CIRM Board Expands COVID-19 Efforts

Coronavirus particles, illustration. Courtesy KTSDesign/Science Photo Library

This past Friday, the governing Board of the California Institute for Regenerative Medicine (CIRM) expanded the eligibility criteria for COVID-19 related projects to develop new treatments against the virus.  Just two weeks ago, the Board approved $5 million in emergency funding for COVID-19 research.

One major addition is allowing research related to convalescent plasma to be eligible for CIRM COVID-19 emergency funding.  Plasma is a component of blood that carries cells and antibodies.  Blood plasma from patients that have recovered from COVID-19, referred to as convalescent plasma, contains antibodies against the virus and could be used as a potential treatment for COVID-19 patients.

In addition to this, potential clinical studies of convalescent plasma are now approved for use by the U.S. Food and Drug Administration (FDA) single-patient emergency Investigational New Drug (eIND) pathway as opposed to only a traditional IND.  Before treatments can be tested in humans, a traditional IND needs to be filed.  In an emergency situation such as the coronavirus pandemic, an eIND can be filed to begin testing the treatment faster.

In order to address the disproportionate impact of COVID-19 on underserved communities, priority will be given to projects that directly address these disparities. 

Lastly, potential clinical programs for COVID-19 are now approved to start incurring allowable project costs, at risk, from the date of the application submission deadline.  This would give researchers the opportunity to start their projects earlier and cover project costs retroactively if they are approved for funding.

“The intent behind this amendment is to be responsive to this COVID-19 crisis by leveraging CIRM’s funding programs, processes, and infrastructure within the scientific ecosystem that it has supported to date,” said Maria T. Millan, M.D., President and CEO of CIRM. “By providing an opportunity for the medical and scientific community to gather important data while using convalescent plasma treatment protocols on an emergency basis, CIRM is joining the global effort to expedite treatments to patients in need in the midst of this global pandemic.”

CIRM has established an open call for proposals and will accept applications on a bi-monthly basis.

Please refer to the following Program Announcement for more details:

·      Special Call for COVID-19 Projects

To Submit an Application:

  1. Go to the Grants Management Portal (https://grants.cirm.ca.gov) and log in with your existing CIRM Username and Password. If you do not have a Username, Click on the “New User” link and follow the instructions to create a CIRM Username and password.
  2. After logging in, click on the Menu tab. Select the tab labeled “Open Programs“. Under the section labeled “RFAs and Programs Open for Applications“, click on the “Start a Grant Application” link for your selected program.
  3. Complete each section of the Application by clicking on the appropriate link and following the posted instructions. Proposal templates can be located and submitted under the “Uploads” section.
  4. To submit your Application, click on the “Done with Application” button. The “Done with Application” button will be enabled when all of the mandatory sections have been completed. Please note that once this has been selected, you will no longer be able to make changes to your Application.
  5. To confirm submission of your Application, select the tab labeled “Your Applications” and check the table under the section labeled “Your Submitted Applications“. You will see your Application number and project title listed once the submission process has been completed.

Cashing in on COVID-19

Coronavirus particles, illustration. Courtesy KTSDesign/Science Photo Library

As the coronavirus pandemic continues to spread, one of the few bright spots is how many researchers are stepping up and trying to find new ways to tackle it, to treat it and hopefully even cure it. Unfortunately, there are also those who are simply trying to cash in on it.

In the last few years the number of predatory clinics offering so-called “stem cell therapies” for everything from Alzheimer’s and multiple sclerosis to autism and arthritis has exploded in the US. The products they offer have not undergone a clinical trial to show that they work; they haven’t been approved by the US Food and Drug Administration (FDA); they don’t have any evidence they are even safe. But that doesn’t stop them marketing these claims and it isn’t stopping some of them from now trying to cash in on the fears created by the coronavirus.

One company is hawking what it calls a rapid COVID-19 test, one that can determine if you have the virus in under ten minutes (many current tests take days to produce a result). All it takes is a few drops of blood and, from the comfort of your own home, you get to find out if you are positive for COVID-19. And best of all, it claims it is 99 percent accurate.

What could be the problem with that? A lot as it turns out.

If you go to the bottom of the page on the website marketing the test it basically says “this does not work and we’re not making any claims or are in any way responsible for any results it produces.” So much for 99 percent accurate.

