Rare disease meeting at California Capitol stresses importance of advocacy, funding, and new research

Dr. Martin Cadeiras (far left), who specializes in cardiovascular medicine at UC Davis, discusses the rare disease amyloidosis. Next to Dr. Cadeiras is Len Strickland, a patient advocates who shares his perspective on living with the disease.

“By changing policy, we can change lives”

A powerful opening statement by Angela Ramirez Holmes, Founder & President of the California Action Link for Rare Diseases (CAL RARE).

Tuesday of last week, patient advocates, patient advocacy organizations, and members of the public filled a room at the California Capitol for an informational hearing on research related to rare diseases. One of the organizations present was CAL RARE, a non-profit organization that is dedicated to improving the lives of California patients with rare diseases. Angela’s opening statement reflects CAL RARE’s core mission of bringing awareness of rare diseases to the general public and decision makers in order to improve access to physicians, treatments, and social services.

Dr. Martin Cadeiras

One of the first presenters was Dr. Martin Cadeiras from the Department of Cardiovascular Medicine at UC Davis. His presentation focused on a rare disease named amyloidosis, which occurs when a protein called amyloid builds up in the body’s organs and tissues. This can lead to problems in the heart, skin, kidneys, liver, and digestive tract. There are several different types of amyloidosis, one of which is hereditary and another form that can occur after chronic infection. Dr. Cadeiras spoke in detail about the scientific complexities behind amyloidosis and shared images of patients affected with the disease as well as the complications associated with their condition.

Len Strickland

To elaborate more on the patient perspective of this disease, patient advocate Len Strickland shared his journey living with amyloidosis. In addition to living with the disease, Len also has the sickle cell trait, meaning he has one copy of the sickle cell disease gene but one normal copy.

In his early life, Len was a typical young adult with no health problems. Unfortunately for him that changed in 2006, when he started having problems with shortness of breath and heart palpitations almost overnight. He visited many doctors, all of which were perplexed by his condition and were unable to diagnose him.

“My normal life was gone, and I was very concerned.” said Strickland.

One year later, after multiple tests and specialists, he was finally diagnosed with the hereditary version of amyloidosis. As a result of his condition, he was in dire need of a heart transplant. On March 4, 2008 he was placed on the transplant list. Because he was relatively lower on the priority list, he was told to keep hope to a minimum. Fortunately, on June 10, 2008 a matching donor heart was found and by the next day, Len had successfully received the heart transplant.

Len wrote a thank you letter to the mother of the deceased donor and regularly keeps in touch with her. She hopes to one day meet Len in person so that she can hug Len and hear her son’s heartbeat.

Although the amyloid deposits have spread to Len’s hand and feet, he is still able to live his life.

Len ended his speech by telling the crowd,

“Make the best of the time you have, if I can do it, so can you.”

Dr. Lauge Farnaes

The challenges Len faced with getting a proper diagnosis brought up the need for technology that can better screen rare diseases. The next presenter, Dr. Lauge Farnaes of Rady Children’s Institute for Genomic Medicine, discussed a project that focused on just that. Under a two million dollar Medi-Cal program titled Project Baby Bear, Dr. Farnaes and his team have used genome sequencing as a diagnostic test for critically ill newborns. The ultimate goal is to get this screening as a Medi-Cal covered benefit.

Comprehensive early testing enables physicians to make early decisions about and minimize the damage accumulated before diagnosis. “We have a chance to go in early on and make a difference in the life of patients.” said Farnaes.

Dr. Farnaes told stories of some of the children enrolled in the screening program. One was a young girl that had problems related to the heart. She was enrolled February 6th and diagnosed two days later with Timothy Syndrome, making her one of the youngest patients ever diagnosed. She was implanted with a defibrillator to help with her heart problems. Dr. Farnaes had stated that without the screening, she would have likely just been prescribed beta blockers, which would only have worsened her condition.

Another child enrolled in the program had difficulty breathing as a result of bone fractures. Because of the bone fractures, it was thought that the child had undergone abuse at the hands of the parents. However, thanks to the screening technology, it was found to be the result of a genetic condition. Dr. Farnaes talked about how this technology vindicated the parents, who were already going through the difficult process of having a sick child without throwing other problems into the mix.

To date, 116 children have been diagnosed with genetic conditions early on using this technology and the number is expected to eventually approach 150.

Last, but not least, Assemblymember Mike Gipson shared an update on the work that the rare disease caucus has made with relation to sickle cell disease. He mentioned how the legislative black caucus had successfully advocated for allocating $15 million for sickle cell disease. This money will be used to open seven new sickle cell centers across California.

