Hitting our Goals: Accelerating to the finish line

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #6 was Accelerate.

Ever wonder how long it takes for a drug or therapy to go from basic research to approval by the US Food and Drug Administration (FDA)? Around 12 years on average is the answer. That’s a long time. And it can take even longer for stem cell therapies to go that same distance.

There are a lot of reasons why it takes so long (safety being a hugely important element) but when we were sitting down in 2015 to put together our Strategic Plan we wanted to find a way to speed up that process, to go faster, without in any way reducing the focus on safety.

So, we set a goal of reducing the time it takes from identifying a stem cell therapy candidate to getting an Investigational New Drug (IND) approval from the FDA, which means it can be tested in a clinical trial. At the time it was taking us around eight years, so we decided to go big and try to reduce that time in half, to four years.

Then the question was how were we going to do that? Well, before we set the goal we did a tour of the major biomedical research institutions in California – you know, University of California Los Angeles (UCLA) UC San Francisco, Stanford etc. – and asked the researchers what would help them most. Almost without exception said “a clearing house”, a way to pair early stage investigators with later stage partners who possess the appropriate expertise and interest to advance the project to the next stage of development, e.g., helping a successful basic science investigator find a qualified partner for the project’s translational research phase.

So we set out to do that. But we didn’t stop there. We also created what we called Clinical Advisory Panels or CAPs. These consisted of a CIRM Science Officer with expertise on a particular area of research, an expert on the kind of research being done, and a Patient Representative. The idea was that CAPs would help guide and advise the research team, helping them overcome specific obstacles and get ready for a clinical trial. The Patient Representative could help the researchers understand what the needs of the patient community was, so that a trial could take those into account and be more likely to succeed. For us it wasn’t enough just to fund promising research, we were determined to do all we could to support the team behind the project to advance their work.

How did we do. Pretty good I would have to say. For our Translational stage projects, the average amount of time it took for them to move to the CLIN1 stage, the last stage before a clinical trial, was 4.18 years. For our CLIN1 programs, 73 percent of those achieved their IND within 2 years, meaning they were then ready to actually start an FDA-sanctioned clinical trial.

Of course moving fast doesn’t guarantee that the therapy will ultimately prove effective. But for an agency whose mission is “to accelerate stem cell therapies to patients with unmet medical needs”, going slow is not an option.

Regulated, Reputable and Reliable: FDA’s Taking Additional Steps to Advance Safe and Effective Regenerative Medicine Products

Peter Marks, M.D., Ph.D., Director, Center for Biologics Evaluation and Research

In February 2020, CIRM presented a series of benchmarks for the responsible delivery of stem cell and regenerative medicine products. These benchmarks are outlined in the publication Regulated, reliable and reputable: Protect patients with uniform standards for stem cell treatments. In a nutshell, CIRM advocates for the delivery of regenerative medicine products in a context where:

  • The product is authorized by the Food and Drug Administration (FDA) and is overseen by an IRB or ethics board,
  • The treatment is delivered by qualified doctors, nurses, and technicians,
  • Treatment occurs at a clinical treatment center with expertise in regenerative medicine, and
  • There is ongoing monitoring and follow-up of patients.

On April 21 of 2021, Dr. Peter Marks, Director of the Center for Biologics Evaluation and Research, indicated the FDA’s intent to ensure new regenerative medicine products are FDA-authorized. Specifically, the FDA will require product developers to obtain an Investigational New Drug or IND authorization. In his news release Dr. Marks says the agency is willing to exercise more enforcement of these rules should clinics or therapy producers fail to follow these guidelines.

“These regenerative medicine products are not without risk and are often marketed by clinics as being safe and effective for the treatment of a wide range of diseases or conditions, even though they haven’t been adequately studied in clinical trials. We’ve said previously and want to reiterate here – there is no room for manufacturers, clinics, or health care practitioners to place patients at risk through products that violate the law, including by not having an IND in effect or an approved biologics license. We will continue to take action regarding unlawfully marketed products.”

IND authorization is particularly important as the agency pays close attention to how the product is produced and whether there is a scientific rationale and potential clinical evidence that it may be effective against the specific disease condition. All CIRM-funded clinical trials and all trials conducted in the CIRM Alpha Stem Cell Clinics Network must have IND authorization.

Regenerative medicine products are generally created from human cells or tissues. These products are frequently referred to as “living medicines.” The “living” nature of these products is what contributes to their remarkable potential to relieve, stop or reverse disease in a durable or sustainable manner.