It’s not the only example of this kind of shameless attempt to cash in on COVID-19. So it’s appropriate that this week the Alliance for Regenerative Medicine (ARM), issued a statement strongly condemning these attempts and the clinics behind them.

ARM warns about the growing number of “stem cell clinics” (that) are taking advantage of the “hype” around stem cells – and, in certain cases, the current concern about COVID-19 – and avoiding regulation by falsely marketing illegal and potentially harmful products to patients seeking cures.” 

These so called “therapies” or tests do more than just take money – in some cases tens of thousands of dollars – from individuals: “Public health is at risk when unscrupulous providers offer stem cell products that are unapproved, unproven and fail to adhere to established rules for good manufacturing practices. Many of these providers put patients at risk by falsely marketing the benefits of treatments, and often promoting the stem cells for conditions that are outside of their area of medical expertise.”

It’s sad that even in times when so many people are working hard to find treatments for the virus, and many are risking their lives caring for those who have the virus, that there are unscrupulous people trying to make money out of it. All we can do is be mindful, be careful and be suspicious of anything that sounds too good to be true.

There are no miracle cures. No miracle treatments. No rapid blood tests you can order in the mail. Be aware. And most importantly of all, be safe.

The CIRM Board recently held a meeting to approve $5 million in emergency funding for rapid research into potential treatments for COVID-19.

From bench to bedside – CIRM plays a vital role in accelerating science

Dr. Maria T. Millan, President & CEO of CIRM

The field of stem cell research and regenerative medicine has exploded in the last few years with new approaches to treat a wide array of diseases. Although these therapies are quite promising, they face many challenges in trying to bring them from the laboratory and into patients. But why is this? What can we do to ensure that these approaches are able to cross the finish line?

A new article published in Cell Stem Cell titled Translating Science into the Clinic: The Role of Funding Agencies takes a deeper dive into these questions and how agencies like CIRM play an active role in helping advance the science. The article was written by Dr. Maria T. Millan, President & CEO of CIRM, and Dr. Gil Sambrano, Vice President of Portfolio Development and Review at CIRM.

Although funding plays an essential role in accelerating science, it is not by itself sufficient. The article describes how CIRM has established internal processes and procedures that aim to help accelerate projects in the race to the finish line. We are going to highlight a few of these in this post, but you can read about them in full by clicking on the article link here.

One example of accelerating the most promising projects was making sure that they make important steps along the way. For potential translational awards, which “translate” basic research into clinical trials, this means having existing data to support a therapeutic approach. For pre-clinical and clinical awards, it means meeting with the Food and Drug Administration (FDA) and having an active investigational new drug (IND) approved or pre-IND, important steps that need to be taken before these treatments can be tested in humans. Both of these measures are meant to ensure that the award is successful and progress quickly.

Another important example is not just giving these projects the funding in its entirety upfront, rather, tying it to milestones that guide a project to successful completion. Through this process, projects funded by CIRM become focused on achieving clear measurable objectives, and activities that detract from those goals are not supported.

Aside from requirements and milestones tied to funding, there are other ways that CIRM helps bolster its projects.

One of these is an outreach project CIRM has implemented that identifies investigators and projects with the potential to enhance already existing projects. This increases the number of people applying to CIRM projects as well as the quality of the applications.

Another example is CIRM’s Industry Alliance Program, which facilitates partnerships between promising CIRM-funded projects and companies capable of bringing an approved therapy to market. The ultimate goal is to have therapies become available to patients, which is generally made possible through commercialization of a therapeutic product by a pharmaceutical or biotechnology company.

CIRM has also established advisory panels for its clinical and translational projects, referred to as CAPs and TAPs. They are composed of external scientific advisors with expertise that complements the project team, patient advocate advisors, and CIRM Science Officers. The advisory panel provides guidance and brings together all available resources to maximize the likelihood of achieving the project objective on an accelerated timeline.

Lastly, and most importantly, CIRM has included patient advocates and patient voices in the process to help keep the focus on patient needs. In order to accelerate therapies to the clinic, funders and scientists need input on what ultimately matters to patients. Investing effort and money on potential therapies that will have little value to patients is a delay on work that really matters. Even if there is not a cure for some of these diseases, making a significant improvement in quality of life could make a big difference to patients. There is no substitute to hearing directly from patients to understand their needs and to assess the balance of risk versus benefit. As much as science drives the process of bringing these therapies to light, patients ultimately determine its relevance.

