CIRM Board to offer his perspective on the fight against the virus.

jeff-sheehy

At CIRM we talk about and hope for cures, but our actual mission is “accelerating stem cell treatments to patients with unmet medical needs.”

For those of us in the HIV/AIDS community, we are tremendously excited about finding a cure for HIV.  We have the example of Timothy Brown, aka the “Berlin Patient”, the only person cured of HIV.

Multiple Shots on Goal

Different approaches to a cure are under investigation with multiple clinical trials.  CIRM is funding three clinical trials using cell/gene therapy in attempts to genetically modify blood forming stem cells to resist infection with HIV.  While we hope this leads to a cure, community activists have come together to urge a look at something short of a “home run.”

A subset of HIV patients go on treatment, control the virus in their blood to the point where it can’t be detected by common diagnostic tests, but never see their crucial immune fighting CD4 T cells return to normal levels after decimation by HIV.

For instance, I have been on antiretroviral therapy since 1997.  My CD4 T cells had dropped precipitously, dangerous close to the level of 200.  At that level, I would have had an AIDS diagnosis and would have been extremely vulnerable to a whole host of opportunistic infections.  Fortunately, my virus was controlled within a few weeks and within a year, my CD T cells had returned to normal levels.

For the immunological non-responders I described above, that doesn’t happen.  So while the virus is under control, their T cell counts remain low and they are very susceptible to opportunistic infections and are at much greater risk of dying.

Immunological non-responders (INRs) are usually patients who had AIDS when they were diagnosed, meaning they presented with very low CD4 T cell counts.  Many are also older.  We had hoped that with frequent testing, treatment upon diagnosis and robust healthcare systems, this population would be less of a factor.  Yet in San Francisco with its very comprehensive and sophisticated testing and treatment protocols, 16% of newly diagnosed patients in 2015 had full blown AIDS.

Until we make greater progress in testing and treating people with HIV, we can expect to see immunological non-responders who will experience sub-optimal health outcomes and who will be more difficult to treat and keep alive.

Boosting the Immune System

A major cell/gene trial for HIV targeted this population.  Their obvious unmet medical need and their greater morbidity/mortality balanced the risks of first in man gene therapy.  Sangamo, a CIRM grantee, used zinc finger nucleases to snip out a receptor, CCR5, on the surface of CD4 T cells taken from INR patients.  That receptor is a door that HIV uses to enter cells.  Some people naturally lack the receptor and usually are unable to be infected with HIV.  The Berlin Patient had his entire immune system replaced with cells from someone lacking CCR5.

Most of the patients in that first trial saw their CD4 T cells rise sharply.  The amount of HIV circulating in their gut decreased.  They experienced a high degree of modification and persistence in T stem cells, which replenish the T cell population.  And most importantly, some who regularly experienced opportunistic infections such as my friend and study participant Matt Sharp who came down with pneumonia every winter, had several healthy seasons.

Missed Opportunities

Unfortunately, the drive for a cure pushed development of the product in a different direction.  This is in large part to regulatory challenges.  A prior trial started in the late 90’s by Chiron tested a cytokine, IL 2, to see if administering it could increase T cells.  It did, but proving that these new T cells did anything was illusive and development ceased.  Another cytokine, IL 7, was moving down the development pathway when the company developing it, Cytheris, ceased business.  The pivotal trial would have required enrolling 4,000 participants, a daunting and expensive prospect.  This was due to the need to demonstrate clinical impact of the new cells in a diverse group of patients.

Given the unmet need, HIV activists have looked at the Sangamo trial, amongst others, and have initiated a dialogue with the FDA.  Activists are exploring seeking orphan drug status since the population of INRs is relatively small.

Charting a New Course

They have also discussed trial designs looking at markers of immune activity and discussed potentially identifying a segment of INRs where clinical efficacy could be shown with far, far fewer participants.

Activists are calling for companies to join them in developing products for INRs.  I’ve included the press release issued yesterday by community advocates below.

With the collaboration of the HIV activist community, this could be a unique opportunity for cell/gene companies to actually get a therapy through the FDA. On this World AIDS Day, let’s consider the value of a solid single that serves patients in need while work continues on the home run.

NEWS RELEASE: HIV Activists Seek to Accelerate Development of Immune Enhancing Therapies for Immunologic Non-Responders.

Dialogues with FDA, scientists and industry encourage consideration of orphan drug designations for therapies to help the immunologic non-responder population and exploration of novel endpoints to reduce the size of efficacy trials.

