CIRM-funded clinical trial takes a combination approach to treating deadly blood cancers

Stained blood smear shows enlarged chronic lymphocytic leukemia cells among normal red blood cells. (UCSD Health)

A diagnosis of cancer often means a tough road ahead, with surgery, chemotherapy and radiation used to try and kill the tumor. Even then, sometimes cancer cells manage to survive and return later, spreading throughout the body. Now researchers at UC San Diego and Oncternal Therapeutics are teaming up with a combination approach they hope will destroy hard-to-kill blood cancers like leukemia.

The combination uses a monoclonal antibody called cirmtuzumab (so called because CIRM funding helped develop it) and a more traditional anti-cancer therapy called ibrutinib. Here’s how it is hoped this approach will work.

Ibrutinib is already approved by the US Food and Drug Administration (FDA) to treat blood cancers such as leukemia and lymphoma. But while it can help, it doesn’t always completely eradicate all the cancer cells. Some cancer stem cells are able to lie dormant during treatment and then start proliferating and spreading the cancer later. That’s why the team are pairing ibrutinib with cirmtuzumab.

In a news release announcing the start of the trial, UCSD’s Dr. Thomas Kipps,  said they hope this one-two punch combination will be more effective.

Thomas Kipps, UCSD

“As a result {of the failure to kill all the cancer cells}, patients typically need to take ibrutinib indefinitely, or until they develop intolerance or resistance to this drug. Cirmtuzumab targets leukemia and cancer stem cells, which are like the seeds of cancer. They are hard to find and difficult to destroy. By blocking signaling pathways that promote neoplastic-cell growth and survival, cirmtuzumab may have complementary activity with ibrutinib in killing leukemia cells, allowing patients potentially to achieve complete remissions that permit patients to stop therapy altogether.”

Because this is an early stage clinical trial, the goal is to first make sure the approach is safe, and second to identify the best dose and treatment schedule for patients.

The researchers hope to recruit 117 patients around the US. Some will get the cirmtuzumab and ibrutinib combination, some will get ibrutinib alone to see if one approach is more effective than the other.

CIRM has a triple investment in this research. Not only did our funding help develop cirmtuzumab, but CIRM is also funding this clinical trial and one of the trial sites is at UCSD, one of the CIRM Alpha Stem Cell Clinics.

CIRM’s Dr. Ingrid Caras says this highlights our commitment to our mission of accelerating stem cell therapies to patients with unmet medical needs.

“Our partnership with UC San Diego and the Alpha Stem Cell Clinics has enabled this trial to more quickly engage potential patient-participants. Being among the first to try new therapies requires courage and CIRM is grateful to the patients who are volunteering to be part of this clinical trial.”


Related Links:

Scientists repair spinal cord injuries in monkeys using human stem cells

Human neuronal stem cells extend axons (green). (Image UCSD)

An exciting development for spinal cord injury research was published this week in the journal Nature Medicine. Scientists from the University of San Diego School of Medicine transplanted human neural progenitor cells (NPCs) into rhesus monkeys that had spinal cord injuries. These cells, which are capable of turning into other cells in the brain, survived and robustly developed into nerve cells that improved the monkeys’ use of their hands and arms.

The scientists grafted 20 million human NPCs derived from embryonic stem cells into two-week-old spinal cord lesions in the monkeys. These stem cells were delivered with growth factors to improve their survival and growth. The monkeys were also treated with immunosuppressive drugs to prevent their immune system from rejecting the human cells.

After nine months, they discovered that the NPCs had developed into nerve cells within the injury site that extended past the injury into healthy tissue. These nerve extensions are called axons, which allow nerves to transmit electrical signals and instructions to other brain cells. During spinal cord injury, nerve cells and their axon extensions are damaged. Scientists have found it difficult to regenerate these damaged cells because of the inhibitory growth environment created at the injury site. You can compare it to the build-up of scar tissue after a heart attack. The heart has difficulty regenerating healthy heart muscle, which is instead replaced by fibrous scar tissue.

Excitingly, the UCSD team was able to overcome this hurdle in their current study. When they transplanted human NPCs with growth factors into the monkeys, they found that the cells were not affected by the inhibitory environment of the injury and were able to robustly develop into nerve cells and send out axon extensions.

Large numbers of human axons (green) emerge from a lesion/graft sites. Many axons travel along the interface (indicated by arrows) between spinal cord white matter (nerve fibers covered with myelin) and spinal cord gray matter (nerves without the whitish myelin sheathing). Image courtesy of Mark Tuszynski, UC San Diego School of Medicine.

The senior scientist on the study, Dr. Mark Tuszynski, explained how their findings in a large animal model are a huge step forward for the field in a UCSD Health news release:

“While there was real progress in research using small animal models, there were also enormous uncertainties that we felt could only be addressed by progressing to models more like humans before we conduct trials with people. We discovered that the grafting methods used with rodents didn’t work in larger, non-human primates. There were critical issues of scale, immunosuppression, timing and other features of methodology that had to be altered or invented. Had we attempted human transplantation without prior large animal testing, there would have been substantial risk of clinical trial failure, not because neural stem cells failed to reach their biological potential but because of things we did not know in terms of grafting and supporting the grafted cells.”