The meeting in the California Capitol highlighted the impact that patient stories have on policy, as well as the ongoing need of funding and new technologies to address the disparities in rare disease.

Next generation of stem cell scientists leave their mark

One of the favorite events of the year for the team here at CIRM is our annual SPARK (Summer Program to Accelerate Regenerative Medicine Knowledge) conference. This is where high school students, who spent the summer interning at world class stem cell research facilities around California, get to show what they learned. It’s always an engaging, enlightening, and even rather humbling experience.

The students, many of whom are first generation Californians, start out knowing next to nothing about stem cells and end up talking as if they were getting ready for a PhD. Most say they went to their labs nervous about what lay ahead and half expecting to do menial tasks such as rinsing out beakers. Instead they were given a lab coat, safety glasses, stem cells and a specific project to work on. They learned how to handle complicated machinery and do complex scientific experiments.

But most importantly they learned that science is fun, fascinating, frustrating sometimes, but also fulfilling. And they learned that this could be a future career for them.

We asked all the students to blog about their experiences and the results were extraordinary. All talked about their experiences in the lab, but some went beyond and tied their internship to their own lives, their past and their hopes for the future.

Judging the blogs was a tough assignment, deciding who is the best of a great bunch wasn’t easy. But in the end, we picked three students who we thought captured the essence of the SPARK program. This week we’ll run all those blogs.

We begin with our third place blog by Dayita Biswas from UC Davis.

Personal Renaissance: A Journey from Scientific Curiosity to Confirmed Passions

By Dayita Biswas

As I poured over the pages of my battered Campbell textbook, the veritable bible for any biology student, I saw unbelievable numbers like how the human body is comprised of over 30 trillion cells! Or how we have over 220 different types of cells— contrary to my mental picture of a cell as a circle. Science, and biology in particular, has no shortage of these seemingly impossible Fermi-esque statistics that make one do a double-take. 

My experience in science had always been studying from numerous textbooks in preparation for a test or competitions, but textbooks only teach so much. The countless hours I spent reading actually demotivated me and I constantly asked myself what was the point of learning about this cycle or that process — the overwhelming “so what?” question. Those intriguing numbers that piqued my interest were quickly buried under a load of other information that made science a static stream of words across a page. 

That all changed this summer when I had the incredible opportunity to work in the Nolta lab under my mentor, Whitney Cary. This internship made science so much more tangible and fun to be a part of.  It was such an amazing environment, being in the same space with people who all have the same goals and passion for science that many high school students are not able to truly experience. Everyone was so willing to explain what they were doing, and even went out of their way to help if I needed papers or had dumb questions.

This summer, my project was to create embryoid bodies and characterize induced pluripotent stem cells (iPSCs) from children who had Jordan’s Syndrome, an extremely rare neurodevelopmental disease whose research has applications in Alzheimer’s and autism.

 I had many highs and lows during this research experience. My highs were seeing that my iPSCs were happy and healthy. I enjoyed learning lab techniques like micro-pipetting, working in a biological safety hood, feeding, freezing, and passaging cells. My lows were having to bleach my beloved iPSCs days after they failed to survive, and having unsuccessful protocols. However, while my project consistently failed, these failures taught me more than my successes.

I learned that there is a large gap between being able to read about techniques and being “book smart” and actually being able to think critically about science and perform research. Science, true science, is more than words on a page or fun facts to spout at a party. Science is never a straight or easy answer, but the mystery and difficulty is part of the reason it is so interesting. Long story short: research is hard and it takes time and patience, it involves coming in on weekends to feed cells, and staying up late at night reading papers.         

The most lasting impact that this summer research experience had was that everything we learn in school and the lab are all moving us towards the goal of helping real people. This internship renewed my passion for biology and cemented my dream of working in this field. It showed me that I don’t have to wait to be a part of dynamic science and that I can be a small part of something that will change, benefit, and save lives.

This internship meant being a part of something bigger than myself, something meaningful. We must always think critically about what consequences our actions will have because what we do as scientists and researchers— and human beings will affect the lives of real people. And that is the most important lesson anyone can hope to learn.

                                                                                                   

And here’s a bonus, a video put together by the SPARK students at Cedars-Sinai Medical Center.

From bench to bedside: a Q&A with stem cell expert Jan Nolta

At CIRM we are privileged to work with many remarkable people who combine brilliance, compassion and commitment to their search for new therapies to help people in need. One of those who certainly fits that description is UC Davis’ Jan Nolta.

