Peddling hope for thousands of dollars – a TV expose on one clinic offering unproven stem cell therapies

David Goldstein

You may have seen an ad in your local paper, promoting a seminar on the “wonders” of stem cell therapies. They are becoming increasingly common all around the US.

The ads talk about the ability of stem cells to heal everything from arthritis to autism. But what they don’t talk about is that they are not approved by the FDA for use in patients, and that they are not proven to do anything except remove large amounts of money from your wallet.

One TV reporter decided to see exactly what was on offer at these clinics. So CBSLA Investigative Reporter David Goldstein went to a free stem cell seminar in the City of Orange, put on by the Stem Cell Institute of Orange County, and found that there was a huge gap between what was being promised and what was being delivered.

You can watch that TV report here.

 

Stories that caught our eye: Is a Texas law opening up access to stem cell treatments working? Another CIRM-funded company gets good news from the FDA.

TexasCapitol_shutterstock_494317324

Texas Capitol. (Shutterstock)

In 2017 Texas passed a sweeping new law, HB 810, which allowed medical clinics to provide “investigational stem cell treatments to patients with certain severe chronic diseases or terminal illnesses.” Those in favor of the law argued that patients battling life-threatening or life-changing diseases should have the right to try stem cell therapies that were involved in a clinical trial.

Now a new study, published in the journal Stem Cells and Development, looks at the impact of the law. The report says that despite some recent amendments t there are still some concerns about the law including:

  • It allows treatment only if the patient has a “severe, chronic” illness but doesn’t define what that means
  • It doesn’t have clearly defined procedures on tracking and reporting procedures so it’s hard to know how many patients might be treated and what the outcomes are
  • There is no Food and Drug Administration (FDA) oversight of the patients being treated
  • Because the treatments are unproven there are fears this will “open up the state to unsavory and predatory practices by individuals preying on vulnerable patients”

The researchers conclude:

“While HB 810 opens up access to patients, it also increases significant risks for their safety and financial cost for something that might have no positive impact on their disease. Truly understanding the impact of stem cell based interventions (SCBI) requires scientific rigor, and accurate outcome data reporting must be pursued to ensure the safety and efficacy behind such procedures. This information must be readily available so that patients can make informed decisions before electing to pursue such treatments. The creation of the SCBI registry could allow for some level of scientific rigor, provide a centralized data source, and offer the potential for better informed patient choices, and might be the best option for the state to help protect patients.”

Another CIRM-funded company gets RMAT designation

Poseida

When Congress approved the 21st Century Cures Act a few years ago one of the new programs it created was the Regenerative Medicine Advanced Therapy (RMAT) designation. This was given to therapies that are designed to treat a serious or life-threatening condition, where early clinical stage trials show the approach is safe and appears to be effective.

Getting an RMAT designation is a big deal. It means the company or researchers are able to apply for an expedited review by the FDA and could get approval for wider use.

This week Poseida Therapeutics was granted RMAT designation by the Food and drug Administration (FDA) for P-BCMA-101, its CAR-T therapy for relapsed/refractory multiple myeloma. This is currently in a Phase 1 clinical trial that CIRM is funding

In this trial Poseida’s technology takes an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy cancerous myeloma cells.

In a news release Eric Ostertag, Poseida’s CEO, welcomed the news:

“Initial Phase 1 data presented at the CAR-TCR Summit earlier this year included encouraging response rates and safety data, including meaningful responses in a heavily pretreated population. We expect to have an additional data update by the end of the year and look forward to working closely with the FDA to expedite development of P-BCMA-101.”

This means that five CIRM-funded companies have now been granted RMAT designations:

CIRM-supported study shows promise in fighting acute myeloid leukemia

Chemotherapy

Chemotherapy

For years chemotherapy has been a mainstay in the war against cancer. While it can be very effective it can also come with some nasty side effects. Since chemo works by killing rapidly growing cells, it not only hits the cancer cells, but can also hit other rapidly growing cells too, including those in our hair roots, which is why many people undergoing chemo lose their hair.

So, the key to a truly effective anti-cancer therapy is one that does as much damage as possible to the cancer cells, and as little as possible to all the healthy cells in the body. A therapy being developed by Cellerant Therapeutics seems to have found that sweet spot in a new therapy targeting acute myeloid leukemia (AML).