Dr. Tuszynski is a CIRM-grantee whose earlier research involved optimizing stem cell treatments for rodent models of spinal cord injury. We’ve blogged about that research previously on the Stem Cellar here and here.

Tuszynski recently was awarded a CIRM discovery stage research grant to develop a candidate human neural stem cell line that is optimized to repair the injured spinal cord and can be used in human clinical trials. He expressed cautious optimism about the future of this treatment for spinal cord injury patients emphasizing the need for patience and more research before arriving at clinical trials:

“We seem to have overcome some major barriers, including the inhibitory nature of adult myelin against axon growth. Our work has taught us that stem cells will take a long time to mature after transplantation to an injury site, and that patience will be required when moving to humans. Still, the growth we observe from these cells is remarkable — and unlike anything I thought possible even ten years ago. There is clearly significant potential here that we hope will benefit humans with spinal cord injury.”


Related Links:

Harnessing the body’s immune system to tackle cancer

Often on the Stem Cellar we write about work that is in a clinical trial. But getting research to that stage takes years and years of dedicated work. Over the next few months, we are profiling some of the scientists we fund who are doing Discovery (early stage) and Translational (pre-clinical) research, to highlight the importance of this work in developing the treatments that could ultimately save lives. 

This second profile in the series is by Ross Okamura, Ph.D., a science officer in CIRM’s Discovery & Translation Program.

Your immune system is your body’s main protection against disease; harnessing this powerful defense system to target a given disorder is known as immunotherapy.  There are different types of immunotherapies that have been developed over the years. These include vaccines to help generate antibodies against viruses, drugs to direct immune cell function and most recently, the engineering of immune cells to fight cancer.

Understanding How Immunotherapies Work

One of the more recent immunotherapy approaches to fight cancer that has seen rapid development is equipping a subset of immune cells (T cells) with a chimeric antigen receptor (CAR). In brief, CAR T ceIls are first removed from the patient and then engineered to recognize a specific feature of the targeted cancer cells.  This direct targeting of T cells to the cancer allows for an effective anti-cancer therapy made from your own immune system.

Simplified explanation of how CAR T cell therapies fight cancer. (Memorial Sloan Kettering)

For the first time this fall, two therapeutics employing CAR T cells targeting different types of blood cancers were approved for use by the US Food and Drug Administration (FDA) based on remarkable results found during the clinical trials. Specifically, Kymriah (developed by Novartis) was approved for treatment of acute lymphoblastic leukemia and Yescarta (developed by Kite Pharma) was approved for treatment of non-Hodgkin lymphoma.

There are drawbacks to the CAR T approach, however. Revving up the immune system to attack tumors can cause dangerous side effects. When CAR T cells enter the body, they trigger the release of proteins called cytokines, which join in the attack on the tumors. But this can also create what’s referred to as a cytokine storm or cytokine release syndrome (CRS), which can lead to a range of responses, from a mild fever to multi-organ failure and death. Balancing treatments to resolve CRS after it’s detected while still maintaining the treatment’s cancer-killing abilities is a significant challenge that remains to be overcome.  A second issue is that cancer cells can evade the immune system by no longer producing the target that the CAR-T therapy was designed to recognize. When this happens, the patient subsequently experiences a cancer relapse that is no longer treatable by the same cell therapy.

Natural Killer (NK) T cells represent another type of anti-cancer immunotherapy that is also being tested in clinical trials. NK cells are part of the innate immune system responsible for defending your body against both infection and tumor formation.  NK cells target stressed cells by releasing cell-penetrating proteins that poke holes in the cells leading to induced cell death.  As an immunotherapy, NK cells have the potential to avoid both the issues of CRS and cancer cell immune evasion as they release a more limited array of cytokines and do not rely on a specific single target to recognize tumors.  NK cells instead selectively target tumor cells due to the presence of stress-induced proteins on the cancer cells. In addition, the cancer cells lack other proteins that would normally send out a “I’m a healthy cell you can ignore me” message to NK cells. Without that message, NK cells target and kill those cancer cells.

Developing new immunotherapies against cancer

Dan Kaufman, UCSD

Dr. Dan Kaufman of the University of California at San Diego is a physician-scientist whose research group developed a method to produce functional NK cells from human pluripotent stem cells (PSC).  In order to overcome a major hurdle in the use of NK cells as an anti-cancer therapeutic, Dr. Kaufman is exploring using stem cells as a limitless source to produce a scalable, standardized, off-the-shelf product that could treat thousands of patients.  CIRM is currently funding Dr. Kaufman’s work under both a Discovery Quest award and a just recently funded Translational research award in order to try to advance this candidate approach.

In the CIRM Translational award, Dr. Kaufman is looking to cure acute myelogenous leukemia (AML) which in the US has a 5-year survival rate of 27% (National Cancer Institute, 2017) and is estimated to kill over 10,000 individuals this year (American Cancer Society, 2017).  He has previously shown that his stem cell-derived NK cells can kill human cancer cells in a dish and in mouse models, and his goals are to perform preliminary safety studies and to develop a process to scale his production of NK cells to support a clinical trial in people.  Since NK cells don’t require the patient and the donor to be a genetic match to be effective, a bank of PSC-derived NK cells derived from a single donor could potentially treat thousands of patients.