The risk with unregulated products is that there is no assurance that they have been  produced in a quality controlled process or manner  where all components of the  injected material have been well characterized and studied for safety and efficacy for a given disease as well as a specific site in the body. In addition, there is no way to ensure that unregulated products meet standards or quality specifications such as ensuring that they have the active and beneficial component while making sure that they do not include harmful contaminants..  There have been documented examples of patients being severely injured by unregulated and inadequately characterized products. For example, in 2017 three Florida women were blinded by an unauthorized product.  Dr. George Daley, a stem cell expert and the Dean of Harvard Medical School, described the clinic operators as “charlatans peddling the modern equivalent of snake oil.”

To receive FDA authorization, detailed scientific data and well controlled clinical data are required to ensure safety and a demonstration that  the product is safe has the potential to improve or resolve the patient’s disease condition.

While it seems both important and self-evident that stem cell products be safe and effective and supported by evidence they can impact the patient’s disease condition, that doesn’t always happen. Unfortunately, too many patients have experienced unnecessary medical risks and financial harm from unauthorized treatments. CIRM applauds the FDA for taking additional steps to advance regenerative medicine products where the clinical benefits of such therapies outweigh any potential harms.

Prime Time for Rocket

Rocket Pharmaceuticals, a company that specializes in developing genetic therapies for rare childhood disorders, just got a big boost from the European Medicines Agency (EMA). They were given a Priority Medicines (PRIME) designation for their therapy for Leukocyte Adhesion Deficiency-1 (LAD-1).

CIRM is funding ($6.56 million) Rocket’s clinical trial for LAD-I, an immune disorder that leaves patients vulnerable to repeated infections that often results in death within the first two years of life. The therapy involves taking some of the child’s own blood stem cells and, in the lab, correcting the mutation that causes LAD-I, then returning those cells to the patient. Hopefully those blood stem cells then create a new, healthy blood supply and repair the immune system.

The therapy, called RP-L201, is already showing promise in the clinical trial, hence the PRIME designation. The program was set up to help speed up development and evaluation of therapies that could help patients who have limited treatment options. Getting a PRIME designation means it is considered a priority by EMA and could reach patients sooner.

In the US, Rocket has won similar recognition from the Food and Drug Administration (FDA) and has been granted Regenerative Medicine Advanced Therapy (RMAT), Rare Pediatric Disease, and Fast Track designations.

In a news release Kinnari Patel, President and Chief Operating Officer of Rocket, said the designation showed that regulators understand the urgent need to develop a therapy for patients with LAD-1. “More than half of LAD-I patients suffer with a severe variant in which mortality occurs in up to 75% of young children who don’t receive a successful bone marrow transplant by the age of two. Securing all possible accelerated designations will enable us to collaborate with both the FDA and EMA to speed the development and delivery of a potential treatment for these patients.  We look forward to sharing initial Phase 2 data from our potentially registration-enabling LAD-I trial in the second quarter of 2021.”

That trial has now completed enrolling patients (nine altogether) but their treatments are not yet complete. LAD-1 patients with severe disease have low levels of a key protein called CD18, usually less than 2%. Of the first three patients treated in this trial CD18 levels are all higher than the 4-10% threshold considered necessary for these children to survive into adulthood. Another encouraging sign is that there were no serious side effects from the therapy.

Obviously there is still a long way to go before we know if this therapy really works, but the PRIME designation – along with the similar ones in the US – are recognition that this is a very promising start.

CIRM-Funded Project Targeting Sickle Cell Disease Gets Green Light for Clinical Trial

Dr. Matthew Porteus

The US Food and Drug Administration (FDA) has granted Investigational New Drug (IND) permission enabling Graphite Bio to test the investigational, potentially revolutionary gene editing therapy GPH101 developed under the supervision of Matthew Porteus, MD, PhD, in a clinical trial for people with sickle cell disease (SCD).

The California Institute for Regenerative Medicine (CIRM) has been supporting this project with a $5.2 million grant, enabling Dr. Porteus and his team at the Institute of Stem Cell Biology and Regenerative Medicine at Stanford University to conduct the preclinical manufacturing and safety studies required by the FDA.