November 30, 2016 – A coalition of HIV/AIDS activists are calling for renewed attention to HIV-positive people termed immunologic non-responders (INRs), who experience sub-optimal immune system reconstitution despite years of viral load suppression by antiretroviral therapy. Studies have shown that INR patients remain at increased risk of illness and death compared to HIV-positive people who have better restoration of immune function on current drug therapies. Risk factors for becoming an INR include older age and a low CD4 count at the time of treatment initiation. To date, efforts to develop immune enhancing interventions for this population have proven challenging, despite some candidates from small companies showing signs of promise.

“We believe there is an urgent need to find ways to encourage and accelerate development of therapies to reduce the health risks faced by INR patients,” stated Nelson Vergel of the Program for Wellness Restoration (PoWeR), who initiated the activist coalition. “For example, Orphan Drug designations[i] could be granted to encourage faster-track approval of promising therapies.  These interventions may eventually help not only INRs but also people with other immune deficiency conditions”.

Along with funding, a major challenge for approval of any potential therapy is proving its efficacy. While INRs face significantly increased risk of serious morbidities and mortality compared to HIV-positive individuals with more robust immune reconstitution, demonstrating a reduction in the incidence of these outcomes would likely require expensive and lengthy clinical trials involving thousands of individuals. Activists are therefore encouraging the US Food & Drug Administration (FDA), industry and researchers to evaluate potential surrogate markers of efficacy such as relative improvements in clinical problems that may be more frequent in INR patients, such as upper respiratory infections, gastrointestinal disease, and other health issues.

“Given the risks faced by INR patients, every effort should be made to assess whether less burdensome pathways toward approval are feasible, without compromising the regulatory requirement for compelling evidence of safety and efficacy”, said Richard Jefferys of the Treatment Action Group.

The coalition is advocating that scientists, biotech and pharmaceutical companies pursue therapeutic candidates for INRs. For example, while gene and anti-inflammatory therapies for HIV are being assessed in the context of cure research, there is also evidence that they may have potential to promote immune reconstitution and reduce markers associated with risk of morbidity and mortality in INR patients. Therapeutic research should also be accompanied by robust study of the etiology and mechanisms of sub-optimal immune responses.

“While there is, appropriately, a major research focus on curing HIV, we must be alert to evidence that candidate therapies could have benefits for INR patients, and be willing to study them in this context”, argued Matt Sharp, a coalition member and INR who experienced enhanced immune reconstitution and improved health and quality of life after receiving an experimental gene therapy.

The coalition has held an initial conference call with FDA to discuss the issue. Minutes are available online.

The coalition is now aiming to convene a broader dialogue with various drug companies on the development of therapies for INR patients. Stakeholders who are interested in becoming involved are encouraged to contact coalition representatives.

[i] The Orphan Drug Act incentivizes the development of treatments for rare conditions. For more information, see:  http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/ucm2005525.htm

For more information:

Richard Jefferys

Michael Palm Basic Science, Vaccines & Cure Project Director
Treatment Action Group richard.jefferys@treatmentactiongroup.org

Nelson Vergel, Program for Wellness Restoration programforwellness@gmail.com

 

 

Trash talking and creating a stem cell community

imilce2

Imilce Rodriguez-Fernandez likes to talk trash. No, really, she does. In her case it’s cellular trash, the kind that builds up in our cells and has to be removed to ensure the cells don’t become sick.

Imilce was one of several stem cell researchers who took part in a couple of public events over the weekend, on either side of San Francisco Bay, that served to span both a geographical and generational divide and create a common sense of community.

The first event was at the Buck Institute for Research on Aging in Marin County, near San Francisco. It was titled “Stem Cell Celebration” and that’s pretty much what it was. It featured some extraordinary young scientists from the Buck talking about the work they are doing in uncovering some of the connections between aging and chronic diseases, and coming up with solutions to stop or even reverse some of those changes.

One of those scientists was Imilce. She explained that just as it is important for people to get rid of their trash so they can have a clean, healthy home, so it is important for our cells to do the same. Cells that fail to get rid of their protein trash become sick, unhealthy and ultimately stop working.

Imilce is exploring the cellular janitorial services our bodies have developed to deal with trash, and trying to find ways to enhance them so they are more effective, particularly as we age and those janitorial services aren’t as efficient as they were in our youth.

