CIRM-Funded Researchers Develop Chimeric “Mighty Mouse” Model to Study Alzheimer’s Disease

Dr. Mathew Blurton-Jones, leader of team that developed the chimeric “Mighty Mouse” model at the University of California, Irvine

In ancient Greek mythology, a Chimera was a creature that was usually depicted as a lion with an additional goat head and a serpent for a tail. Due to the Chimera’s animal hybrid nature, the term “chimeric” came to fruition in the scientific community as a way to describe an organism containing two or more different sets of DNA.

A CIRM-funded study conducted by Dr. Mathew Blurton-Jones and his team at UC Irvine describes a way for human brain immune cells, known as microglia, to grow and function inside mice. Since the mice contain a both human cells and their own mice cells, they are described as being chimeric.

In order to develop this chimeric “mighty mouse” model, Dr. Blurton-Jones and his team generated induced pluripotent stem cells (iPSCs), which have the ability to turn into any kind of cell, from cell samples donated by adult patients. For this study, the researchers converted iPSCs into microglia, a type of immune cell found in the brain, and implanted them into genetically modified mice. After a few months, they found that the implanted cells successfully integrated inside the brains of the mice.

By finding a way to look at human microglia grow and function in real time in an animal model, scientists can further analyze crucial mechanisms contributing to neurological conditions such as Alzheimer’s, Parkinson’s, traumatic brain injury, and stroke.

For this particular study, Dr. Blurton-Jones and his team looked at human microglia in the mouse brain in relation to Alzheimer’s, which could hold clues to better understand and treat the disease. The team did this by introducing amyloid plaques, protein fragments in the brain that accumulate in people with Alzheimer’s, and evaluating how the human microglia responded. They found that the human microglia migrated toward the amyloid plaques and surrounding them, which is what is observed in Alzheimer’s patients.

In a press release, Dr. Blurton-Jones expressed the importance of studying microglia by stating that,

“Microglia are now seen as having a crucial role in the development and progression of Alzheimer’s. The functions of our cells are influenced by which genes are turned on or off. Recent research has identified over 40 different genes with links to Alzheimer’s and the majority of these are switched on in microglia. However, so far we’ve only been able to study human microglia at the end stage of Alzheimer’s in post-mortem tissues or in petri dishes.”

Furthermore, Dr. Blurton-Jones highlighted the importance of looking at human microglia in particular by saying that,

“The human microglia also showed significant genetic differences from the rodent version in their response to the plaques, demonstrating how important it is to study the human form of these cell.”

The full results of this study were published in Cell.

Advancing stem cell research in many ways

Speakers at the Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

From Day One CIRM’s goal has been to advance stem cell research in California. We don’t do that just by funding the most promising research -though the 51 clinical trials we have funded to date clearly shows we do that rather well – but also by trying to bring the best minds in the field together to overcome problems.

Over the years we have held conferences, workshops and symposiums on everything from Parkinson’s disease, cerebral palsy and tissue engineering. Each one attracted the key players and stakeholders in the field, brainstorming ideas to get past obstacles and to explore new ways of developing therapies. It’s an attempt to get scientists, who would normally be rivals or competitors, to collaborate and partner together in finding the best way forward.

It’s not easy to do, and the results are not always obvious right away, but it is essential if we hope to live up to our mission of accelerating stem cell therapies to patients with unmet medical needs.

For example. This past week we helped organize two big events and were participants in another.

The first event we pulled together, in partnership with Cedars-Sinai Medical Center, was a workshop called “Brainstorm Neurodegeneration”. It brought together leaders in stem cell research, genomics, big data, patient advocacy and the Food and Drug Administration (FDA) to tackle some of the issues that have hampered progress in finding treatments for things like Parkinson’s, Alzheimer’s, ALS and Huntington’s disease.

We rather ambitiously subtitled the workshop “a cutting-edge meeting to disrupt the field” and while the two days of discussions didn’t resolve all the problems facing us it did produce some fascinating ideas and some tantalizing glimpses at ways to advance the field.

Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

Two days later we partnered with UC San Francisco to host the Fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium. This brought together the scientists who develop therapies, the doctors and nurses who deliver them, and the patients who are in need of them. The theme was “The Past, Present & Future of Regenerative Medicine” and included both a look at the initial discoveries in gene therapy that led us to where we are now as well as a look to the future when cellular therapies, we believe, will become a routine option for patients. 