“We congratulate the Graphite Bio team for obtaining the IND, a critical step in bringing the GPH101 gene therapy forward for Sickle Cell Disease,” says Dr. Maria T. Millan, CIRM’s President & CEO. “CIRM is committed to the national Cure Sickle Cell initiative and are delighted that this technology, the product of CIRM funded research conducted by Dr. Porteus at Stanford, is progressing to the next stage of development”

Sickle cell disease is caused by a genetic mutation that turns normally smooth, round red blood cells into rigid, sickle shaped cells. Those cells clump together, clogging up blood vessels, causing intense pain, damaging organs and increasing the risk of strokes and premature death. There are treatments that help control the damage, but the only cure is a bone marrow stem cell transplant, which can only happen if the patient has a stem cell donor (usually a close relative) who has matching bone marrow.  

The investigational therapy GPH101 harnesses the power of CRISPR and natural DNA repair mechanisms to cut out the single mutation in the sickle globin gene and paste in the correct “code.” Correction of this mutation would reverse the defect and result in healthy non-sickling red blood cells.  

CEDAR, a Phase 1/2, multi-center, open-label clinical study is designed to evaluate the safety, preliminary efficacy and pharmacodynamics of GPH101 in adult and adolescent patients with severe SCD.

For patient advocate Nancy Rene, the news is personal: “It’s always exciting to hear about the progress being made in sickle cell research.  If successful it will mean that my grandson, and especially other young adults, can look forward to a life free of pain and organ damage.  They can actually begin to plan their lives, thinking about careers and families. I want to thank Dr. Porteus and all of the scientists who are working so hard for people with sickle cell disease. This is wonderful news.”

CIRM has funded four clinical trials for Sickle Cell Disease using different approaches and has a unique partnership with the National Heart, Lung and Blood Institutes under the NIH “Cure Sickle Cell” initiative.

CIRM-funded development of stem cell therapy for Canavan disease shows promising results

Yanhong Shi, Ph.D., City of Hope

Canavan disease is a fatal neurological disorder, the most prevalent form of which begins in infancy. It is caused by mutation of the ASPA gene, resulting in the deterioration of white matter (myelin) in the brain and preventing the proper transmission of nerve signals.  The mutated ASPA gene causes the buildup of an amino acid called NAA and is typically found in neurons in the brain.  As a result of the NAA buildup, Canavan disease causes symptoms such as impaired motor function, mental retardation, and early death. Currently, there is no cure or standard of treatment for this condition.

Fortunately, CIRM-funded research conducted at City of Hope by Yanhong Shi, Ph.D. is developing a stem cell-based treatment for Canavan disease. The research is part of CIRM’s Translational Stage Research Program, which promotes the activities necessary for advancement to clinical study of a potential therapy.

The results from the study are promising, with the therapy improving motor function, reducing degeneration of various brain regions, and expanding lifespan in a Canavan disease mouse model.

For this study, induced pluripotent stem cells (iPSCs), which can turn into virtually any type of cells, were created from skin cells of Canavan disease patients. The newly created iPSCs were then used to create neural progenitor cells (NPCs), which have the ability to turn into various types of neural cells in the central nervous system. A functional version of the ASPA gene was then introduced into the NPCs. These newly created NPCs were then transplanted inside the brains of Canavan disease mice.

The study also used iPSCs engineered to have a functional version of the ASPA gene. The genetically modified iPSCs were then used to create oligodendrocyte progenitor cells (OPCs), which have the ability to turn into myelin. The OPCs were also transplanted inside the brains of mice.

The rationale for evaluating both NPCs and OPCs was that NPCs typically stayed at the site of injection while OPCs tend to migrate, which might have been important in terms of the effectiveness of the therapy.  However, the results of the study show that both NPCs and OPCs were effective, with both being able to reduce levels of NAA, presumably because NAA can move to where the ASPA enzyme is although NPCs do not migrate.  This resulted in improved motor function, recovery of myelin, and reduction of brain degeneration, in both the NPC and OPC-transplanted Canavan disease mice.

“Thanks to funding from CIRM and the hard work of my team here at City of Hope and collaborators at Center for Biomedicine and Genetics, Department of Molecular Imaging and Therapy, and Diabetes and Metabolism Institute at City of Hope, as well as collaborators from the University of Texas Medical Branch at Galveston, University of Rochester Medical Center, and Aarhus University, we were able to carry out this study which has demonstrated promising results,” said Dr. Shi.  “I hope that these findings can one day bring about an effective therapy for Canavan disease patients, who currently have no treatment options.”

Dr. Shi and her team will build on this research by starting IND-enabling studies using their NPC therapy soon.  This is the final step in securing approval from the Food and Drug Administration (FDA) in order to test the therapy in patients.  

The full study was published in Advanced Science.