AML starts in the bone marrow and quickly moves into the blood, where it can spread to other parts of the body. It is the second most common form of leukemia and claims around 10,000 lives in the US every year. Chemotherapy is the main weapon used against AML but it can also cause nausea, hair loss and other complications and in most cases has limited effectiveness because, over time, the leukemia cells get used to it.

Cellerant 2013In a study published in the journal Blood Advances, Cellerant researchers explain the limitations of existing treatments.

“The current standard of care for acute myeloid leukemia (AML) is largely ineffective with very high relapse rates and low survival rates, mostly due to the inability to eliminate a rare population of leukemic stem cells (LSCs) that initiate tumor growth and are resistant to standard chemotherapy.”

Cellerant has developed a therapy called CLT030 which targets CLL1, a marker found on the surface of leukemia cells but not on normal blood stem cells. Preclinical studies in mice show CLT030 is able to zero in on this surface marker and attack the leukemia but do little damage to blood or other surrounding cells.

In a news release, Ram Mandalam, President and CEO of Cellerant, said this is encouraging news:

“AML remains a significant unmet medical need, and our therapy, CLT030, that can target leukemic stem cells precisely while minimally affecting normal hematopoietic stem cells could improve outcomes while avoiding much of the toxicities associated with conventional chemotherapy and other targeted therapeutics.”

Mandalam says they are now doing the late-stage preclinical testing to be able to apply to the Food and Drug Administration for permission to start a clinical trial. CIRM is funding this stage of the research.

 

Research Targeting Prostate Cancer Gets Almost $4 Million Support from CIRM

Prostate cancer

A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)

In the U.S., prostate cancer is the second most common cause of cancer deaths in men.  An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018.  Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.

Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.

“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”

Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.

Quest Awards

The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Among those approved for funding are:

  • Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
  • Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
  • Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer

Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.

The successful applications are:

 

APPLICATION

 

TITLE

 

INSTITUTION

CIRM COMMITTED FUNDING
DISC2-11131 Genetically Modified Hematopoietic Stem Cells for the

Treatment of Danon Disease

 

 

U.C San Diego

 

$1,393,200

 

DISC2-11157 Preclinical Development of An HSC-Engineered Off-

The-Shelf iNKT Cell Therapy for Cancer

 

 

U.C. Los Angeles

 

$1,404,000

DISC2-11036 Non-viral reprogramming of the endogenous TCRα

locus to direct stem memory T cells against shared

neoantigens in malignant gliomas

 

 

U.C. San Francisco

 

$900,000

DISC2-11175 Therapeutic immune tolerant human islet-like

organoids (HILOs) for Type 1 Diabetes

 

 

Salk Institute

 

$1,637,209

DISC2-11107 Chimeric Antigen Receptor-Engineered Stem/Memory

T Cells for the Treatment of Recurrent Ovarian Cancer

 

 

City of Hope

 

$1,381,104

DISC2-11165 Develop iPSC-derived microglia to treat progranulin-

deficient Frontotemporal Dementia

 

 

Gladstone Institutes

 

$1,553,923

DISC2-11192 Mesenchymal stem cell extracellular vesicles as

therapy for pulmonary fibrosis

 

 

U.C. San Diego

 

$865,282

DISC2-11109 Regenerative Thymic Tissues as Curative Cell

Therapy for Patients with 22q11 Deletion Syndrome

 

 

Stanford University

 

$865,282

 

 

Overcoming one of the biggest challenges in stem cell research

Imagine you have just designed and built a new car. Everyone loves it. It’s sleek, fast, elegant, has plenty of cup holders. People want to buy it. The only problem is you haven’t built an assembly line to make enough of them to meet demand. Frustrating eh.

Overcoming problems in manufacturing is not an issue that just affects the auto industry (which won’t make Elon Musk and Tesla feel any better) it’s something that affects many other areas too – including the field of regenerative medicine. After all, what good is it developing a treatment for a deadly disease if you can’t make enough of the therapy to help the people who need it the most, the patients.

As the number of stem cell therapies entering clinical trials increases, so too does the demand for large numbers of high quality, rigorously tested stem cells. And because each of those therapies is unique, that places a lot of pressure on existing manufacturing facilities to meet the demand.

IABS panel

Representatives from the US FDA, Health Canada, EMA, FDA China, World Health Organization discuss creating a manufacturing roadmap for stem cell therapies: Photo Geoff Lomax

So, with that in mind CIRM teamed up with the International Alliance for Biological Standardization (IABS) to hold the 4th Cell Therapy Conference: Manufacturing and Testing of Pluripotent Stem Cells to try and identify the key problems and chart out solutions.