Looking forward, CIRM is also providing Discovery funding to Dr. Kaufman to explore ways to improve his existing approach against leukemia as well as expand the potential of his stem cell-derived NK cell therapeutic by engineering his cells to directly target solid tumors like ovarian cancer.

The field of pluripotent stem cell-based immunotherapies is full of game-changing potential and important innovations like Dr. Kaufman’s are still in the early stages.  CIRM recognizes the importance of supporting early stage research and is currently investing $27.9 million to fund 8 active Discovery and Translation awards in the cancer immunotherapy area.

Scientists find switch that targets immunotherapies to solid tumors

Cancer immunotherapies harness the power of the patient’s own immune system to fight cancer. One type of immunotherapy, called adoptive T cell therapy, uses immune cells called CD8+ Killer T cells to target and destroy tumors. These T cells are made in the spleen and lymph nodes and they can migrate to different locations in the body through a part of our circulatory system known as the lymphatic system.

CD8+ T cells can also leave the circulation and travel into the body’s tissues to fight infection and cancer. Scientists from the Scripps Research Institute and UC San Diego are interested in learning how these killer T cells do just that in hopes of developing better immunotherapies that can specifically target solid tumors.

In a study published last week in the journal Nature, the teams discovered that a gene called Runx3 acts as a switch that programs CD8+ T cells to set up shop within tissues outside of the circulatory system, giving them access to solid tumors.

“Runx3 works on chromosomes inside killer T cells to program genes in a way that enables the T cells to accumulate in a solid tumor,” said Matthew Pipkin, co-senior author and Associate Professor at The Scripps Research Institute.

Study authors Adam Getzler, Dapeng Wang and Matthew Pipkin of The Scripps Research Institute collaborated with scientists at the University of California, San Diego.

They discovered Runx3 by comparing what genes were expressed in CD8+ T cells found in the lymphatic system to CD8+ T cells that were found in tissues outside of the circulation. They then screened thousands of potential factors for their ability to influence CD8+ T cells to infiltrate solid tumors.

“We found a distinct pattern,” Pipkin said. “The screens showed that Runx3 is one at the top of a list of regulators essential for T cells to reside in non-lymphoid tissues.”

The team then set out to prove that Runx3 was a key factor in getting CD8+ T cells to localize at the site of solid tumors. To do this, they took T cells that either overexpressed Runx3 or did not express Runx3 in these cells. The T cells were then transplanted into mice with melanoma through a process known as adoptive cell transfer. Overexpression of Runx3 in T cells not only reduced tumor size but also extended lifespan in the mice. On the other hand, removing Runx3 expression had a negative impact on their survival rate.

This research, which was supported in part by CIRM funding, offers a new strategy for developing better cancer immunotherapies for solid tumors.

Pipkin concluded in a Scripps Research Institutes News Release,

“Knowing that modulating Runx3 activity in T cells influences their ability to reside in solid tumors opens new opportunities for improving cancer immunotherapy. We could probably use Runx3 to reprogram adoptively transferred cells to help drive them to amass in solid tumors.”

Confusing cancer to kill it

Kipps

Thomas Kipps, MD, PhD: Photo courtesy UC San Diego

Confusion is not a state of mind that we usually seek out. Being bewildered is bad enough when it happens naturally, so why would anyone actively pursue it? But now some researchers are doing just that, using confusion to not just block a deadly blood cancer, but to kill it.

Today the CIRM Board approved an investment of $18.29 million to Dr. Thomas Kipps and his team at UC San Diego to use a one-two combination approach that we hope will kill Chronic Lymphocytic Leukemia (CLL).

This approach combines two therapies, cirmtuzumab (a monoclonal antibody developed with CIRM funding, hence the name) and Ibrutinib, a drug that has already been approved by the US Food and Drug Administration (FDA) for patients with CLL.

As Dr. Maria Millan, our interim President and CEO, said in a news release, the need for a new treatment is great.

“Every year around 20,000 Americans are diagnosed with CLL. For those who have run out of treatment options, the only alternative is a bone marrow transplant. Since CLL afflicts individuals in their 70’s who often have additional medical problems, bone marrow transplantation carries a higher risk of life threatening complications. The combination approach of  cirmtuzumab and Ibrutinib seeks to offer a less invasive and more effective alternative for these patients.”

Ibrutinib blocks signaling pathways that leukemia cells need to survive. Disrupting these pathways confuses the leukemia cell, leading to its death. But even with this approach there are cancer stem cells that are able to evade Ibrutinib. These lie dormant during the therapy but come to life later, creating more leukemia cells and causing the cancer to spread and the patient to relapse. That’s where cirmtuzumab comes in. It works by blocking a protein on the surface of the cancer stem cells that the cancer needs to spread.

It’s hoped this one-two punch combination will kill all the cancer cells, increasing the number of patients who go into complete remission and improve their long-term cancer control.

In an interview with OncLive, a website focused on cancer professionals, Tom Kipps said Ibrutinib has another advantage for patients:

“The patients are responding well to treatment. It doesn’t seem like you have to worry about stopping therapy, because you’re not accumulating a lot of toxicity as you would with chemotherapy. If you administered chemotherapy on and on for months and months and years and years, chances are the patient wouldn’t tolerate that very well.”