Unlocking the secrets of premature aging

Chris Wiley, another postdoctoral researcher at the Buck, showed that some medications that are used to treat HIV may be life-saving on one level, preventing the onset of full-blown AIDS, but that those benefits come with a cost, namely premature aging. Chris said the impact of aging doesn’t just affect one cell or one part of the body, but ripples out affecting other cells and other parts of the body. By studying the impact those medications have on our bodies he’s hoping to find ways to maintain the benefits of those drugs, but get rid of the downside.

Creating a Community

ssscr

Across the Bay, the U.C. Berkeley Student Society for Stem Cell Research held it’s 4th annual conference and the theme was “Culturing a Stem Cell Community.”

The list of speakers was a Who’s Who of CIRM-funded scientists from U.C. Davis’ Jan Nolta and Paul Knoepfler, to U.C. Irvine’s Henry Klassen and U.C. Berkeley’s David Schaffer. The talks ranged from progress in fighting blindness, to how advances in stem cell gene editing are cause for celebration, and concern.

What struck me most about both meetings was the age divide. At the Buck those presenting were young scientists, millennials; the audience was considerably older, baby boomers. At UC Berkeley it was the reverse; the presenters were experienced scientists of the baby boom generation, and the audience were keen young students representing the next generation of scientists.

Bridging the divide

But regardless of the age differences there was a shared sense of involvement, a feeling that regardless of which side of the audience we are on we all have something in common, we are all part of the stem cell community.

All communities have a story, something that helps bind them together and gives them a sense of common purpose. For the stem cell community there is not one single story, there are many. But while those stories all start from a different place, they end up with a common theme; inspiration, determination and hope.

 

Young Minds Shine Bright at the CIRM SPARK Conference

SPARK students take a group photo with CIRM SPARK director Karen Ring.

SPARK students take a group photo with CIRM SPARK director Karen Ring.

Yesterday was one of the most exciting and inspiring days I’ve had at CIRM since I joined the agency one year ago. We hosted the CIRM SPARK conference which brought together fifty-five high school students from across California to present their stem cell research from their summer internships.

The day was a celebration of their accomplishments. But it was also a chance for the students to hear from scientists, patient advocates, and clinicians about the big picture of stem cell research: to develop stem cell treatments and cures for patients with unmet medical needs.

Since taking on the role of the CIRM SPARK director, I’ve been blown away by the passion, dedication, and intelligence that our SPARK interns have shown during their short time in the lab. They’ve mastered techniques and concepts that I only became familiar with during my PhD and postdoctoral research. And even more impressive, they eloquently communicated their research through poster presentations and talks at the level of professional scientists.

During their internships, SPARK students were tasked with documenting their research experiences through blogs and social media. They embraced this challenge with gusto, and we held an awards ceremony to recognize the students who went above and beyond with these challenges.

I’d like to share the winning blogs with our readers. I hope you find them as inspiring and motivating as I do. These students are our future, and I look forward to the day when one of them develops a stem cell treatment that changes the lives of patients. 

Andrew Choi

Andrew Choi

Andrew Choi, Cedars-Sinai SPARK student

Am I crying or is my face uncontrollably sweating right now? I think I am doing both as I write about my unforgettable experiences over the course of the past 6 weeks and finalize my poster.

As I think back, I am very grateful for the takeaways of the research field, acquiring them through scientific journals, lab experiments with my mentor, and both formal and informal discourses. It seems impossible to describe all the episodes and occurrences during the program in this one blog post, but all I can say is that they were all unique and phenomenal in their own respective ways.

Gaining new perspectives and insights and being acquainted with many of the techniques, such as stereology, immunocytochemistry and immunohistochemistry my peers have utilized throughout their careers, proved to me the great impact this program can make on many individuals of the younger generation.

CIRM SPARK not only taught me the goings on behind the bench-to-bedside translational research process, but also morals, work ethics, and effective collaboration with my peers and mentors. My mentor, Gen, reiterated the importance of general ethics. In the process of making my own poster for the program, her words resonate even greater in me. Research, education, and other career paths are driven by proper ethics and will never continue to progress if not made the basic standard.

I am thankful for such amazing institutions: California Institute of Regenerative Medicine (CIRM) and Cedars-Sinai Medical Center for enabling me to venture out into the research career field and network. Working alongside with my fellow seven very brilliant friends, motivated me and made this journey very enjoyable. I am especially thankful my mentor, Gen, for taking the time to provide me with the best possible resources, even with her busy ongoing projects. She encouraged me to be the best that I am.