The conference brought together everyone who had a stake in this issue, including leading experts in cell manufacturing, commercial sponsors developing stem cell treatments, academic researchers, the World Health Organization, the US Food and Drug Administration (FDA), international regulatory bodies as well as patient and patient advocates too (after all, who has a greater stake in this).

Commercial sponsors and academic researchers presented case studies of how they worked through the development of manufacturing process for their stem cell treatments.

Some key points quickly emerged:

  • Scale up and quality control of stem cell manufacturing is vital to the development of stem cell treatments.
  • California is a world leader in stem cell manufacturing.
  • There have been numerous innovations in cell manufacturing that serve to support quality, quantity, performance and cost control.
  • The collective experience of the field is leading to standardization of definitions (so we all use the same language), standardization of processes to release quality cells, manufacturing and standardization of testing (so we all meet the same safety requirements).
  • Building consensus among stakeholders is important for accelerating stem cell treatments to patients.

Regulatory experts emphasized the importance of thinking about manufacturing early on in the research and product development phase, so that you can avoid problems in later stages.

There were no easy answers to many of the questions posed, but there was agreement on the importance of developing a stem cell glossary, a common set of terms and definitions that we can all use. There was also agreement on the key topics that need to continue to be highlighted such as safety testing, compatibility, early locking-in of quality processes when feasible, and scaling up.

In the past our big concern was developing the therapies. Now we have to worry about being able to manufacture enough of the cells to meet demand. That’s progress.

A technical summary is being developed and we will announce when it is available.

 

 

Using the courts to protect patients from unapproved stem cell therapies

A recent article in Nature looked at using lawsuits to help rein in the activities of clinics offering “unapproved” therapies. CIRM’s Geoff Lomax explains.

Stem-Cell-Clinics-to-Trust

When public health officials wanted to raise awareness about the dangers of smoking they filed lawsuits against the tobacco companies. They accused Big Tobacco of deceptive marketing and hiding the negative health effects of smoking. Ultimately, they won. Now a new study says a similar tactic could prove effective in combating clinics that offer unproven stem cell therapies.

CIRM works tirelessly to accelerate the delivery of stem cell treatments to patients with unmet medical needs. But, that doesn’t mean we support any treatment that claims to help people. CIRM only partners with projects that have been given the go-ahead by the US Food and Drug Administration (FDA) to be tested in people in a clinical trial.  That’s because FDA approval means the clinical trial will be monitored and evaluated under high scientific and ethical standards.

In contrast, there are numerous examples where “stem-cell treatments” not sanctioned by the FDA are being marketed directly to patients. For years the FDA, CIRM and others have been warning consumers about the risks involved with these untested treatments. For example, just last  November the FDA issued a warning and advice for people considering stem cell treatments.

Legal steps

Last year CIRM also helped author a new California law designed to protect consumers. The law requires health care providers to disclose to patients when using a treatment that is not FDA approved or part of an FDA-sanctioned clinical trial.

At CIRM, we frequently direct patients seeking treatments to our Alpha Stem Cell Clinics Network. The Alpha Clinics only perform clinical trials that have been given the green light by the FDA, and they provide expert consultation and informed consent to patients to help ensure they make the best choice for themselves. Further, the Alpha Clinics follow up with patients after their treatments to evaluate safety and the effectiveness of the treatments.

These are steps that clinics offering unproven and unapproved therapies typically don’t follow. So, the question is how do you let people know about the risks involved in going to one of these clinics and how do you stop clinics offering “therapies” that might endanger the health of patients?

Using the law to hit clinics where it hurts

In a recently published perspective in the journal Nature an international team of policy experts considered whether civil lawsuits may play a role in stemming the tide of unproven treatments. In the article the authors say:

“The threat of financial liability for wrongdoing is the primary means by which civil law governs behavior in the private sector. Despite calls for stepping up enforcement efforts, the US Food and Drug Administration (FDA) is currently restricted in its ability to identify and target clinics operating in apparent violation of regulations. The fear of tort liability {lawsuits} may provide sufficient incentive for compliance and minimize the occurrence of unethical practices.”