The CIRM Board also approved $5 million for Angiocrine Bioscience Inc. to carry out a Phase 1 clinical trial testing a new way of using cord blood to help people battling deadly blood disorders.

The standard approach for this kind of problem is a bone marrow transplant from a matched donor, usually a family member. But many patients don’t have a potential donor and so they often have to rely on a cord blood transplant as an alternative, to help rebuild and repair their blood and immune systems. However, too often a single cord blood donation does not have enough cells to treat an adult patient.

Angiocrine has developed a product that could help get around that problem. AB-110 is made up of cord blood-derived hematopoietic stem cells (these give rise to all the other types of blood cell) and genetically engineered endothelial cells – the kind of cell that lines the insides of blood vessels.

This combination enables the researchers to take cord blood cells and greatly expand them in number. Expanding the number of cells could also expand the number of patients who could get these potentially life-saving cord blood transplants.

These two new projects now bring the number of clinical trials funded by CIRM to 35. You can read about the other 33 here.

 

 

 

Stem Cell Stories That Caught Our Eye: Plasticity in the pancreas and two cool stem cell tools added to the research toolbox

There’s more plasticity in the pancreas than we thought. You’re taught a lot of things about the world when you’re young. As you get older, you realize that not everything you’re told holds true and it’s your own responsibility to determine fact from fiction. This evolution in understanding happens in science too. Scientists do research that leads them to believe that biological processes happen a certain way, only to sometimes find, a few years later, that things are different or not exactly what they had originally thought.

There’s a great example of this in a study published this week in Cell Metabolism about the pancreas. Scientists from UC Davis found that the pancreas, which secretes a hormone called insulin that helps regulate the levels of sugar in your blood, has more “plasticity” than was originally believed. In this case, plasticity refers to the ability of a tissue or organ to regenerate itself by replacing lost or damaged cells.

The long-standing belief in this field was that the insulin producing cells, called beta cells, are replenished when beta cells actively divide to create more copies of themselves. In patients with type 1 diabetes, these cells are specifically targeted and killed off by the immune system. As a result, the beta cell population is dramatically reduced, and patients have to go on life-long insulin treatment.

UC Davis researchers have identified another type of insulin-producing cell in the islets, which appears to be an immature beta cell shown in red. (UC Davis)

But it turns out there is another cell type in the pancreas that is capable of making beta cells and they look like a teenage, less mature version of beta cells. The UC Davis team identified these cells in mice and in samples of human pancreas tissue. These cells hangout at the edges of structures called islets, which are clusters of beta cells within the pancreas. Upon further inspection, the scientists found that these immature beta cells can secrete insulin but cannot detect blood glucose like mature beta cells. They also found their point of origin: the immature beta cells developed from another type of pancreatic cell called the alpha cell.

Diagram of immature beta cells from Cell Metabolism.

In coverage by EurekAlert, Dr Andrew Rakeman, the director of discovery research at the Juvenile Diabetes Research Foundation, commented on the importance of this study’s findings and how it could be translated into a new approach for treating type 1 diabetes patients:

“The concept of harnessing the plasticity in the islet to regenerate beta cells has emerged as an intriguing possibility in recent years. The work from Dr. Huising and his team is showing us not only the degree of plasticity in islet cells, but the paths these cells take when changing identity. Adding to that the observations that the same processes appear to be occurring in human islets raises the possibility that these mechanistic insights may be able to be turned into therapeutic approaches for treating diabetes.”

 

Say hello to iPSCORE, new and improved tools for stem cell research. Stem cells are powerful tools to model human disease and their power got a significant boost this week from a new study published in Stem Cell Reports, led by scientists at UC San Diego School of Medicine.

The team developed a collection of over 200 induced pluripotent stem cell (iPS cell) lines derived from people of diverse ethnic backgrounds. They call this stem cell tool kit “iPSCORE”, which stands for iPSC Collection for Omic Research (omics refers to a field of study in biology ending in -omics, such as genomics or proteomics). The goal of iPSCORE is to identify particular genetic variants (unique differences in DNA sequence between people’s genomes) that are associated with specific diseases and to understand why they cause disease at the molecular level.

In an interview with Phys.org, lead scientist on the study, Dr. Kelly Frazer, further explained the power of iPSCORE:

“The iPSCORE collection contains 75 lines from people of non-European ancestry, including East Asian, South Asian, African American, Mexican American, and Multiracial. It includes multigenerational families and monozygotic twins. This collection will enable us to study how genetic variation influences traits, both at a molecular and physiological level, in appropriate human cell types, such as heart muscle cells. It will help researchers investigate not only common but also rare, and even family-specific variations.”

This research is a great example of scientists identifying a limitation in stem cell research and expanding the stem cell tool kit to model diseases in a diverse human population.

A false color scanning electron micrograph of cultured human neuron from induced pluripotent stem cell. Credit: Mark Ellisman and Thomas Deerinck, UC San Diego.

Stem cells that can grow into ANY type of tissue. Embryonic stem cells can develop into any cell type in the body, earning them the classification of pluripotent. But there is one type of tissue that embryonic stem cells can’t make and it’s called extra-embryonic tissue. This tissue forms the supportive tissue like the placenta that allows an embryo to develop into a healthy baby in the womb.