Bringing these different groups together is important for us. We feel each has a key role to play in moving these projects and out of the lab and into clinical trials and that it is only by working together that they can succeed in producing the treatments and cures patients so desperately need.

Cierra Jackson: Photo by Marco Sanchez

As always it was the patients who surprised us. One, Cierra Danielle Jackson, talked about what it was like to be cured of her sickle cell disease. I think it’s fair to say that most in the audience expected Cierra to talk about her delight at no longer having the crippling and life-threatening condition. And she did. But she also talked about how hard it was adjusting to this new reality.

Cierra said sickle cell disease had been a part of her life for all her life, it shaped her daily life and her relationships with her family and many others. So, to suddenly have that no longer be a part of her caused a kind of identity crisis. Who was she now that she was no longer someone with sickle cell disease?

She talked about how people with most diseases were normal before they got sick, and will be normal after they are cured. But for people with sickle cell, being sick is all they have known. That was their normal. And now they have to adjust to a new normal.

It was a powerful reminder to everyone that in developing new treatments we have to consider the whole person, their psychological and emotional sides as well as the physical.

CIRM’s Dr. Maria Millan (right) at a panel presentation at the Stanford Drug Discovery Symposium. Panel from left to right are: James Doroshow, NCI; Sandy Weill, former CEO Citigroup; Allan Jones, CEO Allen Institute

And so on to the third event we were part of, the Stanford Drug Discovery Symposium. This was a high level, invitation-only scientific meeting that included some heavy hitters – such as Nobel Prize winners Paul Berg and  Randy Schekman, former FDA Commissioner Robert Califf. Over the course of two days they examined the role that philanthropy plays in advancing research, the increasingly important role of immunotherapy in battling diseases like cancer and how tools such as artificial intelligence and big data are shaping the future.

CIRM’s President and CEO, Dr. Maria Millan, was one of those invited to speak and she talked about how California’s investment in stem cell research is delivering Something Better than Hope – which by a happy coincidence is the title of our 2018 Annual Report. She highlighted some of the 51 clinical trials we have funded, and the lives that have been changed and saved by this research.

The presentations at these conferences and workshops are important, but so too are the conversations that happen outside the auditorium, over lunch or at coffee. Many great collaborations have happened when scientists get a chance to share ideas, or when researchers talk to patients about their ideas for a successful clinical trial.

It’s amazing what happens when you bring people together who might otherwise never have met. The ideas they come up with can change the world.

The Sad Lane: How I navigated one of the happiest times of my life while my mom was losing hers to Alzheimer’s

In 1983 President Ronald Reagan named November as Alzheimer’s Awareness month, to raise awareness about the growing impact the disease was having on Americans. At the time there were less than two million people with the disease. Today that number has grown to more than five million and is expected to reach 16 million by the year 2050. There is no cure and no effective treatments.

To mark Alzheimer’s Awareness month we are reprinting an article that CIRM Board member and Patient Advocate for Alzheimer’s, Lauren Miller, wrote for Lenny magazine, charting her own personal journey with the disease.

The Sad Lane

Promising Advances in Alzheimer’s Research Could Create More Advanced Therapy Options

Screen Shot 2018-08-01 at 12.10.55 PM

Photo Courtesy of NIH

New developments in Alzheimer’s research are bringing us closer to more precise therapies for this debilitating disease.

Alzheimer’s disease, is characterized by the formation of amyloid plaques in the brain, which interfere with the normal communication flow between brain cells, leading to debilitating symptoms like memory loss and impaired decision-making. These plaques are made out of beta-amyloid proteins that stick together.

Over the past few years, researchers from several institutions have been working to develop antibodies that bind to and neutralize the toxic effects of the beta-amyloid. The search for effective antibodies, although promising, has been riddled with setbacks. Knowing this, a team of researchers from Brigham and Women’s Hospital in Boston, MA, decided to approach this issue from a different angle – by conducting experiments to identify a better way of targeting beta-amyloid. Their goal was to develop a more efficient antibody to be used in Alzheimer’s therapy.

Principal investigator Dominic Walsh and team came up with a novel technique to collect beta-amyloid and to prepare it in the laboratory.

walsh-400x520

Dominic Walsh, PH.D.