Enabling the Best Choice for Patients: The Need for Effective Patient Navigation

Making sure patients get the treatment they need and not a “snake oil” substitute

We are at a turning point in regenerative medicine as the first wave of treatments have obtained FDA approval. But at the same time as we see the advance of scientifically rigorous research and regulated products we are also witnessing the continued proliferation of “unproven treatments.” This dueling environment can be overwhelming and distracting to individuals and families trying to manage life-threatening diseases.

How does a patient navigate this environment and get trusted and reliable information to help sort through their options?

CIRM teamed up with the CURA Foundation to organize a roundtable discussion intended to answer this question. The conversation included thought leaders involved in patient advocacy, therapy research and development, public policy and research funding. The roundtable was divided into three segments designed to discuss:

  1. Examples of state-of-the-art patient navigation systems,
  2. Policy, research and infrastructure needs required to expand navigation systems, and
  3. Communication needs for engaging patients and the broader community.

Examples of Navigation Systems:

This session was framed around the observation that patients often do not get the best medicines or treatments available for their condition. For example, in the area of cancer care there is evidence that the top 25% of cancers are not being treated optimally. Historic barriers to optimal treatment include cost pressures that may block access to treatments, lack of knowledge about the available treatments or the absence of experts in the location where the patient is being treated.  Much of the session focused on how these barriers are being overcome by partnerships between health care provides, employers and patients.

For example, new technologies such as DNA sequencing and other cell-based markers enable better diagnosis of a patient’s underlying disease. This information can be collected by a community hospital and shared with experts who work with the treating doctor to consider the best options for the patient. If patients need to access a specialty center for treatment, there are new models for the delivery of such care. Emphasis is placed on building a relationship with the patient and their family by surrounding them with a team that can address any questions that arise. The model of patient-centered care is being embraced by employers who are purchasing suites of services for their employees.

Patient advocacy groups have also supported efforts to get the best information about the patients’ underlying disease. Advocacy organizations have been building tools to connect patients with researchers with the aim of allowing secure and responsible sharing of medical information to drive the patient-centered development of new treatments. In a related initiative, the American Society of Hematology is creating a data hub for clinical trials for sickle cell disease. Collectively, these efforts are designed to accelerate new treatments by allowing critical data to be shared among researchers.

Essential Policy Infrastructure for Regenerative Medicine:

Session two dovetailed nicely with first discussion. There was continued emphasis on the need for additional evidence (data) to demonstrate that regenerative medicine treatments are having a significant effect on the patient’s disease. Various speakers echoed the need for patients in clinical trials to work with researchers to determine the benefits of treatments. Success stories with gene therapies in blood diseases were cited as proof of concept where treatments being evaluated in clinical trials are demonstrating a significant and sustained impact on diseases. Evidence of benefit is needed by both regulatory bodies that approve the treatments, such as the FDA, and by public and private payers / insurers that pay for treatments and patients that need to know the best option for their particular disease.

In addition, various speakers cited the continued proliferation of “unproven treatments” being marketed by for-profit centers. There was broad concern that the promotion of treatment where there is no evidence of effectiveness will mislead some patients and potentially harm the scientifically rigorous development of new treatments. Particularly for “stem cell” treatments, there was a desire to develop evaluation criteria that are clear and transparent to allow legitimate treatments to be distinguished from those with no evidence of effectiveness. One participant suggested there be a scorecard approach where specific treatments could be rated against specific indicators of safety, medical benefit and value in relation to alternative treatments. The idea would be to make this information widely available to patients, medical providers and the public to inform everything from medical decision making to advertising.

Communicating the Vision

The final session considered communication needs for the field of regenerative medicine. Patients and patient advocacy organizations described how they are using social media and other networking tools to share information and experiences in navigating their treatment options. Patient advocacy groups also described the challenges from providers of unproven treatments. In one case, a for profit “pop up” clinic had used the group’s videos in an attempt to legitimize their unproven treatment.

There was general consensus among the panelists that the field of regenerative medicine needs “trusted intermediaries” who can evaluate claims and help patients distinguish between high quality research and “snake oil”. These intermediaries should have the capacity to compile the most reliable evidence and utilize it to determine what options are available to patients. In addition, there needs to be shared decision making model where patients have the opportunity to explore options in an unbiased environment so they may make the best decision based on their specific needs and values.