Stem cells that can develop into both extra-embryonic and embryonic tissue are called totipotent, and they are extremely hard to isolate and study in the lab because scientists lack the methods to maintain them in their totipotent state. Having the ability to study these special stem cells will allow scientists to answer questions about early embryonic development and fertility issues in women.

Reporting this week in the journal Cell, scientists from the Salk Institute in San Diego and Peking University in China identified a cocktail of chemicals that can stabilize human stem cells in a totipotent state where they can give rise to either tissue type. They called these more primitive stem cells extended pluripotent stem cells or EPS cells.

Salk Professor Juan Carlos Izpisua Bemonte, co–senior author of the paper, explained the problem their study addressed and the solution it revealed in a Salk news release:

“During embryonic development, both the fertilized egg and its initial cells are considered totipotent, as they can give rise to all embryonic and extra-embryonic lineages. However, the capture of stem cells with such developmental potential in vitro has been a major challenge in stem cell biology. This is the first study reporting the derivation of a stable stem cell type that shows totipotent-like bi-developmental potential towards both embryonic and extra-embryonic lineages.”

Human EPS cells (green) can be detected in both the embryonic part (left) and extra-embryonic parts (placenta and yolk sac, right) of a mouse embryo. (Salk Institute)

Using this new method, the scientists discovered that human EPS stem cells were able to develop chimeric embryos with mouse stem cells more easily than regular embryonic stem cells. First author on the study, Jun Wu, explained why this ability is important:

“The superior chimeric competency of both human and mouse EPS cells is advantageous in applications such as the generation of transgenic animal models and the production of replacement organs. We are now testing to see whether human EPS cells are more efficient in chimeric contribution to pigs, whose organ size and physiology are closer to humans.”

The Salk team reported on advancements in generating interspecies chimeras earlier this year. In one study, they were able to grow rat organs – including the pancreas, heart and eyes – in a mouse. In another study, they grew human tissue in early-stage pig and cattle embryos with the goal of eventually developing ways to generate transplantable organs for humans. You can read more about their research in this Salk news release.

One scientist’s quest to understand autism using stem cells

April is National Autism Awareness Month and people and organizations around the world are raising awareness about a disorder that affects more than 20 million people globally. Autism affects early brain development and causes a wide spectrum of social, mental, physical and emotional symptoms that appear during childhood. Because the symptoms and their severity can vary extremely between people, scientists now use the classification of autism spectrum disorder (ASM).

Alysson Muotri UC San Diego

In celebration of Autism Awareness Month, we’re featuring an interview with a CIRM-funded scientist who is on the forefront of autism and ASD research. Dr. Alysson Muotri is a professor at UC San Diego and his lab is interested in unlocking the secrets to brain development by using molecular tools and stem cell models.

One of his main research projects is on autism. Scientists in his lab are using induced pluripotent stem cells (iPSCs) derived from individuals with ASD to model the disease in a dish. From these stem cell models, his team is identifying genes that are associated with ASD and potential drugs that could be used to treat this disorder. Ultimately, Dr. Muotri’s goal is to pave a path for the development of personalized therapies for people with ASD.

I reached out to Dr. Muotri to ask for an update on his Autism research. His responses are below.

Q: Can you briefly summarize your lab’s work on Autism Spectrum Disorders?

AM: As a neuroscientist studying autism, I was frustrated with the lack of a good experimental model to understand autism. All the previous models (animal, postmortem brain tissues, etc.) have serious experimental limitations. The inaccessibility of the human brain has blocked the progress of research on ASD for a long time. Cellular reprogramming allows us to transform easy-access cell types (such as skin, blood, dental pulp, etc.) into brain cells or even “mini-brains” in the lab. Because we can capture the entire genome of the person, we can recapitulate early stages of neurodevelopment of that same individual. This is crucial to study neurodevelopment disorders, such as ASD, because of the strong genetic factor underlying the pathology [the cause of a disease]. By comparing “mini-brains” between an ASD and neurotypical [non-ASD] groups, we can find anatomical and functional differences that might explain the clinical symptoms.

Q: What types of tools and models are you using to study ASD?

AM: Most of my lab takes advantage of reprogramming stem cells and genome editing techniques to generate 3D organoid models of ASD. We use the stem cells to create brain organoids, also called “mini-brains” in the lab. These mini-brains will develop from single cells and grow and mature in the same way as the fetal brain. Thus, we can learn about their structure and connectivity over time.

A cross section of a cerebral organoid or mini-brain courtesy of Alysson Muotri.

This new model brings something novel to the table: the ability to experimentally test specific hypotheses in a human background.  For example, we can ask if a specific genetic variant is causal for an autistic individual. Thus, we can edit the genome of that autistic individual, fixing target mutations in these mini-brains and check if now the fixed mini-brains will develop any abnormalities seen in ASD.

The ability to combine all these recent technologies to create a human experimental model of ASD in the lab is quite new and very exciting. As with any other model, there are limitations. For example, the mini-brains don’t have all the complexity and cell types seen in the developing human embryo/fetus. We also don’t know exactly if we are giving them the right and necessary environment (nutrients, growth factors, etc.) to mature. Nonetheless, the progress in this field is taking off quickly and it is all very promising.