The authors identified nine individual and class action lawsuits involving clinics offering what they called “unproven stem cell interventions.” A few of those were dismissed or decided in favor of the clinics, with judges saying the claims lacked merit. Most, however, were settled by the clinics with no ruling on the merits of the issue raised. Even without definitive judgements against the clinics the authors of the article conclude:

“Stem cell lawsuits could intensify publicity and raise awareness of the harms of unproven treatments, set legal precedent, reshape the media narrative from one focused on the right to try or practice to one highlighting the need for adequate safety and efficacy standards, and encourage authorities to turn their attention to policy reform and enforcement.”

The authors suggest the courts may provide a forum where medical experts can inform patients, the legal community and the public about good versus harmful clinical practices. In short, the authors believe the legal process can be an effective forum for to provide education and outreach to those with disease and the public at large.

The better option of course would be for the clinics themselves to reform their practices and engage with the FDA to test their therapies in a clinical trial. Until that happens the courts may offer an alternative approach to curbing the marketing of these unproven and unapproved therapies.

Creating a platform to help transplanted stem cells survive after a heart attack

heart

Developing new tools to repair damaged hearts

Repairing, even reversing, the damage caused by a heart attack is the Holy Grail of stem cell researchers. For years the Grail seemed out of reach because the cells that researchers transplanted into heart attack patients didn’t stick around long enough to do much good. Now researchers at Stanford may have found a way around that problem.

In a heart attack, a blockage cuts off the oxygen supply to muscle cells. Like any part of our body starved off oxygen the muscle cells start to die, and as they do the body responds by creating a layer of scars, effectively walling off the dead tissue from the surviving healthy tissue.  But that scar tissue makes it harder for the heart to effectively and efficiently pump blood around the body. That reduced blood flow has a big impact on a person’s ability to return to a normal life.

In the past, efforts to transplant stem cells into the heart had limited success. Researchers tried pairing the cells with factors called peptides to help boost their odds of surviving. That worked a little better but most of the peptides were also short-lived and weren’t able to make a big difference in the ability of transplanted cells to stick around long enough to help the heart heal.

Slow and steady approach

Now, in a CIRM-funded study published in the journal Nature Biomedical Engineering, a team at Stanford – led by Dr. Joseph Wu – believe they have managed to create a new way of delivering these cells, one that combines them with a slow-release delivery mechanism to increase their chances of success.

The team began by working with a subset of bone marrow cells that had been shown in previous studies to have what are called “pro-survival factors.” Then, working in mice, they identified three peptides that lived longer than other peptides. That was step one.

Step two involved creating a matrix, a kind of supporting scaffold, that would enable the researchers to link the three peptides and combine them with a delivery system they hoped would produce a slow release of pro-survival factors.

Step three was seeing if it worked. Using fluorescent markers, they were able to show, in laboratory tests, that unlinked peptides were rapidly released over two or three days. However, the linked peptides had a much slower release, lasting more than 15 days.

Out of the lab and into animals

While these petri dish experiments looked promising the big question was could this approach work in an animal model and, ultimately, in people. So, the team focused on cardiac progenitor cells (CPCs) which have shown potential to help repair damaged hearts, but which also have a low survival rate when transplanted into hearts that have experienced a heart attack.

The team delivered CPCs to the hearts of mice and found the cells without the pro-survival matrix didn’t last long – 80 percent of the cells were gone four days after they were injected, 90 percent were gone by day ten. In contrast the cells on the peptide-infused matrix were found in large numbers up to eight weeks after injection. And the cells didn’t just survive, they also engrafted and activated the heart’s own survival pathways.

Impact on heart

The team then tested to see if the treatment was helping improve heart function. They did echocardiograms and magnetic resonance imaging up to 8 weeks after the transplant surgery and found that the mice treated with the matrix combination had a statistically improved left ventricular function compared to the other mice.

Jayakumar Rajadas, one of the authors on the paper told CIRM that, because the matrix was partly made out of collagen, a substance the FDA has already approved for use in people, this could help in applying for approval to test it in people in the future:

“This paper is the first comprehensive report to demonstrate an FDA-compliant biomaterial to improve stem cell engraftment in the ischemic heart. Importantly, the biomaterial is collagen-based and can be readily tested in humans once regulatory approval is obtained.”

 

A year in review – CIRM’s 2017 Annual Report focuses on a year of accelerating stem cell treatments to patients

Facebook-AR-2017[3]

At CIRM we have our focus very clearly on the future, on accelerating stem cell therapies to patients with unmet medical needs. But every once in a while, it’s a good idea to look back at what you have already done. Knowing where you came from can help you get to where you are heading.