Creating this kind of Navigation System will not be easy but the alternative is unacceptable. Too many vulnerable patients are being taken advantage of by the growing number of “predatory clinics” hawking expensive therapies that are both unproven and unapproved. We owe it to these patients to create a simple way for them to identify what are the most promising therapies, ones that have the highest chance of being both safe and effective. The roundtable discussion marked a starting point, bringing together many of the key players in the field, highlighting the key issues and beginning to identify possible solutions.

Dashed Dreams and New Hope: A Quest to Cure Thymic Deficiency

By Kelly Shepard, PhD., CIRM’s Associate Director, Discovery & Translation

CIRM has previously blogged about advances in treating certain forms of  “bubble baby” disease”, where a person is born with a defect in their blood forming stem cells that results in a deficient immune system, rendering them vulnerable to lethal infections by all manner of bacteria, virus or germ.

If a suitable donor can be found, or if the patient’s own defective cells can be corrected through gene therapy approaches, it is now possible to treat or cure such disorders through a bone marrow transplant. In this procedure, healthy blood stem cells are infused into the patient, taking up residence in his or her bone marrow and dividing to give rise to functioning immune cells such as T cells and B cells.

Unfortunately, there is another type of “bubble baby” disease that cannot be treated by providing healthy blood stem cells, because the defective immune system is caused by a different culprit altogether- a missing or dysfunctional thymus.

Created for the National Cancer Institute, http://www.cancer.gov

T Cells Go to School

What is a thymus?  Most of us give little thought to this leaf-shaped organ, which is large and important in our early childhoods, but becomes small and inconspicuous as we age. This transformation belies the critical role a thymus plays in the development of our adaptive immune systems, which takes place in our youth: to prepare our bodies to fight infections for the rest of our lives.

One might think of the thymus as a “school”, where immature T cells go to “learn” how to recognize and attack foreign antigens (surface markers), such as those found on microorganisms or tissues from other individuals. The thymus also “teaches” our immune system to distinguish “self” from “other” by eliminating any T cells that attack our own tissues. Without this critical function, our immune system could inadvertently turn against us, causing serious autoimmune disorders such as ulcerative colitis and myasthenia gravis.

Many children with a severely deficient or absent thymus, referred to as athymia, have inherited a chromosome that is missing a key stretch of genes on a region called 22q11. Doctors believe perhaps 1/2000-1/4000 babies are born with some type of deletion in this region, which leads to a variable spectrum of disorders called 22q11 syndrome that can affect just about any part of the body, and can even cause learning disabilities and mental illness.

Individuals with one form of 22q11, called DiGeorge Syndrome, are particularly affected in the heart, thymus, and parathyroid glands. In the United States, about 20 infants are born per year with the “complete” and most severe form of DiGeorge Syndrome, who lack a thymus altogether, and have severely depressed numbers of T cells for fighting infections. Without medical intervention, this condition is usually fatal by 24 months of age.

Optimism and Setback                                                                  

Although there are no therapies approved by the Food and Drug Administration (FDA) for pediatric athymia, Dr. Mary Louise Markert at Duke University and Enzyvant, Inc. have been pioneering an experimental approach to treat children with complete DiGeorge syndrome.

In this procedure, discarded thymic tissues are collected from infants undergoing cardiac surgery, where some of the thymus needs to be removed in order for the surgeon to gain access to the heart. These tissues are processed to remove potentially harmful donor T cells and then transplanted into the thigh of an athymic DiGeorge patient.

Results from early clinical trials seemed promising, with more than 70% of patients surviving, including several who are now ten years post-transplant. Based on those results, in June of 2019 Enzyvant applied to the FDA for a Biologics License Application (BLA), which is needed to be able to sell the therapy in the US. Unfortunately, only a few months later, Enzyvant announced that the FDA had declined to approve the BLA due to manufacturing concerns.

While it may be possible to address these issues in time, the need to step back to the drawing board was a devastating blow to the DiGeorge Community, who have waited decades for a promising treatment to emerge on the horizon.