This week the UC Davis Newsroom posted a great interview with Jan. Rather than try and summarize what she says I thought it would be better to let her talk for herself.

Jan Nolta
Jan Nolta

Talking research, unscrupulous clinics, and sustaining the momentum

(SACRAMENTO) —

In 2007, Jan Nolta returned to Northern California from St. Louis to lead what was at the time UC Davis’ brand-new stem cell program. As director of the UC Davis Stem Cell Program and the Institute for Regenerative Cures, she has overseen the opening of the institute, more than $140 million in research grants, and dozens upon dozens of research studies. She recently sat down to answer some questions about regenerative medicine and all the work taking place at UC Davis Health.

Q: Turning stem cells into cures has been your mission and mantra since you founded the program. Can you give us some examples of the most promising research?

I am so excited about our research. We have about 20 different disease-focused teams. That includes physicians, nurses, health care staff, researchers and faculty members, all working to go from the laboratory bench to patient’s bedside with therapies.

Perhaps the most promising and exciting research right now comes from combining blood-forming

stem cells with gene therapy. We’re working in about eight areas right now, and the first cure, something that we definitely can call a stem cell “cure,” is coming from this combined approach.

Soon, doctors will be able to prescribe this type of stem cell therapy. Patients will use their own bone marrow or umbilical cord stem cells. Teams such as ours, working in good manufacturing practice facilities, will make vectors, essentially “biological delivery vehicles,” carrying a good copy of the broken gene. They will be reinserted into a patient’s cells and then infused back into the patient, much like a bone marrow transplant.

“Perhaps the most promising and exciting research right now comes from combining blood-forming stem cells with gene therapy.”

Along with treating the famous bubble baby disease, where I had started my career, this approach looks very promising for sickle cell anemia. We’re hoping to use it to treat several different inherited metabolic diseases. These are conditions characterized by an abnormal build-up of toxic materials in the body’s cells. They interfere with organ and brain function. It’s caused by just a single enzyme. Using the combined stem cell gene therapy, we can effectively put a good copy of the gene for that enzyme back into a patient’s bone marrow stem cells. Then we do a bone marrow transplantation and bring back a person’s normal functioning cells.

The beauty of this therapy is that it can work for the lifetime of a patient. All of the blood cells circulating in a person’s system would be repaired. It’s the number one stem cell cure happening right now. Plus, it’s a therapy that won’t be rejected. These are a patient’s own stem cells. It is just one type of stem cell, and the first that’s being commercialized to change cells throughout the body.

Q: Let’s step back for a moment. In 2004, voters approved Proposition 71. It has funded a majority of the stem cell research here at UC Davis and throughout California. What’s been the impact of that ballot measure and how is it benefiting patients?

We have learned so much about different types of stem cells, and which stem cell will be most appropriate to treat each type of disease. That’s huge. We had to first do that before being able to start actual stem cell therapies. CIRM [California Institute for Regenerative Medicine] has funded Alpha Stem Cell Clinics. We have one of them here at UC Davis and there are only five in the entire state. These are clinics where the patients can go for high-quality clinical stem cell trials approved by the FDA [U.S. Food and Drug Administration]. They don’t need to go to “unapproved clinics” and spend a lot of money. And they actually shouldn’t.

“By the end of this year, we’ll have 50 clinical trials.”

By the end of this year, we’ll have 50 clinical trials [here at UC Davis Health]. There are that many in the works.

Our Alpha Clinic is right next to the hospital. It’s where we’ll be delivering a lot of the immunotherapies, gene therapies and other treatments. In fact, I might even get to personally deliver stem cells to the operating room for a patient. It will be for a clinical trial involving people who have broken their hip. It’s exciting because it feels full circle, from working in the laboratory to bringing stem cells right to the patient’s bedside.

We have ongoing clinical trials for critical limb ischemia, leukemia and, as I mentioned, sickle cell disease. Our disease teams are conducting stem cell clinical trials targeting sarcoma, cellular carcinoma, and treatments for dysphasia [a swallowing disorder], retinopathy [eye condition], Duchenne muscular dystrophy and HIV. It’s all in the works here at UC Davis Health.

There’s also great potential for therapies to help with renal disease and kidney transplants. The latter is really exciting because it’s like a mini bone marrow transplant. A kidney recipient would also get some blood-forming stem cells from the kidney donor so that they can better accept the organ and not reject it. It’s a type of stem cell therapy that could help address the burden of being on a lifelong regime of immunosuppressant drugs after transplantation.