So, it’s with a sense of accomplishment that we are unveiling our 2017 Annual Report. It’s a look back at another banner year for the stem cell agency, the research we funded, the partnerships we created and, most importantly, the lives we touched.

It features profiles of several people who received stem cell therapies in CIRM-funded clinical trials and the impact those therapies are having on them. But it also looks at some of the other individuals who are such a vital part of the work we do: patient advocates, researchers and a member of our Grants Working Group which reviews applications for funding. Each one, in their own way, contributes to advancing the field.

The report also highlights some of the less obvious ways that our funding is benefitting California. For example, the additional $1.9 billion dollars our funding has helped generate through co-funding and partnerships, or the number of projects we are funding that have been awarded Regenerative Medicine Advanced Therapy Designation from the Food and Drug Administration (FDA), making them eligible for accelerated review if their results continue to be promising.

It’s a look back at a successful year.

But we are not resting on our laurels. We are already hard at work, determined to make 2018 even better.

 

 

Stories that caught our eye: How dying cells could help save lives; could modified blood stem cells reverse diabetes?; and FDA has good news for patients, bad news for rogue clinics

Gunsmoke

Growing up I loved watching old cowboy movies. Invariably the hero, even though mortally wounded, would manage to save the day and rescue the heroine and/or the town.

Now it seems some stem cells perform the same function, dying in order to save the lives of others.

Researchers at Kings College in London were trying to better understand Graft vs Host Disease (GvHD), a potentially fatal complication that can occur when a patient receives a blood stem cell transplant. In cases of GvHD, the transplanted donor cells turn on the patient and attack their healthy cells and tissues.

Some previous research had found that using bone marrow cells called mesenchymal stem cells (MSCs) had some success in combating GvHD. But it was unpredictable who it helped and why.

Working with mice, the Kings College team found that the MSCs were only effective if they died after being transplanted. It appears that it is only as they are dying that the MSCs engage with the individual’s immune system, telling it to stop attacking healthy tissues. The team also found that if they kill the MSCs just before transplanting them into mice, they were just as effective.

In a news article on HealthCanal, lead researcher Professor Francesco Dazzi, said the next step is to see if this will apply to, and help, people:

“The side effects of a stem cell transplant can be fatal and this factor is a serious consideration in deciding whether some people are suitable to undergo one. If we can be more confident that we can control these lethal complications in all patients, more people will be able to receive this life saving procedure. The next step will be to introduce clinical trials for patients with GvHD, either using the procedure only in patients with immune systems capable of killing mesenchymal stem cells, or killing these cells before they are infused into the patient, to see if this does indeed improve the success of treatment.”

The study is published in Science Translational Medicine.

Genetically modified blood stem cells reverse diabetes in mice (Todd Dubnicoff)

When functioning properly, the T cells of our immune system keep us healthy by detecting and killing off infected, damaged or cancerous cells in our body. But in the case of type 1 diabetes, a person’s own T cells turn against the body by mistakenly targeting and destroying perfectly normal islet cells in the pancreas, which are responsible for producing insulin. As a result, the insulin-dependent delivery of blood sugar to the energy-hungry organs is disrupted leading to many serious complications. Blood stem cell transplants have been performed to treat the disease by attempting to restart the immune system. The results have failed to provide a cure.

Now a new study, published in Science Translational Medicine, appears to explain why those previous attempts failed and how some genetic rejiggering could lead to a successful treatment for type 1 diabetes.

An analysis of the gene activity inside the blood stem cells of diabetic mice and humans reveals that these cells lack a protein called PD-L1. This protein is known to play an important role in putting the brakes on T cell activity. Because T cells are potent cell killers, it’s important for proteins like PD-L1 to keep the activated T cells in check.

Cell based image for t 1 diabetes

Credit: Andrea Panigada/Nancy Fliesler

Researchers from Boston Children’s Hospital hypothesized that adding back PD-L1 may prevent T cells from the indiscriminate killing of the body’s own insulin-producing cells. To test this idea, the research team genetically engineered mouse blood stem cells to produce the PD-L1 protein. Experiments with the cells in a petri dish showed that the addition of PD-L1 did indeed block the attack-on-self activity. And when these blood stem cells were transplanted into a diabetic mouse strain, the disease was reversed in most of the animals over the short term while a third of the mice had long-lasting benefits.