I believe, actually, I should say, I KNOW Cedars-Sinai’s CIRM SPARK program does a SUPERB and astounding job of cultivating life-long learners and setting exceptional models for the younger generation. I am hoping that many others will partake in this remarkable educational program.

I am overall very blessed to be part of a successful summer program. The end of this program does not mark the end of my passions, but sparks them to even greater heights.

Jamey Guzman

Jamey Guzman

Jamey Guzman, UC Davis SPARK student

When I found out about this opportunity, all I knew was that I had a fiery passion for learning, for that simple rush that comes when the lightbulb sputters on after an unending moment of confusion. I did not know if this passion would translate into the work setting; I sometimes wondered if passion alone would be enough to allow me to understand the advanced concepts at play here. I started at the lab nervous, tentative – was this the place for someone so unsure exactly what she wanted to be ‘when she grew up,’ a date now all too close on the horizon? Was I going to fit in at this lab, with these people who were so smart, so busy, people fighting for their careers and who had no reason to let a 16-year-old anywhere near experiments worth thousands of dollars in cost and time spent?

I could talk for hours about the experiments that I worked to master; about the rush of success upon realizing that the tasks now completed with confidence were ones that I had once thought only to belong to the lofty position of Scientist. I could fill pages and pages with the knowledge I gained, a deep and personal connection to stem cells and cell biology that I will always remember, even if the roads of Fate pull me elsewhere on my journey to a career.

The interns called the experience #CIRMSparkLab in our social media posts, and I find this hashtag so fitting to describe these last few months. While there was, of course, the lab, where we donned our coats and sleeves and gloves and went to work with pipets and flasks…There was also the Lab. #CIRMSparkLab is so much more than an internship; #CIRMSparkLab is an invitation into the worldwide community of learned people, a community that I found to be caring and vibrant, creative and funny – one which for the first time I can fully imagine myself joining “when I grow up.”

#CIRMSparkLab is having mentors who taught me cell culture with unerring patience and kindness. It is our team’s lighthearted banter across the biosafety cabinet; it is the stories shared of career paths, of goals for the present and the future. It is having mentors in the best sense of the word, trusting me, striving to teach and not just explain, giving up hours and hours of time to draw up diagrams that ensured that the concepts made so much sense to me.

#CIRMSparkLab is the sweetest ‘good-morning’ from scientists not even on your team, but who care enough about you to say hi, to ask about your projects, to share a smile. It is the spontaneity and freedom with which knowledge is dispensed: learning random tidbits about the living patterns of beta fish from our lab manager, getting an impromptu lecture about Time and the Planck Constant from our beloved professor as he passes us at lunch. It is getting into a passionate, fully evidence-backed argument about the merits of pouring milk before cereal that pitted our Stem Cell team against our Exosome team: #CIRMSparkLab is finding a community of people with whom my “nerdy” passion for learning does not leave me an oddball, but instead causes me to connect instantly and deeply with people at all ages and walks of life. And it is a community that, following the lead of our magnificent lab director, welcomed ten interns into their lab with open arms at the beginning of this summer, fully cognizant of the fact that we will break beakers, overfill pipet guns, drop gels, bubble up protein concentration assays, and all the while never stop asking, “Why? Why? Why? Is this right? Like this? WHY?”

I cannot make some sweeping statement that I now know at age 16 exactly what I want to do when I grow up. Conversely, to say I learned so much – or I am so grateful – or you have changed my life is simply not enough; words cannot do justice to those sentiments which I hope that all of you know already. But I can say this: I will never forget how I felt when I was at the lab, in the community of scientists. I will take everything I learned here with me as I explore the world of knowledge yet to be obtained, and I will hold in my heart everyone who has helped me this summer. I am truly a better person for having known all of you.

Thank you, #CIRMSparkLab. 

Adriana Millan

Adriana Millan

Adriana Millan, CalTech SPARK student

As children, we all grew up with the companionship of our favorite television shows. We enjoyed sitcoms and other animations throughout our childhood and even as adults, there’s no shame. The goofy and spontaneous skits we enjoyed a laugh over, yet we did not pay much attention to the lessons they attempted to teach us. As a child, these shows play crucial roles in our educational endeavors. We are immediately hooked and tune in for every episode. They spark curiosity, as they allow our imaginations to run wild. For me, that is exactly where my curiosity stemmed and grew for science over the years. A delusional young girl, who had no idea what the reality of science was like.