CIRM-funded treatment gets orphan drug and rare pediatric disease designations from FDA

From left to right: Brian Lookofsky , Taylor Lookofsky, and Rosa Bacchetta, M.D.
Picture taken October 2019

Last year, CIRM awarded $5.53 million to Rosa Bacchetta, M.D. at Stanford University to complete the work necessary to conduct a clinical trial for IPEX syndrome. This is a rare disease caused by mutations in the FOXP3 gene, which leaves people with the condition vulnerable to immune system attacks on their organs and tissues. These attacks can be devastating, even fatal.

Flash forward to the present day and the CIRM-funded treatment that Dr. Bacchetta has been working on has received both an orphan drug and a rare pediatric disease designation from the Food and Drug Administration (FDA).

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Under the FDA’s rare pediatric disease designation program, the FDA may grant priority review to Dr. Bacchetta if this treatment eventually receives FDA approval. The FDA defines a rare pediatric disease as a serious or life-threatening disease in which the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years and affects fewer than 200,000 people in the U.S.

“The designations granted by the FDA are a strong encouragement for our team to meet the goal of submitting the IND in 2021 and start the clinical trial for IPEX patients who are so much looking forward to new therapeutic options.” said Dr. Bacchetta.

But this begs the question, what exactly is IPEX syndrome? What is the approach that Dr. Bacchetta is working on? For those of you interested in the deeper scientific dive, we will elaborate on this complex disease and promising approach.

IPEX syndrome is a rare disease that primarily affects males and is caused by a genetic mutation that leads to lack of function of specialized immune cells called regulatory T cells (Tregs).

Without functional Tregs, a patient’s own immune cells attack the body’s own tissues and organs, a phenomenon known as autoimmunity.  This affects many different areas such as the intestines, skin, and hormone-producing glands and can be fatal in early childhood. 

Current treatment options include a bone marrow transplant and immune suppressing drugs.  However, immune suppression is only partially effective and can cause severe side effects while bone marrow transplants are limited due to lack of matching donors.

Dr. Rosa Bacchetta and her team at Stanford will take a patient’s own blood in order to obtain CD4+ T cells.  Then, using gene therapy, they will insert a normal version of the mutated gene into the CD4+ T cells, allowing them to function like normal Treg cells.  These Treg-like cells would then be reintroduced back into the patient, hopefully creating an IPEX-free blood supply and resolving the autoimmunity.

Furthermore, if successful, this treatment could be adapted for treatment of other, more common, autoimmune conditions where Treg cells are the underlying problem.

The same day that CIRM approved funding for this approach, Taylor Lookofsky, a young man with IPEX syndrome, talked about the impact the condition has had on his life.

It’s a powerful reminder that syndromes like this, because they affect a small number of people, are often overlooked and have few resources devoted to finding new treatments and cures. After hearing Taylor’s story, you come to appreciate his courage and determination, and why the funding CIRM provides is so important in helping researchers like Dr. Bacchetta find therapies to help people like Taylor.

The full transcript of his talk can be accessed on a previous blog post.

CIRM-funded treatment for cancer granted FDA breakthrough therapy designation

Mark Chao, M.D., Ph.D., cofounder of Forty Seven, Inc. and current VP of oncology clinical research at Gilead Sciences

An antibody therapeutic, magrolimab, being tested for myelodysplastic syndrome (MDS), a group of cancers in which the bone marrow does not produce enough healthy blood cells , was granted breakthrough therapy designation with the Food and Drug Administration (FDA). 

Breakthrough therapy designations from the FDA are intended to help expedite the development of new treatments. They require preliminary clinical evidence that demonstrates that the treatment may have substantial improvement in comparison to therapy options currently available. CIRM funded a Phase 1b trial in MDS and acute myeloid leukemia (AML), another type of blood cancer, that provided the data on which the breakthrough therapy designation is based.

Cancer cells express a signal known as CD47, which sends a “don’t eat me” message to macrophages, white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. Magrolimab works by blocking the signal, enabling the body’s own immune system to detect and destroy the cancer cells.

Magrolimab was initially developed by a team led by Irv Weissman, M.D. at Stanford University with the support of CIRM awards. This led to the formation of Forty Seven, Inc., which was subsequently acquired by Gilead Sciences in April 2020 for $4.9 billion (learn more about other highlighted partnership events on CIRM’s Industry Alliance Program website by clicking here).

In CIRM’s 2019-2020 18-Month Report, Mark Chao, M.D., Ph.D.,  who co-founded Forty Seven, Inc. and currently serves as the VP of oncology clinical research at Gilead Sciences, credits CIRM with helping progress this treatment.