The researchers hope this targeting of PD-L1 production – which the researchers could also stimulate with pharmacological drugs – will contribute to a cure for type 1 diabetes.

FDA’s new guidelines for stem cell treatments

Gottlieb

FDA Commissioner Scott Gottlieb

Yesterday Scott Gottlieb, the Commissioner at the US Food and Drug Administration (FDA), laid out some new guidelines for the way the agency regulates stem cells and regenerative medicine. The news was good for patients, not so good for clinics offering unproven treatments.

First the good. Gottlieb announced new guidelines encouraging innovation in the development of stem cell therapies, and faster pathways for therapies, that show they are both safe and effective, to reach the patient.

At the same time, he detailed new rules that provide greater clarity about what clinics can do with stem cells without incurring the wrath of the FDA. Those guidelines detail the limits on the kinds of procedures clinics can offer and what ways they can “manipulate” those cells. Clinics that go beyond those limits could be in trouble.

In making the announcement Gottlieb said:

“To be clear, we remain committed to ensuring that patients have access to safe and effective regenerative medicine products as efficiently as possible. We are also committed to making sure we take action against products being unlawfully marketed that pose a potential significant risk to their safety. The framework we’re announcing today gives us the solid platform we need to continue to take enforcement action against a small number of clearly unscrupulous actors.”

Many of the details in the announcement match what CIRM has been pushing for some years. Randy Mills, our previous President and CEO, called for many of these changes in an Op Ed he co-wrote with former US Senator Bill Frist.

Our hope now is that the FDA continues to follow this promising path and turns these draft proposals into hard policy.

 

Using heart stem cells to help boys battling a deadly disorder

 

Caleb_Thumbnail3

Caleb Sizemore, a young man with DMD, speaks to the CIRM Board about his treatment in the Capricor clinical trial.

It’s hard to imagine how missing just one tiny protein can have such a devastating impact on a person. But with Duchenne Muscular Dystrophy (DMD) the lack of a single protein called dystrophin has deadly consequences. Now a new study is offering hope we may be able to help people with this rare genetic disorder.

DMD is a muscle wasting condition that steadily destroys the muscles in the arms and legs, heart and respiratory system. It affects mostly boys and it starts early in life, sometimes as young as 3 years old, and never lets up. By early teens many boys are unable to walk and are in a wheelchair. Their heart and breathing are also affected. In the past most people with DMD didn’t survive their teens. Now it’s more common for them to live into their 20’s and 30’s, but not much beyond that.

Results from a clinical trial being run by Capricor Therapeutics – and funded by CIRM – suggest we may be able to halt, and even reverse, some of the impacts of DMD.

Capricor has developed a therapy called CAP-1002 using cells derived from heart stem cells, called cardiospheres. Boys and young men with DMD who were treated with CAP-1002 experienced what Capricor calls “significant and sustained improvements in cardiac structure and function, as well as skeletal muscle function.”

In a news release Dr. Ronald Victor, a researcher at Cedars-Sinai Heart Institute and the lead investigator for the trial, said they followed these patients for 12 months after treatment and the results are encouraging:

“Because Duchenne muscular dystrophy is a devastating, muscle-wasting disease that causes physical debilitation and eventually heart failure, the improvements in heart and skeletal muscle in those treated with a single dose of CAP-1002 are very promising and show that a subsequent trial is warranted. These early results provide hope for the Duchenne community, which is in urgent need of a major therapeutic breakthrough.”

According to the 12-month results:

  • 89 percent of patients treated with CAP-1002 showed sustained or improved muscle function compared to untreated patients
  • The CAP-1002 group had improved heart muscle function compared to the untreated group
  • The CAP-1002 group had reduced scarring on their heart compared to the untreated group.

Now, these results are still very early stage and there’s a danger in reading too much into them. However, the fact that they are sustained over one year is a promising sign. Also, none of the treated patients experienced any serious side effects from the therapy.

The team at Capricor now plans to go back to the US Food and Drug Administration (FDA) to get clearance to launch an even larger study in 2018.

For a condition like DMD, that has no cure and where treatments can simply slow down the progression of the disorder, this is a hopeful start.

Caleb Sizemore is one of the people treated in this trial. You can read his story and listen to him describing the impact of the treatment on his life.