New Opportunities

Despite the setback, there is reason to hope. In early 2019, CIRM granted a “Quest” Award to team of investigators at Stanford University to develop a novel stem cell based approach for treating thymic deficiency. Co-led by Katja Weinacht, a pediatric hematologist/oncologist, and Vittorio Sebastiano, a stem cell expert and developmental biologist, the team’s strategy is to coax induced pluripotent stem cells (iPS) in the laboratory to differentiate into thymic tissue, which could then be transplanted into patients using the route pioneered by Duke and Enzyvant.

Katja Weinacht: Photo courtesy Stanford Children’s Health

The beauty of this new approach is that pluripotent stem cells are essentially immortal in culture, providing an inexhaustible supply of fresh thymic cells for transplant, thereby allowing greater control over the quality and consistency of donor tissues. A second major advantage is the possibility of using pluripotent cells from the patient him/herself as the source, which should be perfectly immune-matched and alleviate the risk of rejection and autoimmunity that comes with use of donated tissues.

Vittorio Sebastiano: Photo courtesy Stanford

Sounds easy, so what are the challenges? As with many regenerative medicine approaches, the key is getting a pluripotent stem cell to differentiate into the right type of cells in the lab, which is a very different environment than what cells experience naturally when they develop in the context of an embryo and womb, where many cells are interacting and providing complex, instructive cues to one another. The precise factors and timing all need to be worked out and in most cases, this is done with an incomplete knowledge of human development.

A second challenge relates to using cells from DiGeorge patients to produce thymic tissue, which are missing several genes on their 22nd chromosome and will likely require sophisticated genetic engineering to restore this ability.

Fortunately, Drs. Weinacht and Sebastiano are up to the challenge, and have already made progress in differentiating human induced pluripotent stem cells (iPS) into thymic lineage intermediates that appear to be expressing the right proteins at the right time. They plan to combine these cells with engineered materials to create a three-dimensional (3D) tissue that more closely resembles an authentic organ, and which can be tested for functionality in athymic mice.

There is more work to be done, but these advances, along with continued technological improvements and renewed efforts from Enzyvant, could forge a path to the clinic and  lead to a brighter future for patients suffering from congenital athymia and other forms of thymic dysfunction.

 

California Stem Cell and Regenerative Therapy Task Force holds meeting to consider options for patient protection

Dr. Maria Millan, President and CEO of CIRM, attended the meeting to discuss the importance of having systems in place for patient protection.

What procedures are in place to ensure the quality and safety of stem cell treatments? How can patients guard against deceptive promotional practices for treatments that have no basis in science? What new procedures are needed to support patients and the development of new treatments?

These questions and others were discussed this past Wednesday by the Medical Board of California’s Stem Cell and Regenerative Therapy Task Force. The task force  held an interested parties meeting to receive information and input on options to promote consumer protection.

CIRM, the Alpha Stem Cell Clinic Network, and the Department of Public Health gave formal presentations to the task force.

Dr. Maria Millan started by providing the task force with an overview of the field in general and the 56 CIRM funded Clinical Trials to illustrate the enormous promise of the field. She then contrasted this promise against numerous reports of patients being harmed by unproven and unregulated stem cell treatments provided by practitioners operating outside their field of training. Dr. Millan emphasized the critical importance of having systems in place to provide assurance to patients that treatments are appropriate for their particular disease.  She elaborated on CIRM’s core mantra that stem cell treatments be regulated, reputable and reliable. We discussed the three Rs in this posting. The fundamental aim is to put the patient interests at the center of a system that meets all regulatory and professional standards of care.

Dr. Mehrdad Abedi, Director of the UC Davis Alpha Stem Cell Clinic provided concrete examples of how they are implementing the 3Rs in their operations. Dr. Abedi emphasized the importance of best practices for manufacturing and processing stem cell products and for clinical care. He cited the operations at the UC Davis Institute for Regenerative Cures and the various oversight committees tasked with protecting the rights and interests of patients.  Collectively, this approach, embraced by all the CIRM Alpha Stem Cell Clinics, serves to ensure all clinical trials regulated, reputable and reliable.

State of the art materials processing at the UC Davis Center for Regenerative Cures

Dr. Charity Dean of the Department of Public Health described the role of the Food and Drug Branch in licensing facilities involved in the preparation, processing and labeling of drugs. This authority extends to facilities outside of California that ship products into the state. Dr. Dean illustrated how the Department of Public Health’s Food and Drug Branch licenses manufactures, and this licensing system is designed to protect patients using such products.