Q: You and your colleagues get calls from family members and patients all the time. They frequently ask about stem cell “miracle” cures. What should people know about unproven treatments and unregulated stem cell clinics?

That’s a great question.The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.

When it comes to advertised therapies: “The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.”

Unfortunately, there are unscrupulous people out there in “unapproved clinics” who prey on desperate people. What they are delivering are probably not even stem cells. They might inject you with your own fat cells, which contain very few stem cells. Or they might use treatments that are not matched to the patient and will be immediately rejected. That’s dangerous. The FDA is shutting these unregulated clinics down one at a time. But it’s like “whack-a-mole”: shut one down and another one pops right up.

On the other hand, the Alpha Clinic is part of our mission is to help the public get to the right therapy, treatment or clinical trial. The big difference between those who make patients pay huge sums of money for unregulated and unproven treatments and UC Davis is that we’re actually using stem cells. We produce them in rigorously regulated cleanroom facilities. They are certified to contain at least 99% stem cells.

Patients and family members can always call us here. We can refer them to a genuine and approved clinical trial. If you don’t get stem cells at the beginning [of the clinical trial] because you’re part of the placebo group, you can get them later. So it’s not risky. The placebo is just saline. I know people are very, very desperate. But there are no miracle cures…yet. Clinical trials, approved by the FDA, are the only way we’re going to develop effective treatments and cures.

Q: Scientific breakthroughs take a lot of patience and time. How do you and your colleagues measure progress and stay motivated?   

Motivation?  “It’s all for the patients.”

It’s all for the patients. There are not good therapies yet for many disorders. But we’re developing them. Every day brings a triumph. Measuring progress means treating a patient in a clinical trial, or developing something in the laboratory, or getting FDA approval. The big one will be getting biological license approval from the FDA, which means a doctor can prescribe a stem cell or gene therapy treatment. Then it can be covered by a patient’s health insurance.

I’m a cancer survivor myself, and I’m also a heart patient. Our amazing team here at UC Davis has kept me alive and in great health. So I understand it from both sides. I understand the desperation of “Where do I go?” and “What do I do right now?” questions. I also understand the science side of things. Progress can feel very, very slow. But everything we do here at the Institute for Regenerative Cures is done with patients in mind, and safety.

We know that each day is so important when you’re watching a loved one suffer. We attend patient events and are part of things like Facebook groups, where people really pour their hearts out. We say to ourselves, “Okay, we must work harder and faster.” That’s our motivation: It’s all the patients and families that we’re going to help who keep us working hard.

Regulated, reputable, and reliable – distinguishing legitimate clinical trials from predatory clinics

Here at CIRM, we get calls every day from patients asking us if there are any trials or therapies available to treat their illness or an illness affecting a loved one. Unfortunately, there are some predatory clinics that try to take advantage of this desperation by advertising unproven and unregulated treatments for a wide range of diseases such as Diabetes, Alzheimer’s, Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS).

A recent article in the Los Angeles Times describes how one of these predatory stem cell clinics is in a class action lawsuit related to false advertising of 100% patient satisfaction. Patients were led to believe that this percentage was related to the effectiveness of the treatment, when in fact it had to do with satisfaction related to hospitality, hotel stay, and customer service. These kinds of deceptive tactics are commonplace for sham clinics and are used to convince people to pay tens of thousands of dollars for sham treatments.

But how can a patient or loved one distinguish a legitimate clinical trial or treatment from those being offered by predatory clinics? We have established the “fundamental three R’s” to help in making this distinction.

REGULATED

The United States Food and Drug Administration (FDA) has a regulated process that it uses in evaluating potential treatments from researchers seeking approval to test these in a clinical trial setting.  This includes extensive reviews by scientific peers in the community that are well informed on specific disease areas. Those that adhere to these regulations get an FDA seal of approval and are subject to extensive oversight to protect patients participating in this trial. Additionally, these regulations ensure that the potential treatments are properly evaluated for effectiveness. The 55 clinical trials that we have currently funded as well as the clinical trials being conducted in our Alpha Stem Cell Clinic Network all have this FDA seal of approval. In contrast to this, the treatments offered at predatory clinics have not gone through the rigorous standards necessary to obtain FDA approval.