“CIRM’s support has been instrumental to our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach.”

Magrolimab is currently being studied as a combination therapy with azacitidine, a chemotherapy drug, in a Phase 3 clinical trial in previously untreated higher risk MDS. This is one of the last steps before seeking FDA approval for widespread commercial use.

Merdad Parsey, MD, PhD, Chief Medical Officer at Gilead Sciences

In a press release, Merdad Parsey, M.D., Ph.D., Chief Medical Officer at Gilead Sciences discusses the significance of the designation from the FDA and the importance of the treatment.

“The Breakthrough Therapy designation recognizes the potential for magrolimab to help address a significant unmet medical need for people with MDS and underscores the transformative potential of Gilead’s immuno-oncology therapies in development.”

Graphite Bio launches and will prepare for clinical trial based on CIRM-funded research

Josh Lehrer, M.D., CEO of Graphite Bio

This week saw the launch of the 45th startup company enabled by CIRM funding of translational research at California academic institutions. Graphite Bio officially launched with the help of $45M in funding led by bay area venture firms Versant Ventures and Samsara BioCapital to spinout a novel CRISPR gene editing platform from Stanford University to treat severe diseases. Graphite Bio’s lead candidate is for sickle cell disease and it harnesses CRISPR gene correction technology to correct the single DNA mutation in sickle cell disease and to restore normal hemoglobin expression in the red blood cells of sickle cell patients (Learn more about CRISPR from a previous blog post linked here).

Matt Porteus, M.D., Ph.D (left) and Maria Grazia Roncarolo, M.D. (right)
Graphite Bio scientific founders

Matt Porteus, M.D., Ph.D and Maria Grazia Roncarolo, M.D., both from Stanford University, are the company’s scientific founders. Dr. Porteus, Dr. Roncarolo, and the Stanford team are currently supported by a CIRM  late stage preclinical grant  to complete the final preclinical studies and to file an Investigational New Drug application with the FDA, which will enable Graphite Bio to commence clinical studies of the CRISPR sickle cell disease gene therapy candidate in sickle cell patients in 2021.

Josh Lehrer, M.D., was appointed CEO of Graphite Bio and elaborated on the company’s gene editing approach in a news release.

“Our flexible, site-specific approach is extremely powerful and could be used to definitively correct the underlying causes of many severe genetic diseases, and also is applicable to broader disease areas. With backing from Versant and Samsara, we look forward to progressing our novel medicines into the clinic for patients with high unmet needs.”

In a press release, Dr. Porteus take a retrospective look on his preclinical research and its progress towards a clinical trial.

“It is gratifying to see our work on new gene editing approaches being translated into novel therapies. I’m very excited to be working with Versant again on a start-up and I look forward to collaborating with Samsara and the Graphite Bio team to bring a new generation of genetic treatments to patients.”

CIRM’s funding of late stage preclinical projects such this one is critical to its funding model, which de-risks the discovery, translational development and clinical proof of concept of innovative stem cell-based treatments until they can attract industry partnerships. You can learn more about CIRM-enabled spinout companies and CIRM’s broader effort to facilitate industry partnering for its portfolio projects on CIRM’s Industry Alliance Program website.

You can contact CIRM’s Director of Business Development at the email below to learn more about the Industry Alliance Program.

Shyam Patel, Ph.D.
Director, Business Development
Email: spatel@cirm.ca.gov

Unproven “stem cell” therapy injuries are more common than we realized

Jaime Imitola, senior author of the paper and director of the Comprehensive Multiple Sclerosis Center at UConn Health

Here at CIRM we only fund clinical trials that meet the rigorous standards outlined by the Food and Drug Administration (FDA). These requirements are not only necessary to properly evaluate how effective a potential treatment may be, but they are also important in fulfilling the Hippocratic Oath to “first, do no harm”.

The journey from the bench to the bedside for a potential treatment is one that is long, arduous, and often filled with setbacks. Unfortunately, there are those affected with various diseases that do not have the luxury of time. People who have suffered brain or spinal cord damage, or have been diagnosed with neurological disease, are often frustrated by the lack of treatments available to help them. That frustration can make them susceptible to the false promises made by predatory clinics, which operate outside of FDA oversight and offer “stem cell” treatments that are unproven and cost upwards of $50,000. In the midst of a global pandemic, some of these predatory clinics are even promoting false cures for COVID-19.