You expect to enter a lab and run a full day of experimentations. Accidentally mix the wrong chemicals and discover the cure for cancer. Okay, maybe not mix the incorrect chemicals together, I learned that in my safety training class. The reality is that working in a lab was far from what I expected — eye opening. Working alongside my mentor Sarah Frail was one of the best ways I have spent a summer. It was not my ideal summer of sleeping in until noon, but it was worthwhile.

My experience is something that is a part of me now. I talk about it every chance I get, “Mom, can you believe I passaged cells today!” It changed the way I viewed the principles of science. Science is one of the most valuable concepts on this planet, it’s responsible for everything and that’s what I have taken and construed from my mentor. She shared her passion for science with me and that completed my experience. Before when I looked at cells, I did not know exactly what I was supposed to observe. What am I looking at? What is that pink stuff you are adding to the plate?

However, now I feel accomplished. It was a bit of a roller coaster ride, with complications along the way, but I can say that I’m leaving this experience with a new passion. I am not just saying this to please the audience, but to express my gratitude. I would have never even looked into Huntington’s Disease. When I first arrived I was discombobulated. Huntington’s Disease? Now I can proudly say I have a grasp on the complexity of the disease and not embarrass my mentor my calling human cells bacteria – quite embarrassing in fact.  I’m a professional pipette handler, I work well in the hood, I can operate a microscope – not so impressive, I have made possibly hundreds of gels, I have run PCRs, and my cells love me, what else can I ask for.

If you are questioning what career path you are to take and even if it is the slightest chance it may be a course in science, I suggest volunteering in a lab. You will leave with your questioned answered. Is science for me? This is what I am leaving my experience with. Science is for me.

Other SPARK 2016 Awards

Student Speakers: Jingyi (Shelly) Deng (CHORI), Thomas Thach (Stanford)

Poster Presentations: Jerusalem Nerayo (Stanford), Jared Pollard (City of Hope), Alina Shahin (City of Hope), Shuling Zhang (UCSF)

Instagram Photos: Roxanne Ohayon (Stanford), Anna Victoria Serbin (CHORI), Diana Ly (UC Davis)

If you want to see more photos from the CIRM SPARK conference, check out our Instagram page @CIRM_Stemcells or follow the hashtag #CIRMSPARKLab on Instagram and Twitter.

California high schoolers SPARK interest in stem cell research through social media

I have a job for you today and it’s a fun one. Open your Instagram app on your phone. If you’re not an Instagrammer, don’t worry, you can access the website on your computer.

Do you have it open? OK now type in the hashtag #CIRMSparkLab and click on it.

What you’ll find is around 200 posts of the most inspiring and motivating pictures of stem cell research that I’ve seen. These pictures are from high school students currently participating in the CIRM summer SPARK program, one of our educational programs, which has the goal to train the next generation of stem cell scientists.

The SPARK program offers California high school students an invaluable opportunity to gain hands-on training in regenerative medicine at some of the finest stem cell research institutes in the state. And while they gain valuable research skills, we are challenging them to share their experiences with the general public through blogging and social media.

Communicating science to the public is an important mission of CIRM, and the SPARK students are excelling at this task by posting descriptive photos on Instagram that document their internships. Some of them are fun lab photos, while others are impressive images of data with detailed explanations about their research projects.

Below are a few of my favorite posts so far this summer. I’ve been so inspired by the creativity of these posts that we are now featuring some of them on the @CIRM_Stemcells account. (Yes this is a shameless plug for you to follow us on Instagram!).

City of Hope SPARK program.

Screen Shot 2016-07-13 at 11.15.14 AM

Screen Shot 2016-07-13 at 11.17.24 AM

Screen Shot 2016-07-13 at 11.16.59 AM

Screen Shot 2016-07-13 at 11.23.51 AM

Screen Shot 2016-07-13 at 11.17.43 AM

I encourage you all to follow our talented SPARK students this summer as they continue to document their exciting journeys on Instagram. These students are our future and supporting their training and education in stem cell research is an honor for CIRM and a vital step towards achieving our mission of accelerating stem cell treatments to patients with unmet medical needs.

Stay tuned for more blog coverage about SPARK and our other educational program, the Bridges to Stem Cell Research program for undergraduate and master-level students. The annual Bridges conference that brings all the students together to present their research will be held next week, and the SPARK conference is on August 8th both in Berkeley.