Two mini-brains grown in a culture dish send out cellular extensions to connect with each other. Neurons are in green and astrocytes are in pink. Image courtesy of Dr. Muotri.

Q: We’ve previously written about your lab’s work on the Tooth Fairy Project and how you identified the TRPC6 gene. Can you share updates on this project and any new insights?

AM: The Tooth Fairy Project was designed to collect dental pulp cells from ASD and control individuals in a non-invasive fashion (no need for skin biopsy or to draw blood). We used social media to connect with families and engage them in our research. It was so successful we have now hundreds of cells in the lab. We use this material to reprogram into stem cells and to sequence their DNA.

One of the first ASD participants had a mutation in one copy of the TRPC6 gene, a novel ASD gene candidate. Everybody has two copies of this gene in the genome, but because of the mutation, this autistic kid has only one functional copy. Using stem cells, we re-created cortical neurons from that individual and confirmed that this mutation inhibits the formation of excitatory synapses (connections required to propagate information).

Interestingly, while studying TRPC6, we realized that a molecule found in Saint John’s Wort, hyperforin, could stimulate the functional TRPC6. Since the individual still has one functional TRPC6 gene copy, it seemed reasonable to test if hyperforin treatment could compensate the mutation on the other copy. It did. A treatment with hyperforin for only two weeks could revert the deficits on the neurons derived from that autistic boy. More exciting is the fact that the family agreed to incorporate St. John’s Wort on his diet. We have anecdotal evidence that this actually improved his social and emotional skills.

To me, this is the first example of personalized treatment for ASD, starting with genome sequencing, detecting potential causative genetic mutations, performing cellular modeling in the lab, and moving into clinic. I believe that there are many other autistic cases where this approach could be used to find better treatments, even with off the counter medications. To me, that is the greatest insight.

Watch Dr. Muotri’s Spotlight presentation about the Tooth Fairy Project and his work on autism.

Q: Is any of the research you are currently doing in autism moving towards clinical trials?

AM: IGF-1, or insulin growth factor-1, a drug we found promising for Rett syndrome and a subgroup of idiopathic [meaning its causes are spontaneous or unknown] ASD is now in clinical trials. Moreover, we just concluded a CIRM award on a large drug screening for ASD. The data is very promising, with several candidates. We have 14 drugs in the pipeline, some are repurposed drugs (initially designed for cancer, but might work for ASD). It will require additional pre-clinical studies before we start clinical trials.

Q: What do you think the future of diagnosis and treatment will be for patients with ASD?

AM: I am a big enthusiastic fan of personalized treatments for ASD. While we continue to search for a treatment that could help a large fraction of ASD people, we also recognized that some cases might be easier than others depending on their genetic profile. The idea of using stem cells to create “brain avatars” of ASD individuals in the lab is very exciting. We are also studying the possibility of using this approach as a future diagnostic tool for ASD. I can imagine every baby having their “brain avatar” analyses done in the lab, eventually pointing out “red flags” on the ones that failed to achieve neurodevelopment milestones. If we could capture these cases, way before the autism symptoms onset, we could initiate early treatments and therapies, increasing the chances for a better prognostic and clinical trajectory. None of these would be possible without stem cell research.

Q: What other types of research is your lab doing?

Mini-brains grown in a dish in Dr. Muotri’s lab.

AM: My lab is also using these human mini-brains to test the impact of environmental factors in neurodevelopment. By exposing the mini-brains to certain agents, such as pollution particles, household chemicals, cosmetics or agrotoxic products [pesticides], we can measure the concentration that is likely to induce brain abnormalities (defects in neuronal migration, synaptogenesis, etc.). This toxicological test can complement or substitute for other commonly used analyses, such as animal models, that are not very humane or predictive of human biology. A nice example from my lab was when we used this approach to confirm the detrimental effect of the Zika virus on brain development. Not only did we show causation between the circulating Brazilian Zika virus and microcephaly [a birth defect that causes an abnormally small head], but our data also pointed towards a potential mechanism (we showed that the virus kills neural progenitor cells, reducing the thickness of the cortical layers in the brain).

You can learn more about Dr. Muotri’s research on his lab’s website.


Related Links:

A Clinical Trial Network Focused on Stem Cell Treatments is Expanding

Geoff Lomax is a Senior Officer of CIRM’s Strategic Initiatives.

California is one of the world-leaders in advancing stem cell research towards treatments and cures for patients with unmet medical needs. California has scientists at top universities and companies conducting cutting edge research in regenerative medicine. It also has CIRM, California’s Stem Cell Agency, which funds promising stem cell research and is advancing stem cell therapies into clinical trials. But the real clincher is that California has something that no one else has: a network of medical centers dedicated to stem cell-based clinical trials for patients. This first-of-its-kind system is called the CIRM Alpha Stem Cell Clinics Network.