REPUTABLE

We have partnered with reputable institutions to carry out the clinical trials we have funded and establish our Alpha Stem Cell Clinic Network. These are institutions that adhere to the highest scientific standards necessary to effectively evaluate potential treatments and communicate these results with extreme accuracy. These institutions have expert scientists, doctors, and nurses in the field and adhere to rigorous standards that have earned these institutions a positive reputation for carrying out their work.  The sites for the Alpha Stem Cell Clinic Network include City of Hope, UCSF, UC San Diego, UCLA, UC Davis, and UC Irvine.  In regards to the clinical trials we have directly funded, we have collaborated with other prestigious institutions such as Stanford and USC.  All these institutions have a reputation for being respected by established societies and other professionals in the field. The reputation that predatory clinics have garnered from patients, scientists, and established doctors has been a negative one. An article published in The New York Times has described the tactics used by these predatory clinics as unethical and their therapies have often been shown to be ineffective.

RELIABLE

The clinical trials we fund and those offered at our Alpha Stem Cell Clinic Network are reliable because they are trusted by patients, patient advocacy groups, and other experts in the field of regenerative medicine. A part of being reliable involves having extensive expertise and training to properly evaluate and administer treatments in a clinical trial setting. The doctors, nurses, and other experts involved in clinical trials given the go-ahead by the FDA have extensive training to carry out these trials.  These credentialed specialists are able to administer high quality clinical care to patients.  In a sharp contrast to this, an article published in Reuters showed that predatory clinics not only administer unapproved stem cell treatments to patients, but they use doctors that have not received training related to the services they provide.

Whenever you are looking at a potential clinical trial or treatment for yourself or a loved one, just remember the 3 R’s we have laid out in this blog.

Regulated, reputable, and reliable.

Media matters in spreading the word

Cover of New Yorker article on “The Birth Tissue Profiteers”. Illustration by Ben Jones

When you have a great story to tell the best and most effective way to get it out to the widest audience is still the media, both traditional mainstream and new social media. Recently we have seen three great examples of how that can be done and, hopefully, the benefits that can come from it.

First, let’s go old school. Earlier this month Caroline Chen wrote a wonderful in-depth article about clinics that are cashing in on a gray area in stem cell research. The piece, a collaboration between the New Yorker magazine and ProPublica, focused on the use of amniotic stem cell treatments and the gap between what the clinics who offer it are claiming it can do, and the reality.

Here’s one paragraph profiling a Dr. David Greene, who runs a company providing amniotic fluid to clinics. It’s a fine piece of writing showing how the people behind these therapies blur the lines between fact and reality, not just about the cells but also about themselves:

“Greene said that amniotic stem cells derive their healing power from an ability to develop into any kind of tissue, but he failed to mention that mainstream science does not support his claims. He also did not disclose that he lost his license to practice medicine in 2009, after surgeries he botched resulted in several deaths. Instead, he offered glowing statistics: amniotic stem cells could help the heart beat better, “on average by twenty per cent,” he said. “Over eighty-five per cent of patients benefit exceptionally from the treatment.”

Greene later backpedals on that claim, saying:

“I don’t claim that this is a treatment. I don’t claim that it cures anything. I don’t claim that it’s a permanent fix. All I discuss is maybe, potentially, people can get some improvements from stem-cell care.”

CBS2 TV Chicago

This week CBS2 TV in Chicago did their own investigative story about how the number of local clinics offering unproven and unapproved therapies is on the rise. Reporter Pam Zekman showed how misleading newspaper ads brought in people desperate for something, anything, to ease their arthritis pain.

She interviewed two patients who went to one of those clinics, and ended up out of pocket, and out of luck.

“They said they would regenerate the cartilage,” Patricia Korona recalled. She paid $4500 for injections in her knee, but the pain continued. Later X-rays were ordered by her orthopedic surgeon.

He found bone on bone,” Korona said. “No cartilage grew, which tells me it failed; didn’t work.”

John Zapfel paid $14,000 for stem cell injections on each side of his neck and his shoulder. But an MRI taken by his current doctor showed no improvement.

“They ripped me off, and I was mad.” Zapfel said.      

TV and print reports like this are a great way to highlight the bogus claims made by many of these clinics, and to shine a light on how they use hype to sell hope to people who are in pain and looking for help.

At a time when journalism seems to be increasingly under attack with accusations of “fake news” it’s encouraging to see reporters like these taking the time and news outlets devoting the resources to uncover shady practices and protect vulnerable patients.

But the news isn’t all bad, and the use of social media can help highlight the good news.

That’s what happened yesterday in our latest CIRM Facebook Live “Ask the Stem Cell Team” event. The event focused on the future of stem cell research but also included a really thoughtful look at the progress that’s been made over the last 10-15 years.