“Many different efforts are currently underway to find treatments for Alzheimer’s disease, and anti-[beta-amyloid] antibodies are currently the furthest advanced,” says Walsh. “But the question remains: what are the most important forms of [beta-amyloid] to target? Our study points to some interesting answers,” the lead researcher adds, and these answers are now reported in an open access paper published in the journal Nature Communications.”

Beta-amyloid can be found in many forms. At one end of the spectrum, it exists as a single protein, or monomer, which isn’t necessarily toxic.

At the other end, there is the beta-amyloid plaque, in which many beta-amyloid proteins become tangled together. Beta-amyloid plaques are large enough to be observed using a traditional microscope, and they are involved in the development of Alzheimer’s.

In the current study, as well as in a previous one, Walsh and team looked at beta-amyloid structures to identify the ones that are most harmful in the brain.

Typically specialists use synthetic beta-amyloid samples to create a laboratory model of Alzheimer’s disease in the brain. Very few scientists actually collect beta-amyloid from the brains of individuals diagnosed with the disease.

In the current study, Walsh and team focused on finding better a more specific antibody to target the toxic forms of beta-amyloid but not the less harmful forms. To do so, they developed a novel screening test that requires extracting beta-amyloid from brain samples from people with Alzheimer’s. They added these extracts to induced pluripotent stem cell-derived human neurons and observed the ability of the different antibodies to block the toxic effects of the beta-amyloid.

This screening test allowed the team to discover a particular antibody — called “1C22” — that is able to block toxic forms of beta-amyloid more effectively than other antibodies currently being tested in clinical trials.

Walsh explained the implications of their novel screening method:

“We anticipate that this primary screening technique will be useful in the search to identify more potent anti-[beta-amyloid] therapeutics in the future.”

New stem cell technique gives brain support cells a starring role

Gage et al

The Salk team. From left: Krishna Vadodaria, Lynne Moore, Carol Marchetto, Arianna Mei, Fred H. Gage, Callie Fredlender, Ruth Keithley, Ana Diniz Mendes. Photo courtesy Salk Institute

Astrocytes are some of the most common cells in the brain and central nervous system but they often get overlooked because they play a supporting role to the more glamorous neurons (even though they outnumber them around 50 to 1). But a new way of growing those astrocytes outside the brain could help pave the way for improved treatments for stroke, Alzheimer’s and other neurological problems.

Astrocytes – which get their name because of their star shape (Astron – Greek for “star” and “kyttaron” meaning cell) – have a number of key functions in the brain. They provide physical and metabolic support for neurons; they help supply energy and fuel to neurons; and they help with detoxification and injury repair, particularly in terms of reducing inflammation.

Studying these astrocytes in the lab has not been easy, however, because existing methods of producing them have been slow, cumbersome and not altogether effective at replicating their many functions.

Finding a better way

Now a team at the Salk Institute, led by CIRM-funded Professor Fred “Rusty” Gage, has developed a way of using stem cells to create astrocytes that is faster and more effective.

Their work is published in the journal Stem Cell Reports. In a news release, Gage says this is an important discovery:

“This work represents a big leap forward in our ability to model neurological disorders in a dish. Because inflammation is the common denominator in many brain disorders, better understanding astrocytes and their interactions with other cell types in the brain could provide important clues into what goes wrong in disease.”

Stylized microscopy image of an astrocyte (red) and neuron (green). (Salk Institute)

In a step by step process the Salk team used a series of chemicals, called growth factors, to help coax stem cells into becoming, first, generic brain cells, and ultimately astrocytes. These astrocytes not only behaved like the ones in our brain do, but they also have a particularly sensitive response to inflammation. This gives the team a powerful tool in helping develop new treatment to disorders of the brain.

But wait, there’s more!

As if that wasn’t enough, the researchers then used the same technique to create astrocytes from induced pluripotent stem cells (iPSCs) – adult cells, such as skin, that have been re-engineered to have the ability to turn into any other kind of cell in the body. Those man-made astrocytes also showed the same characteristics as natural ones do.

Krishna Vadodaria, one of the lead authors on the paper, says having these iPSC-created astrocytes gives them a completely new tool to help explore brain development and disease, and hopefully develop new treatments for those diseases.

“The exciting thing about using iPSCs is that if we get tissue samples from people with diseases like multiple sclerosis, Alzheimer’s or depression, we will be able to study how their astrocytes behave, and how they interact with neurons.”