After discussion and public comment, the task force co-chair, Dr. Krauss suggested the Medical Board would consider options for patient protection, include:

  • Guidance and education materials for medical practitioners
  • Sample informed consent documents designed to inform patients about the potential risks and benefits of stem cell treatments
  • Public education materials
  • An adverse event reporting system

Taking the message to the people: fighting for the future of stem cell research in California

Stem cells have been in the news a lot this week, and not necessarily for the right reason.

First, the US Food and Drug Administration (FDA) won a big legal decision in its fight to crack down on clinics offering bogus, unproven and unapproved stem cell therapies.

But then came news that another big name celebrity, in this case Star Trek star William Shatner, was going to one of these clinics for an infusion of what he called “restorative cells”.

It’s a reminder that for every step forward we take in trying to educate the public about the dangers of clinics offering unproven therapies, we often take another step back when a celebrity essentially endorses the idea.

So that’s why we are taking our message directly to the people, as often as we can and wherever we can.

In June we are going to be holding a free, public event in Los Angeles to coincide with the opening of the International Society for Stem Cell Research’s Annual Conference, the biggest event on the global stem cell calendar. There’s still time to register for that by the way. The event is from 6-7pm on Tuesday, June 25th in Petree Hall C., at the Los Angeles Convention Center at 1201 South Figueroa Street, LA 90015.

The event is open to everyone and it’s FREE. We have created an Eventbrite page where you can get all the details and RSVP if you are coming.

It’s going to be an opportunity to learn about the real progress being made in stem cell research, thanks in no small part to CIRM’s funding. We’re honored to be joined by UCLA’s Dr. Don Kohn, who has helped cure dozens of children born with a fatal immune system disorder called severe combined immunodeficiency, also known as “bubble baby disease”. And we’ll hear from the family of one of those children whose life he helped save.

And because CIRM is due to run out of money to fund new projects by the end of this year you’ll also learn about the very real concerns we have about the future of stem cell research in California and what can be done to address those concerns. It promises to be a fascinating evening.

But that’s not all. Our partners at USC will be holding another public event on stem cell research, on Wednesday June 26th from 6.30p to 8pm. This one is focused on treatments for age-related blindness. This features some of the top stem cell scientists in the field who are making encouraging progress in not just slowing down vision loss, but in some cases even reversing it.

You can find out more about that event here.

We know that we face some serious challenges in trying to educate people about the risks of going to a clinic offering unproven therapies. But we also know we have a great story to tell, one that shows how we are already changing lives and saving lives, and that with the support of the people of California we’ll do even more in the years to come.

Media matters in spreading the word

Cover of New Yorker article on “The Birth Tissue Profiteers”. Illustration by Ben Jones

When you have a great story to tell the best and most effective way to get it out to the widest audience is still the media, both traditional mainstream and new social media. Recently we have seen three great examples of how that can be done and, hopefully, the benefits that can come from it.

First, let’s go old school. Earlier this month Caroline Chen wrote a wonderful in-depth article about clinics that are cashing in on a gray area in stem cell research. The piece, a collaboration between the New Yorker magazine and ProPublica, focused on the use of amniotic stem cell treatments and the gap between what the clinics who offer it are claiming it can do, and the reality.

Here’s one paragraph profiling a Dr. David Greene, who runs a company providing amniotic fluid to clinics. It’s a fine piece of writing showing how the people behind these therapies blur the lines between fact and reality, not just about the cells but also about themselves:

“Greene said that amniotic stem cells derive their healing power from an ability to develop into any kind of tissue, but he failed to mention that mainstream science does not support his claims. He also did not disclose that he lost his license to practice medicine in 2009, after surgeries he botched resulted in several deaths. Instead, he offered glowing statistics: amniotic stem cells could help the heart beat better, “on average by twenty per cent,” he said. “Over eighty-five per cent of patients benefit exceptionally from the treatment.”

Greene later backpedals on that claim, saying:

“I don’t claim that this is a treatment. I don’t claim that it cures anything. I don’t claim that it’s a permanent fix. All I discuss is maybe, potentially, people can get some improvements from stem-cell care.”