We had two great guests, UC Davis stem cell researcher and one of the leading bloggers on the field, Paul Knoepfler PhD; and David Higgins, PhD, a scientist, member of the CIRM Board and a Patient Advocate for Huntington’s Disease. They were able to highlight the challenges of the early years of stem cell research, both globally and here at CIRM, and show how the field has evolved at a remarkable rate in recent years.

Paul Knoepfler

Naturally the subject of the “bogus clinics” came up – Paul has become a national expert on these clinics and is quoted in the New Yorker article – as did the subject of the frustration some people feel at what they consider to be the too-slow pace of progress. As David Higgins noted, we all think it’s too slow, but we are not going to race recklessly ahead in search of something that might heal if we might also end up doing something that might kill.

David Higgins

A portion of the discussion focused on funding and, in particular, what happens if CIRM is no longer around to fund the most promising research in California. We are due to run out of funding for new projects by the end of this year, and without a re-infusion of funds we will be pretty much closing our doors by the end of 2020. Both Paul and David felt that could be disastrous for the field here in California, depriving the most promising projects of support at a time when they needed it most.

It’s probably not too surprising that three people so closely connected to CIRM (Paul has received funding from us in the past) would conclude that CIRM is needed for stem cell research to not just survive but thrive in California.

A word of caution before you watch: fashion conscious people may be appalled at how my pocket handkerchief took on a life of its own.

How a see-through fish could one day lead to substitutes for bone marrow transplants

Human blood stem cells

For years researchers have struggled to create human blood stem cells in the lab. They have done it several times with animal models, but the human kind? Well, that’s proved a bit trickier. Now a CIRM-funded team at UC San Diego (UCSD) think they have cracked the code. And that would be great news for anyone who may ever need a bone marrow transplant.

Why are blood stem cells important? Well, they help create our red and white blood cells and platelets, critical elements in carrying oxygen to all our organs and fighting infections. They have also become one of the most important weapons we have to combat deadly diseases like leukemia and lymphoma. Unfortunately, today we depend on finding a perfect or near-perfect match to make bone marrow transplants as safe and effective as possible and without a perfect match many patients miss out. That’s why this news is so exciting.

Researchers at UCSD found that the process of creating new blood stem cells depends on the action of three molecules, not two as was previously thought.

Zebrafish

Here’s where it gets a bit complicated but stick with me. The team worked with zebrafish, which use the same method to create blood stem cells as people do but also have the advantage of being translucent, so you can watch what’s going on inside them as it happens.  They noticed that a molecule called Wnt9a touches down on a receptor called Fzd9b and brings along with it something called the epidermal growth factor receptor (EGFR). It’s the interaction of these three together that turns a stem cell into a blood cell.

In a news release, Stephanie Grainger, the first author of the study published in Nature Cell Biology, said this discovery could help lead to new ways to grow the cells in the lab.

“Previous attempts to develop blood stem cells in a laboratory dish have failed, and that may be in part because they didn’t take the interaction between EGFR and Wnt into account.”

If this new approach helps the team generate blood stem cells in the lab these could be used to create off-the-shelf blood stem cells, instead of bone marrow transplants, to treat people battling leukemia and/or lymphoma.

CIRM is also funding a number of other projects, several in clinical trials, that involve the use of blood stem cells. Those include treatments for: Beta Thalassemia; blood cancer; HIV/AIDS; and Severe Combined Immunodeficiency among others.

Advancing stem cell research in many ways

Speakers at the Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

From Day One CIRM’s goal has been to advance stem cell research in California. We don’t do that just by funding the most promising research -though the 51 clinical trials we have funded to date clearly shows we do that rather well – but also by trying to bring the best minds in the field together to overcome problems.

Over the years we have held conferences, workshops and symposiums on everything from Parkinson’s disease, cerebral palsy and tissue engineering. Each one attracted the key players and stakeholders in the field, brainstorming ideas to get past obstacles and to explore new ways of developing therapies. It’s an attempt to get scientists, who would normally be rivals or competitors, to collaborate and partner together in finding the best way forward.

It’s not easy to do, and the results are not always obvious right away, but it is essential if we hope to live up to our mission of accelerating stem cell therapies to patients with unmet medical needs.

For example. This past week we helped organize two big events and were participants in another.

The first event we pulled together, in partnership with Cedars-Sinai Medical Center, was a workshop called “Brainstorm Neurodegeneration”. It brought together leaders in stem cell research, genomics, big data, patient advocacy and the Food and Drug Administration (FDA) to tackle some of the issues that have hampered progress in finding treatments for things like Parkinson’s, Alzheimer’s, ALS and Huntington’s disease.