Using stem cells to fix bad behavior in the brain

 

finkbeiner-skibinski-16x9-13

Gladstone Institutes Steven Finkbeiner and Gaia Skibinski: Photo courtesy Chris Goodfellow, Gladstone Institutes

Diseases of the brain have many different names, from Alzheimer’s and Parkinson’s to ALS and Huntington’s, but they often have similar causes. Researchers at the Gladstone Institutes in San Francisco are using that knowledge to try and find an approach that might be effective against all of these diseases. In a new CIRM-funded study, they have identified one protein that could help do just that.

Many neurodegenerative diseases are caused by faulty proteins, which start to pile up and cause damage to neurons, the brain cells that are responsible for processing and transmitting information. Ultimately, the misbehaving proteins cause those cells to die.

The researchers at the Gladstone found a way to counter this destructive process by using a protein called Nrf2. They used neurons from humans (made from induced pluripotent stem cells – iPSCs – hence the stem cell connection here) and rats. They then tested these cells in neurons that were engineered to have two different kinds of mutations found in  Parkinson’s disease (PD) plus the Nrf2 protein.

Using a unique microscope they designed especially for this study, they were able to track those transplanted neurons and monitor what happened to them over the course of a week.

The neurons that expressed Nrf2 were able to render one of those PD-causing proteins harmless, and remove the other two mutant proteins from the brain cells.

In a news release to accompany the study in The Proceedings of the National Academy of Sciences, first author Gaia Skibinski, said Nrf2 acts like a house-cleaner brought in to tidy up a mess:

“Nrf2 coordinates a whole program of gene expression, but we didn’t know how important it was for regulating protein levels until now. Over-expressing Nrf2 in cellular models of Parkinson’s disease resulted in a huge effect. In fact, it protects cells against the disease better than anything else we’ve found.”

Steven Finkbeiner, the senior author on the study and a Gladstone professor, said this model doesn’t just hold out hope for treating Parkinson’s disease but for treating a number of other neurodegenerative problems:

“I am very enthusiastic about this strategy for treating neurodegenerative diseases. We’ve tested Nrf2 in models of Huntington’s disease, Parkinson’s disease, and ALS, and it is the most protective thing we’ve ever found. Based on the magnitude and the breadth of the effect, we really want to understand Nrf2 and its role in protein regulation better.”

The next step is to use this deeper understanding to identify other proteins that interact with Nrf2, and potentially find ways to harness that knowledge for new therapies for neurodegenerative disorders.

Translating great stem cell ideas into effective therapies

alzheimers

CIRM funds research trying to solve the Alzheimer’s puzzle

In science, there are a lot of terms that could easily mystify people without a research background; “translational” is not one of them. Translational research simply means to take findings from basic research and advance them into something that is ready to be tested in people in a clinical trial.

Yesterday our Governing Board approved $15 million in funding for four projects as part of our Translational Awards program, giving them the funding and support that we hope will ultimately result in them being tested in people.

Those projects use a variety of different approaches in tackling some very different diseases. For example, researchers at the Gladstone Institutes in San Francisco received $5.9 million to develop a new way to help the more than five million Americans battling Alzheimer’s disease. They want to generate brain cells to replace those damaged by Alzheimer’s, using induced pluripotent stem cells (iPSCs) – an adult cell that has been changed or reprogrammed so that it can then be changed into virtually any other cell in the body.

CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and Alzheimer’s – which has no cure and no effective long-term treatments – clearly represents an unmet medical need.

Another project approved by the Board is run by a team at Children’s Hospital Oakland Research Institute (CHORI). They got almost $4.5 million for their research helping people with sickle cell anemia, an inherited blood disorder that causes intense pain, and can result in strokes and organ damage. Sickle cell affects around 100,000 people in the US, mostly African Americans.

The CHORI team wants to use a new gene-editing tool called CRISPR-Cas9 to develop a method of editing the defective gene that causes Sickle Cell, creating a healthy, sickle-free blood supply for patients.

Right now, the only effective long-term treatment for sickle cell disease is a bone marrow transplant, but that requires a patient to have a matched donor – something that is hard to find. Even with a perfect donor the procedure can be risky, carrying with it potentially life-threatening complications. Using the patient’s own blood stem cells to create a therapy would remove those complications and even make it possible to talk about curing the disease.