CBS2 TV Chicago

This week CBS2 TV in Chicago did their own investigative story about how the number of local clinics offering unproven and unapproved therapies is on the rise. Reporter Pam Zekman showed how misleading newspaper ads brought in people desperate for something, anything, to ease their arthritis pain.

She interviewed two patients who went to one of those clinics, and ended up out of pocket, and out of luck.

“They said they would regenerate the cartilage,” Patricia Korona recalled. She paid $4500 for injections in her knee, but the pain continued. Later X-rays were ordered by her orthopedic surgeon.

He found bone on bone,” Korona said. “No cartilage grew, which tells me it failed; didn’t work.”

John Zapfel paid $14,000 for stem cell injections on each side of his neck and his shoulder. But an MRI taken by his current doctor showed no improvement.

“They ripped me off, and I was mad.” Zapfel said.      

TV and print reports like this are a great way to highlight the bogus claims made by many of these clinics, and to shine a light on how they use hype to sell hope to people who are in pain and looking for help.

At a time when journalism seems to be increasingly under attack with accusations of “fake news” it’s encouraging to see reporters like these taking the time and news outlets devoting the resources to uncover shady practices and protect vulnerable patients.

But the news isn’t all bad, and the use of social media can help highlight the good news.

That’s what happened yesterday in our latest CIRM Facebook Live “Ask the Stem Cell Team” event. The event focused on the future of stem cell research but also included a really thoughtful look at the progress that’s been made over the last 10-15 years.

We had two great guests, UC Davis stem cell researcher and one of the leading bloggers on the field, Paul Knoepfler PhD; and David Higgins, PhD, a scientist, member of the CIRM Board and a Patient Advocate for Huntington’s Disease. They were able to highlight the challenges of the early years of stem cell research, both globally and here at CIRM, and show how the field has evolved at a remarkable rate in recent years.

Paul Knoepfler

Naturally the subject of the “bogus clinics” came up – Paul has become a national expert on these clinics and is quoted in the New Yorker article – as did the subject of the frustration some people feel at what they consider to be the too-slow pace of progress. As David Higgins noted, we all think it’s too slow, but we are not going to race recklessly ahead in search of something that might heal if we might also end up doing something that might kill.

David Higgins

A portion of the discussion focused on funding and, in particular, what happens if CIRM is no longer around to fund the most promising research in California. We are due to run out of funding for new projects by the end of this year, and without a re-infusion of funds we will be pretty much closing our doors by the end of 2020. Both Paul and David felt that could be disastrous for the field here in California, depriving the most promising projects of support at a time when they needed it most.

It’s probably not too surprising that three people so closely connected to CIRM (Paul has received funding from us in the past) would conclude that CIRM is needed for stem cell research to not just survive but thrive in California.

A word of caution before you watch: fashion conscious people may be appalled at how my pocket handkerchief took on a life of its own.

Stories that caught our eye: FDA grants orphan drug status to CIRM-funded therapy; stunning discovery upends ideas of cell formation; and how tadpoles grow new tails

Gut busting discovery

Intestinal stem cells: Photo courtesy Klaus Kaestner, Penn Institute for Regenerative Medicine

It’s not often you read the word “sensational” in a news release about stem cells. But this week researchers at the University of Copenhagen released findings that are overturning long-held ideas about the development of cells in our stomachs. So perhaps calling it “sensational” is not too big a stretch.

In the past it was believed that the development of immature cells in our stomachs, before a baby is born, was predetermined, that the cells had some kind of innate sense of what they were going to become and when. Turns out that’s not the case. The researchers say it’s the cells’ environment that determines what they will become and that all cells in the fetus’ gut have the potential to turn into stem cells.

In the “sensational” news release lead author, Kim Jensen, says this finding could help in the development of new therapies.

“We used to believe that a cell’s potential for becoming a stem cell was predetermined, but our new results show that all immature cells have the same probability for becoming stem cells in the fully developed organ. In principle, it is simply a matter of being in the right place at the right time. Here signals from the cells’ surroundings determine their fate. If we are able to identify the signals that are necessary for the immature cell to develop into a stem cell, it will be easier for us to manipulate cells in the wanted direction’.

The study is published in the journal Nature.                             

A tale of a tail

African clawed frog tadpole: Photo courtesy Gary Nafis

It’s long been known that some lizards and other mammals can regrow severed limbs, but it hasn’t been clear how. Now scientists at the University of Cambridge in the UK have figured out what’s going on.