In an effort to better understand how often people gravitate to these predatory clinics, a phenomenon known as stem cell tourism, Dr. Jaime Imitola and a team of researchers at UConn Health conducted a nationwide survey of academic neurologists’ experiences in stem cell tourism complications. The study also evaluated the level of physician preparation to counsel and educate patients. These neurologists will typically have patients come to them asking for permission, a kind of “clearance” in their eyes, to get these unapproved stem cell treatments.

The results of the survey were very revealing. Of the neurologists who responded to the survey, one in four had a patient with complications related to stem cell therapy, which includes infections, strokes, spinal tumors, seizures, and even death. Additionally, 73% of neurologists responding to the survey said they felt that having more educational tools to discuss the issue with patients would be helpful.

In a press release, Dr. Imitola elaborated on the importance of this study.

“It is really shocking that only 28% of board-certified neurologists feel completely prepared to discuss this important issue with their patients…The ultimate goal of this research is to be able to determine the extent of the complications and the readiness of neurologists to counsel patients. All of us are interested in bringing real stem cells to the clinic, but this process is arduous and requires a great level of rigor and reproducibility.”

Dr. Imitola and his team also plan on starting a national patient registry, where physicians can report complications from stem cell tourism procedures. This would not only provide a better sense of the problem at hand, it would gather data that physicians could use to better educate patients.

The full results to this study were published in Annals of Neurology.

CIRM has produced a short video and other easy to digest information on questions people should ask before signing up for any clinical trial. You can find those resources here.

CIRM has also published findings in Stem Cells Translational Medicine that discuss the three R’s–regulated, reliable, and reputable–and how these can help protect patients with uniform standards for stem cell treatments .

CIRM Board Expands COVID-19 Efforts

Coronavirus particles, illustration. Courtesy KTSDesign/Science Photo Library

This past Friday, the governing Board of the California Institute for Regenerative Medicine (CIRM) expanded the eligibility criteria for COVID-19 related projects to develop new treatments against the virus.  Just two weeks ago, the Board approved $5 million in emergency funding for COVID-19 research.

One major addition is allowing research related to convalescent plasma to be eligible for CIRM COVID-19 emergency funding.  Plasma is a component of blood that carries cells and antibodies.  Blood plasma from patients that have recovered from COVID-19, referred to as convalescent plasma, contains antibodies against the virus and could be used as a potential treatment for COVID-19 patients.

In addition to this, potential clinical studies of convalescent plasma are now approved for use by the U.S. Food and Drug Administration (FDA) single-patient emergency Investigational New Drug (eIND) pathway as opposed to only a traditional IND.  Before treatments can be tested in humans, a traditional IND needs to be filed.  In an emergency situation such as the coronavirus pandemic, an eIND can be filed to begin testing the treatment faster.

In order to address the disproportionate impact of COVID-19 on underserved communities, priority will be given to projects that directly address these disparities. 

Lastly, potential clinical programs for COVID-19 are now approved to start incurring allowable project costs, at risk, from the date of the application submission deadline.  This would give researchers the opportunity to start their projects earlier and cover project costs retroactively if they are approved for funding.

“The intent behind this amendment is to be responsive to this COVID-19 crisis by leveraging CIRM’s funding programs, processes, and infrastructure within the scientific ecosystem that it has supported to date,” said Maria T. Millan, M.D., President and CEO of CIRM. “By providing an opportunity for the medical and scientific community to gather important data while using convalescent plasma treatment protocols on an emergency basis, CIRM is joining the global effort to expedite treatments to patients in need in the midst of this global pandemic.”

CIRM has established an open call for proposals and will accept applications on a bi-monthly basis.

Please refer to the following Program Announcement for more details:

·      Special Call for COVID-19 Projects

To Submit an Application:

  1. Go to the Grants Management Portal (https://grants.cirm.ca.gov) and log in with your existing CIRM Username and Password. If you do not have a Username, Click on the “New User” link and follow the instructions to create a CIRM Username and password.
  2. After logging in, click on the Menu tab. Select the tab labeled “Open Programs“. Under the section labeled “RFAs and Programs Open for Applications“, click on the “Start a Grant Application” link for your selected program.
  3. Complete each section of the Application by clicking on the appropriate link and following the posted instructions. Proposal templates can be located and submitted under the “Uploads” section.
  4. To submit your Application, click on the “Done with Application” button. The “Done with Application” button will be enabled when all of the mandatory sections have been completed. Please note that once this has been selected, you will no longer be able to make changes to your Application.
  5. To confirm submission of your Application, select the tab labeled “Your Applications” and check the table under the section labeled “Your Submitted Applications“. You will see your Application number and project title listed once the submission process has been completed.