While damaged cartilage isn’t life-threatening it does have huge quality of life implications for millions of people. Untreated cartilage damage can, over time lead to the degeneration of the joint, arthritis and chronic pain. Researchers at the University of Southern California (USC) were awarded $2.5 million to develop an off-the-shelf stem cell product that could be used to repair the damage.

The fourth and final award ($2.09 million) went to Ankasa Regenerative Therapeutics, which hopes to create a stem cell therapy for osteonecrosis. This is a painful, progressive disease caused by insufficient blood flow to the bones. Eventually the bones start to rot and die.

As Jonathan Thomas, Chair of the CIRM Board, said in a news release, we are hoping this is just the next step for these programs on their way to helping patients:

“These Translational Awards highlight our goal of creating a pipeline of projects, moving through different stages of research with an ultimate goal of a successful treatment. We are hopeful these projects will be able to use our newly created Stem Cell Center to speed up their progress and pave the way for approval by the FDA for a clinical trial in the next few years.”

What’s Fat Got to do With Alzheimer’s?

good_and_bad_eggs_xl

(Image credit: FineCooking.com)

Diets these days are a dime a dozen, and dietary trends come and go. First eggs were “out” because they contain cholesterol, but now they are back “in” because we now know that some types of cholesterol can be actually good for the body. Then there was the era of “fat-free” or “reduced-fat” foods. This was all the rage in the 90s until scientists realized that eliminating healthy fats from your diet can have negative consequences on your health.

The theories behind different diets evolve constantly much like the theories behind complicated neurodegenerative diseases like Alzheimer’s disease (AD). Alzheimer’s is a debilitating disease that slowly robs patients of their minds, leaving them as shadows of their former selves. AD affects 47.5 million people globally with 7.7 million new patients diagnosed every year, thus making the disease one of the most important unmet medical needs to be addressed.

The causes of AD have eluded scientists for over a century. However, the main theory behind what causes AD involves the buildup of toxic proteins in the brain. These proteins accumulate to form structures called plaques and tangles that impair brain function and kill off brain cells.

Unfortunately, there is no cure for AD or treatments to stop its progression. This sobering fact is not due to a lack of effort by scientists and pharmaceutical companies. Dozens of drug therapies have or are being tested in clinical trials, many of them focusing on the removal of toxic protein levels in people with the disease. While there have been some pretty dramatic failures in these trials, a few are starting to show encouraging results.

Link Between Abnormal Fat Metabolism and Alzheimer’s Disease

Now, a new theory on AD involving the build up of toxic fat molecules in the brains of AD patients has been thrown into the mix. In a study published Thursday in Cell Stem Cell, scientists from Montreal reported the presence of fat droplets in AD patient brains in areas surrounding brain stem cells. Brain stem cells are responsible for growing new brain cells (such as nerves) and maintaining overall brain function and health. The scientists discovered that the fat droplets actually prevented the regenerative abilities of the brain stem cells, leading them to believe that the accumulation of fat droplets in the brain could be a cause of AD.

Fat is used as an energy source by cells and organs in the body in a process called “fatty acid metabolism”. Fat metabolism is very important for proper brain development but also in maintaining brain health and function in adults. Problems with fat metabolism in humans can cause diseases such as obesity, diabetes, and heart disease. So one can imagine that problems with fat metabolism in the brain could also have serious consequences.

In this study, scientists used a genetic mouse model of AD that had a “triple-threat” of genetic mutations that cause AD in humans. They studied the brain stem cells in these mice and found that the support cells surrounding the stem cells were full of fat droplets. They also noticed that when the fat droplets were present, the brain stem cells were not dividing to generate new brain cells (which is a common defect associated with AD). When they looked at brain tissue from nine AD patients, they also observed a similar pattern of an increased concentration of fat droplets surrounding areas of brain stem cells compared to healthy human brain tissue.

fat droplets

AD patient brains (lower panel) have more fat droplets shown in red than normal healthy brains (upper panel). (Hamilton et al., 2015)

Using a fancy science technique called mass spectrometry, the scientists found that the fat droplets were made up of a fat triglyceride called oleic acid, which is a common component of vegetable and animal fats. To prove that oleic acid was bad for brain stem cells, they took normal healthy mice and injected oleic acid into their brains. They observed that adding this fat negatively affected the stem cells’ regenerative ability to divide. Going one step further, the scientists used drugs to block the formation of oleic acid in their AD mouse model, and saw that removing this fat allowed the brain stem cells to divide and function properly.