We rather ambitiously subtitled the workshop “a cutting-edge meeting to disrupt the field” and while the two days of discussions didn’t resolve all the problems facing us it did produce some fascinating ideas and some tantalizing glimpses at ways to advance the field.

Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

Two days later we partnered with UC San Francisco to host the Fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium. This brought together the scientists who develop therapies, the doctors and nurses who deliver them, and the patients who are in need of them. The theme was “The Past, Present & Future of Regenerative Medicine” and included both a look at the initial discoveries in gene therapy that led us to where we are now as well as a look to the future when cellular therapies, we believe, will become a routine option for patients. 

Bringing these different groups together is important for us. We feel each has a key role to play in moving these projects and out of the lab and into clinical trials and that it is only by working together that they can succeed in producing the treatments and cures patients so desperately need.

Cierra Jackson: Photo by Marco Sanchez

As always it was the patients who surprised us. One, Cierra Danielle Jackson, talked about what it was like to be cured of her sickle cell disease. I think it’s fair to say that most in the audience expected Cierra to talk about her delight at no longer having the crippling and life-threatening condition. And she did. But she also talked about how hard it was adjusting to this new reality.

Cierra said sickle cell disease had been a part of her life for all her life, it shaped her daily life and her relationships with her family and many others. So, to suddenly have that no longer be a part of her caused a kind of identity crisis. Who was she now that she was no longer someone with sickle cell disease?

She talked about how people with most diseases were normal before they got sick, and will be normal after they are cured. But for people with sickle cell, being sick is all they have known. That was their normal. And now they have to adjust to a new normal.

It was a powerful reminder to everyone that in developing new treatments we have to consider the whole person, their psychological and emotional sides as well as the physical.

CIRM’s Dr. Maria Millan (right) at a panel presentation at the Stanford Drug Discovery Symposium. Panel from left to right are: James Doroshow, NCI; Sandy Weill, former CEO Citigroup; Allan Jones, CEO Allen Institute

And so on to the third event we were part of, the Stanford Drug Discovery Symposium. This was a high level, invitation-only scientific meeting that included some heavy hitters – such as Nobel Prize winners Paul Berg and  Randy Schekman, former FDA Commissioner Robert Califf. Over the course of two days they examined the role that philanthropy plays in advancing research, the increasingly important role of immunotherapy in battling diseases like cancer and how tools such as artificial intelligence and big data are shaping the future.

CIRM’s President and CEO, Dr. Maria Millan, was one of those invited to speak and she talked about how California’s investment in stem cell research is delivering Something Better than Hope – which by a happy coincidence is the title of our 2018 Annual Report. She highlighted some of the 51 clinical trials we have funded, and the lives that have been changed and saved by this research.

The presentations at these conferences and workshops are important, but so too are the conversations that happen outside the auditorium, over lunch or at coffee. Many great collaborations have happened when scientists get a chance to share ideas, or when researchers talk to patients about their ideas for a successful clinical trial.

It’s amazing what happens when you bring people together who might otherwise never have met. The ideas they come up with can change the world.

Mending Stem Cells: The Past, Present & Future of Regenerative Medicine

UCSF’s Mission Bay Campus

For years we have talked about the “promise” and the “potential” of stem cells to cure patients. But more and more we are seeing firsthand how stem cells can change a patient’s life, even saving it in some cases. That’s the theme of the 4th Annual CIRM Alpha Stem Cell Clinics Network Symposium.

It’s not your usual symposium because this brings together all the key players in the field – the scientists who do the research, the nurses and doctors who deliver the therapies, and the patients who get or need those therapies. And, of course, we’ll be there; because without CIRM’s funding to support that research and therapies none of this happens.

We are going to look at some of the exciting progress being made, and what is on the horizon. But along the way we’ll also tackle many of the questions that people pose to us every day. Questions such as:

  • How can you distinguish between a good clinical trial offering legitimate treatments vs a stem cell clinic offering sham treatments?
  • What about the Right to Try, can’t I just demand I get access to stem cell therapies?
  • How do I sign up for a clinical trial, and how much will it cost me?
  • What is the experience of patients that have participated in a stem cell clinical trial?

World class researchers will also talk about the real possibility of curing diseases like sickle cell disease on a national scale, which affect around 100,000 Americans, mostly African Americans and Hispanics. They’ll discuss the use of gene editing to battle hereditary diseases like Huntington’s. And they’ll highlight how they can engineer a patient’s own immune system cells to battle deadly cancers.