Using single-cell genomics the scientists were able to track which genes are turned on and off at particular times, allowing them to watch what happens inside the tail of the African clawed frog tadpole as it regenerates the damaged limb.

They found that the response was orchestrated by a group of skin cells they called Regeneration-Organizing Cells, or ROCs. Can Aztekin, one of the lead authors of the study in the journal Science, says seeing how ROCs work could lead to new ideas on how to stimulate similar regeneration in other mammals.

“It’s an astonishing process to watch unfold. After tail amputation, ROCs migrate from the body to the wound and secrete a cocktail of growth factors that coordinate the response of tissue precursor cells. These cells then work together to regenerate a tail of the right size, pattern and cell composition.”

Orphan Drug Designation for CIRM-funded therapy

Poseida Therapeutics got some good news recently about their CIRM-funded therapy for multiple myeloma. The US Food and Drug Administration (FDA) granted them orphan drug designation.

Orphan drug designation is given to therapies targeting rare diseases or disorders that affect fewer than 200,000 people in the U.S. It means the company may be eligible for grant funding toward clinical trial costs, tax advantages, FDA user-fee benefits and seven years of market exclusivity in the United States following marketing approval by the FDA.

CIRM’s President and CEO, Dr. Maria Millan, says the company is using a gene-modified cell therapy approach to help people who are not responding to traditional approaches.

“Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

Poseida’s CEO, Eric Ostertag, said the designation is an important milestone for the company therapy which “has demonstrated outstanding potency, with strikingly low rates of toxicity in our phase 1 clinical trial. In fact, the FDA has approved fully outpatient dosing in our Phase 2 trial starting in the second quarter of 2019.”

Facebook Live: Ask the Stem Cell Team About Clinical Trials

Every day at CIRM we get emails and calls from people looking for a stem cell clinical trial to help them. Some have arthritis in the knee or hip and want to avoid surgery. Some have a child with autism and want something that will ease the symptoms. Some have cancer and conventional therapies no longer work for them. Many have run out of options. Some are running out of time.

It’s hard to tell someone who is desperate that you don’t have anything that can help them, that there are no stem cell clinical trials that would be appropriate for them. Many often push back, saying they’ve seen ads online and visited websites for companies that claim to have stem cell therapies that can help them. When I say those therapies have not been approved by the Food and Drug Administration, or even been shown to be safe let alone effective, I can hear the disappointment in their voice.

I know some will go on to try those therapies anyway, because they have nothing else. I don’t blame them. I might do the same myself.

But before making an informed decision about any therapy it is important for people to have all the facts in front of them.

That’s why we are holding a special Facebook Live “Ask the Stem Cell Team About Clinical Trials” event on Thursday, April 25th from noon till 1pm PDT.

We are bringing together three experts who will help us all understand what’s a good clinical trial, and what’s a bogus one. They will talk about:

  • Red flags that a stem cell “clinic” might be more interested in making money than making you better
  • Key things to look for to choose a bona fide stem cell clinical trial
  • What are the questions you need to ask before signing up for any clinical
  • What are good sources of information to turn to for guidance

The Stem Cell Team will talk about CIRM’s Alpha Stem Cell Clinics Network, contrasting the time and resources they devote to offering patients stem cell clinical trials that are endorsed by the FDA, with clinics that promise people their own fat or blood cells can fix everything from bad knees to multiple sclerosis.

Our experts include a doctor and a nurse from the Alpha Clinics Network with years of experience in running and managing clinical trials, plus our own Geoff Lomax who helps support the entire network.

It will be an eye opening, informative and engaging hour and we want you to be part of it.  You can either join us on the day and post questions for the panel to answer, or you can email them directly to us beforehand at info@cirm.ca.gov.

Also, be sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you can’t watch the broadcast “live”, not to worry, we’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

In the days leading up to the broadcast we’ll give you the broadcast link that will take you to the event itself.

We look forward to having you join us for this really important Facebook Live event.

If you are in the San Francisco Bay Area this week you can join us at our fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium where the topic of how to choose a clinical trial that’s right for you will be front and center.

The symposium is on Thursday, April 18th from 8.30am to 4.30pm. It’s open to the public and it’s free.

You can find details about the event, including how you can register, HERE.