Get to Know Our Alpha Clinics

In 2014, CIRM launched its Alpha Stem Cell Clinics Network to accelerate the development and delivery of stem cell treatments to patients. The network consists of three Alpha Clinic sites at UC San Diego, City of Hope in Duarte, and a joint clinic between UC Los Angeles and UC Irvine. Less than three years since its inception, the Alpha Clinics are conducting 34 stem cell clinical trials for a diverse range of diseases such as cancer, heart disease and sickle cell anemia. You can find a complete list of these clinical trials on our Alpha Clinics website. Below is an informational video about our Alpha Clinics Network.

So far, hundreds of patients have been treated at our Alpha Clinics. These top-notch medical centers use CIRM-funding to build teams specialized in overseeing stem cell trials. These teams include patient navigators who provided in-depth information about clinical trials to prospective patients and support them during their treatment. They also include pharmacists who work with patients’ cells or manufactured stem cell-products before the therapies are given to patients. And lastly, let’s not forget the doctors and nurses that are specially trained in the delivery of stem cell therapies to patients.

The Alpha Clinics Network also offers resources and tools for clinical trial sponsors, the people responsible for conducting the trials. These include patient education and recruitment tools and access to over 20 million patients in California to support successful recruitment. And because the different clinical trial sites are in the same network, sponsors can benefit from sharing the same approval measures for a single trial at multiple sites.

Looking at the big picture, our Alpha Clinics Network provides a platform where patients can access the latest stem cell treatments, and sponsors can access expert teams at multiple medical centers to increase the likelihood that their trial succeeds.

The Alpha Clinics Network is expanding

This collective expertise has resulted in a 3-fold (from 12 to 36 – two trials are being conducted at two sites) increase in the number of stem cell clinical trials at the Alpha Clinic sites since the Network’s inception. And the number continues to rise every quarter. Given this impressive track record, CIRM’s Board voted in February to expand our Alpha Clinics Network. The Board approved up to $16 million to be awarded to two additional medical centers ($8 million each) to create new Alpha Clinic sites and work with the current Network to accelerate patient access to stem cell treatments.

CIRM’s Chairman Jonathan Thomas explained,

Jonathan Thomas

“We laid down the foundation for conducting high quality stem cell trials when we started this network in 2014. The success of these clinics in less than three years has prompted the CIRM Board to expand the Network to include two new trial sites. With this expansion, CIRM is building on the current network’s momentum to establish new and better ways of treating patients with stem cell-based therapies.”

The Alpha Clinics Network plays a vital role in CIRM’s five-year strategic plan to fund 50 new clinical trials by 2020. In fact, the Alpha Clinic Network supports clinical trials funded by CIRM, industry sponsors and other sources. Thus, the Network is on track to becoming a sustainable resource to deliver stem cell treatments indefinitely.

In addition to expanding CIRM’s Network, the new sites will develop specialized programs to train doctors in the design and conduct of stem cell clinical trials. This training will help drive the development of new stem cell therapies at California medical centers.

Apply to be one our new Alpha Clinics!

For the medical centers interested in joining the CIRM Alpha Stem Cell Clinics Network, the deadline for applications is May 15th, 2017. Details on this funding opportunity can be found on our funding page.

The CIRM Team looks forward to working with prospective applicants to address any questions. The Alpha Stem Cell Clinics Network will also be showcasing it achievement at its Second Annual Symposium, details may be found on the City of Hope Alpha Clinics website.

City of Hope Medical Center and Alpha Stem Cell Clinic


Related Links:

Funding stem cell research targeting a rare and life-threatening disease in children

cystinosis

Photo courtesy Cystinosis Research Network

If you have never heard of cystinosis you should consider yourself fortunate. It’s a rare condition caused by an inherited genetic mutation. It hits early and it hits hard. Children with cystinosis are usually diagnosed before age 2 and are in end-stage kidney failure by the time they are 9. If that’s not bad enough they also experience damage to their eyes, liver, muscles, pancreas and brain.

The genetic mutation behind the condition results in an amino acid, cystine, accumulating at toxic levels in the body. There’s no cure. There is one approved treatment but it only delays progression of the disease, has some serious side effects of its own, and doesn’t prevent the need for a  kidney transplant.

Researchers at UC San Diego, led by Stephanie Cherqui, think they might have a better approach, one that could offer a single, life-long treatment for the problem. Yesterday the CIRM Board agreed and approved more than $5.2 million for Cherqui and her team to do the pre-clinical testing and work needed to get this potential treatment ready for a clinical trial.

Their goal is to take blood stem cells from people with cystinosis, genetically-modify them and return them to the patient, effectively delivering a healthy, functional gene to the body. The hope is that these genetically-modified blood stem cells will integrate with various body organs and not only replace diseased cells but also rescue them from the disease, making them healthy once again.

In a news release Randy Mills, CIRM’s President and CEO, said orphan diseases like cystinosis may not affect large numbers of people but are no less deserving of research in finding an effective therapy:

“Current treatments are expensive and limited. We want to push beyond and help find a life-long treatment, one that could prevent kidney failure and the need for kidney transplant. In this case, both the need and the science were compelling.”

The beauty of work like this is that, if successful, a one-time treatment could last a lifetime, eliminating or reducing kidney disease and the need for kidney transplantation. But it doesn’t stop there. The lessons learned through research like this might also apply to other inherited multi-organ degenerative disorders.