So, join us for what promises to be a fascinating day. It’s the cutting edge of science. And it’s all FREE.

Here’s where you can go to find out more information and to sign up for the event.

Stem cell byproducts provide insight into cure for spina bifida

A diagram of an infant born with spina bifida, a birth defect where there is an incomplete closing of the backbone portion of the spinal cord. Photo courtesy of the Texas Children’s Hospital website.

Some of you might remember a movie in the early 2000s by the name of “Miracle in Lane 2”. The film is based on an inspirational true story and revolves around a boy named Justin Yoder entering a soapbox derby competition. In the movie, Justin achieves success as a soapbox derby driver while adapting to the challenges of being in a wheelchair.

Scene from “Miracle in Lane 2”

The reason that Justin is unable to walk is due to a birth defect known as spina bifida, which causes an incomplete closing of the backbone portion of the spinal cord, exposing tissue and nerves. In addition to difficulties with walking, other problems associated with this condition are problems with bladder or bowel control and accumulation of fluid in the brain.

According to the Center for Disease Control (CDC) , each year about 1,645 babies in the US are born with spina bifida, with Hispanic women having the highest rate of children born with the condition. There is currently no cure for this condition, but researchers at UC Davis are one step closer to changing that.

Dr. Aijun Wang examining cells under a microscope. He has identified stem cell byproducts that protect neurons. Photo courtesy of UC Regents/UC Davis Health

Dr. Aijun Wang, Dr. Diana Farmer, and their research team have identified crucial byproducts produced by stem cells that play an important role in protecting neurons. These byproducts could assist with improving lower-limb motion in patients with spina bifida.

Prior to this discovery, Dr. Farmer and Dr. Wang demonstrated that prenatal surgery combined with connective tissue (e.g. stromal cells) derived from stem cells improved hind limb control in dogs with spina bifida. Below you can see a clip of two English bulldogs with spina bifida who are now able to walk.

Their findings were published in the Journal of the Federation of American Societies for Experimental Biology on February 12, 2019.

The team will use their findings to perfect the neuroprotective qualities of a stem cell treatment developed to improve locomotive problems associated with spina bifida.

In a public release posted by EurekaAlert!, Dr. Wang is quoted as saying, “We are excited about what we see so far and are anxious to further explore the clinical applications of this research.”

The discovery and development of a treatment for spina bifida was funded by a $5.66 million grant from CIRM. You can read more about that award and spina bifida on a previous blog post linked here.

Mending Stem Cells: The Past, Present and Future of Regenerative Medicine

To Mend: (verb used with object) to make (something broken, worn, torn or otherwise damaged) whole, sound or usable by repairing.

It’s remarkable to believe, but today doctors literally have the tools to repair damaged cells. These tools are being used to treat people with diseases that were once incurable. The field of regenerative medicine has made tremendous progress in the last 15 years, but how did these tools come about and what is the experience of patients being treated with them?

These questions, and hopefully yours too, are going to be answered at the fourth annual CIRM Alpha Stem Cell Clinics Symposium on April 18, 2019 at the University of California at San Francisco.

UCSF Mission Bay Campus

The symposium is free, and the program is designed with patients and the public in mind, so don’t be shy and put your scientific thinking caps on! A complete agenda may be found here

Perhaps one of the most remarkable discoveries in the past decade are new tools that enable doctors to “edit” or correct a patient’s own DNA. DNA correction tools came about because of a remarkable string of scientific breakthroughs. The symposium will dive into this history and discuss  how these tools are being used today to treat patients.

One specific example of the promise that DNA editing holds is for those with sickle cell disease (SCD), a condition where patients’ blood forming stem cells contain a genetic error that causes the disease. The symposium will describe how the CIRM Alpha Stem Cell Clinics Network, a series of medical centers across California whose focus is on stem cell clinical trials, are supporting work aimed at mending blood cells to cure debilitating diseases like SCD.

Doctors, nurses and patients involved with these trials will be telling their stories and describing their experiences. One important focus will be how Alpha Clinic teams are partnering with community members to ensure that patients, interested in new treatments, are informed about the availability of clinical trials and receive sufficient information to make the best treatment choices.

The fourth annual CIRM Alpha Stem Cell Clinics Symposium is an opportunity for patients, their families and the public to meet the pioneers who are literally mending a patients own stem cells to cure their disease.

For registration information go here.