The major conclusions generated from this study were summarized nicely by senior author Karl Fernandes in a news release:

We discovered that these fatty acids are produced by the brain, that they build up slowly with normal aging, but that the process is accelerated significantly in the presence of genes that predispose to Alzheimer’s disease. In mice predisposed to the disease, we showed that these fatty acids accumulate very early on, at two months of age, which corresponds to the early twenties in humans. Therefore, we think that the build-up of fatty acids is not a consequence but rather a cause or accelerator of the disease.

 

Don’t Count Your Chickens Just Yet

While this study suggests that fat accumulation in the brain is a cause of AD, more research will need to be done to confirm that abnormal fat metabolism is the culprit. Some experiments can be done quickly such as treating their AD mouse model with the drugs that block the formation of the “bad fat” and monitoring them for an extended time period to see if blocking oleic acid accumulation prevents the onset of AD symptoms like memory loss. Other experiments, such as therapeutically targeting abnormal brain fat deposits in human, will be more long term projects with unknown results.

220px-Alois_Alzheimer_003

Dr. Alois Alzheimer

Nontheless, this study nicely ties back to an observation by Dr. Alois Alzheimer who first reported about AD in 1906 . When he dissected the brains of AD patients who had passed away, he found five major pathologies that distinguished their brains from healthy brains. One of these traits was an increased concentration of fat droplets. Thus findings from Fernandes and his group revive a century old notion that fat metabolism could be a cause of AD and open doors for the development of new therapeutic strategies to fight AD.


Related Links:

2015 Golden Globes shines light on Alzheimer’s and ALS with acting awards

In between the one-liners, surprise presenters and bottomless champagne, something remarkable happened at last night’s 72nd Golden Globe Awards.

26 awards were given last night to the best in film and television. But two in particular were especially meaningful.

Julianne Moore plays a professor grappling with Alzheimer's in Still Alice [Credit: Sony Pictures Classics]

Julianne Moore plays a professor grappling with Alzheimer’s in Still Alice [Credit: Sony Pictures Classics]

I am referring, of course, to Julianne Moore and Eddie Redmayne, who each took home awards in the lead acting categories for their portrayals of two individuals suffering from neurodegenerative diseases. Their wins not only solidified them as front-runners for the Academy Awards ceremony next month, but also gave millions of viewers a deeply intimate look at two unforgiving illnesses.

Eddie Redmayne as Stephen Hawking in The Theory of Everything [Credit: Focus Features]

Eddie Redmayne as Stephen Hawking in The Theory of Everything [Credit: Focus Features]

Renowned actress Julianne Moore was the first of the two to receive her award, winning for her role as Alice Howland, a Columbia linguistics professor diagnosed with Early-Onset Alzheimer’s disease, in the film Still Alice.

And later in the program the Globes honored Eddie Redmayne for his brilliant portrayal of Professor Stephen Hawking—a long-time sufferer of the motor neuron disease ALS—in the biopic The Theory of Everything.

These two films were particularly poignant for those in the Alzheimer’s and ALS communities—as they reveal in stark, sometimes disturbing detail, how these diseases wreak havoc on the brain and nervous system. In preparation for their roles, each spent several months speaking with patients and clinicians who see and live with the diseases every day.

For example, Moore spoke with women who—like her character Alice—were living with Early-Onset Alzheimer’s, giving her first-hand knowledge of not only how the disease affects them, but also how their families are affected.

Meanwhile, Redmayne spent significant time with Hawking himself, learning about his unique experience as a long-time ALS patient. In interviews Redmayne has said that Hawking was often present during filming. The time the two individuals spent with each other clearly paid off, and had a remarkable impact on the actor.

“It is a great privilege for me to be in this room,” Redmayne said during his Golden Globe acceptance speech. “Getting to spend time with Stephen Hawking … was one of the great, great honors of my life.”

The fact that the two lead acting awards put spotlight on these diseases was not lost on the patient advocacy communities. For example, Maria Shriver tweeted shortly after the awards ceremony:

Shriver Tweet

Shriver’s statement underscores the stark reality of awareness, or lack thereof, for neurodegenerative diseases. Here at CIRM, we are laser focused on supporting ground-breaking work in regenerative medicine that can slow, halt or even reverse these conditions. We are hopeful that these two actors’ stellar performances can help put a human face on conditions that are all too-often reduced to numbers.