Salk Scientists Unlock New Secrets of Autism Using Human Stem Cells

Autism is a complex neurodevelopmental disorder whose mental, physical, social and emotional symptoms are highly variable from person to person. Because individuals exhibit different combinations and severities of symptoms, the concept of autism spectrum disorder (ASD) is now used to define the range of conditions.

There are many hypotheses for why autism occurs in humans (which some estimates suggest now affects around 3.5 million people in the US). Some of the disorders are thought to be at the cellular level, where nerve cells do not develop normally and organize properly in the brain, and some are thought to be at the molecular level where the building blocks in cells don’t function properly. Scientists have found these clues by using tools such as studying human genetics and animal models, imaging the brains of ASD patients, and looking at the pathology of ASD brains to see what has gone wrong to cause the disease.

Unfortunately, these tools alone are not sufficient to recreate all aspects of ASD. This is where cellular models have stepped in to help. Scientists are now developing human stem cell derived models of ASD to create “autism in a dish” and are finding that the nerve cells in these models show characteristics of these disorders.

Stem cell models of autism and ASD

We’ve reported on some of these studies in previous blogs. A group from UCSD lead by CIRM grantee Alysson Muotri used induced pluripotent stem cells or iPS cells to model non-syndromic autism (where autism is the primary diagnosis). The work has been dubbed the “Tooth Fairy Project” – parents can send in their children’s recently lost baby teeth which contain cells that can be reprogrammed into iPS cells that can then be turned into brain cells that exhibit symptoms of autism. By studying iPS cells from individuals with non-syndromic autism, the team found a mutation in the TRPC6 gene that was linked to abnormal brain cell development and function and is also linked to Rett syndrome – a rare form of autism predominantly seen in females.

Another group from Yale generated “mini-brains” or organoids derived from the iPS cells of ASD patients. They specifically found that ASD mini-brains had an increased number of a type of nerve cell called inhibitory neurons and that blocking the production of a protein called FOXG1 returned these nerve cells back to their normal population count.

Last week, a group from the Salk Institute in collaboration with scientists at UC San Diego published findings about another stem cell model for ASD that offers new clues into the early neurodevelopmental defects seen in ASD patients.  This CIRM-funded study was led by senior author Rusty Gage and was published last week in the Nature journal Molecular Psychiatry.

Unlocking clues to autism using patient stem cells

Gage and his team were fascinated by the fact that as many as 30 percent of people with ASD experience excessive brain growth during early in development. The brains of these patients have more nerve cells than healthy individuals of the same age, and these extra nerve cells fail to organize properly and in some cases form too many nerve connections that impairs their overall function.

To understand what is going wrong in early stages of ASD, Gage generated iPS cells from ASD individuals who experienced abnormal brain growth at an early age (their brains had grown up to 23 percent faster when they were toddlers compared to normal toddlers). They closely studied how these ASD iPS cells developed into brain stem cells and then into nerve cells in a dish and compared their developmental progression to that of healthy iPS cells from normal individuals.

Neurons derived from people with ASD (bottom) form fewer inhibitory connections (red) compared to those derived from healthy individuals (top panel). (Salk Institute)

Neurons derived from people with ASD (bottom) form fewer inhibitory connections (red) compared to those derived from healthy individuals (top panel). (Salk Institute)

They quickly observed a problem with neurogenesis – a term used to describe how brain stem cells multiply and create new nerve cells in the brain. Brain stem cells derived from ASD iPS cells displayed more neurogenesis than normal brain stem cells, and thus were creating an excess amount of nerve cells. The scientists also found that the extra nerve cells failed to form as many synaptic connections with each other, an essential process that allows nerve cells to send signals and form a functional network of communication, and also behaved abnormally and overall had less activity compared to healthy neurons. Interestingly, they saw fewer inhibitory neuron connections in ASD neurons which is contrary to what the Yale study found.

The abnormal activity observed in ASD neurons was partially corrected when they treated the nerve cells with a drug called IGF-1, which is currently being tested in clinical trials as a possible treatment for autism. According to a Salk news release, “the group plans to use the patient cells to investigate the molecular mechanisms behind IGF-1’s effects, in particular probing for changes in gene expression with treatment.”

Will stem cells be the key to understanding autism?

It’s clear that human iPS cell models of ASD are valuable in helping tease apart some of the mechanisms behind this very complicated group of disorders. Gage’s opinion is that:

“This technology allows us to generate views of neuron development that have historically been intractable. We’re excited by the possibility of using stem cell methods to unravel the biology of autism and to possibly screen for new drug treatments for this debilitating disorder.”

However, to me it’s also clear that different autism stem cell models yield different results, but these differences are likely due to which populations the iPS cells are derived from. Creating more cell lines from different ASD subpopulations will surely answer more questions about the developmental differences and differences in brain function seen in adults.

Lastly, one of the co-authors on the study, Carolina Marchetto, made a great point in the Salk news release by acknowledging that their findings are based on studying cells in a dish, not actual patient’s brains. However, Marchetto believes that these cells are useful tools for studying autism:

“It never fails to amaze me when we can see similarities between the characteristics of the cells in the dish and the human disease.”

Rusty Gage and Carolina Marchetto. (Salk Institute)

Rusty Gage and Carolina Marchetto. (Salk Institute)


Related Links