This hope has thus far translated to these films’ audiences. For example, said one review of Still Alice from the New York Post:

Still Alice … presents a disease that can devastate any family, anywhere, with unsparing truth and great compassion.”

Read more about how regenerative medicine can change the face of Alzheimer’s and ALS on our Stories of Hope.

Bringing out the Big Guns: Scientists Weigh in on How Best to Combat Deadly Diseases of the Brain

Despite our best efforts, diseases of the brain are on the rise. Neurodegenerative conditions such as Alzheimer’s and Parkinson’s diseases threaten not only to devastate our aging population, but also cripple our economy. Meanwhile, the causes of conditions such as autism remain largely unknown. And brain and spinal cord injuries continue to increase—leaving their victims with precious few options for improving their condition.

This special review issue of addresses some of the key challenges for translational neuroscience and the path from bench to beside. [Credit: Cell Press]

This special review issue of Neuron addresses some of the key challenges for translational neuroscience and the path from bench to beside. [Credit: Cell Press]

We need to do better.

The scientific community agrees. And in a special issue of the journal Neuron, the field’s leading researchers lay out how to accelerate much-needed therapies to the many millions who will be affected by brain disease or injury in the coming years.

The journal’s leadership argues that now is the time to renew efforts in this field. Especially worrying, say experts, is the difficulty in translating research breakthroughs into therapies.

But Neuron Editor Katja Brose is optimistic that the answers are out there—we just need to bring them to light:

“There is resounding agreement that we need new approaches and strategies, and there are active efforts, discussion and experimentation aimed at making the process of therapeutic development more efficient and effective.”

Below are three papers highlighted in the special journal, each giving an honest assessment of how far we’ve come, and what we need to do to take the next step.

Fast-tracking Drug Development. In this perspective, authors from the Institute of Medicine (IOM) and the Salk Institute—including CIRM grantee Fred Gage—discuss the main takeaways from an IOM-sponsored workshop aimed at finding new avenues for accelerating treatments for brain diseases to the clinic.

The main conclusion, according to the review’s lead author Steve Hyman, is a crucial cultural shift—various stakeholders in academia, government and industry must stop thinking of themselves as competitors, but instead as allies. Only then will the field be able to successfully shepherd a breakthrough from the lab bench and to the patient’s bedside.

Downsized Divisions’ Dangerous Effects. Next, an international team of neuroscientists focuses their perspective on the recent trend of pharmaceutical companies to cut back on funding for neuroscience research. The reasoning: neurological diseases are far more difficult than other conditions, and proving to be too costly and too time-consuming to be worth continued effort.

The solution, says author Dennis Choi of State University of New York Stonybrook, is a fundamental policy change in the way that market returns of neurological disease drug development are regulated. But Choi argues that such a shift cannot be achieved without a concerted effort by patient advocates and nonprofits to lead the charge. As he explains:

“The broader neuroscience community and patient stakeholders should advocate for the crafting and implementation of these policy changes. Scientific and patient group activism has been successful in keeping the development of therapies in other areas—such as HIV and cancer—appropriately on track, but this type of sector-wide activism would be a novel step for the neuroscience community.”

Indeed, here at CIRM we have long helped support the patient community—a wonderful collection of individuals and organizations advocating for advances in stem cell research. We are humbled and honored that so many patients and patient advocates have stepped forward as stem cell champions as we move towards the clinic.

The Road to Preclinical Diagnosis. Finally, we hear from Harvard University neuroscientists highlighting how far the research has come—even in the face of such extraordinary difficulty.

Specifically focused on Alzheimer’s disease, the authors touch on the discoveries of protein markers, such as amyloid-beta and tau, that serve as an indicator of neurodegeneration. They make the important point that because Alzheimer’s is almost certainly is present before the onset of physical symptoms, the ultimate goal of researchers should be to find a way to diagnose the disease before it has progressed too far.

“[Here we] highlight the remarkable advances in our ability to detect evidence of Alzheimer’s disease in the brain, prior to clinical symptoms of the disease, and to predict those at greatest risk for cognitive decline,” explained lead author Reisa Sperling.

The common thread between these perspectives, say Neuron editors in an accompanying editorial, is that “by leveraging shared resources, tools and knowledge and approaching these difficult problems collaboratively, we can achieve more together.”

A sentiment that we at CIRM fully support—and one that we will continue to foster as we push forward with our mission to accelerate stem cell-based therapies to patients in need.