CIRM-funded stem cell-gene therapy shows promise in ALS safety trial

Senior author of the study Clive Svendsen, PhD (center)

With funding support from the California Institute for Regenerative Medicine (CIRM), Cedars-Sinai investigators have developed an investigational therapy using support cells and a protective protein that can be delivered past the blood-brain barrier. This combined stem cell and gene therapy can potentially protect diseased motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis, a fatal neurological disorder known as ALS or Lou Gehrig’s disease. 

In the first trial of its kind, the Cedars-Sinai team showed that delivery of this combined treatment is safe in humans. The findings were reported in the peer-reviewed journal Nature Medicine

What causes ALS? 

ALS is a progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord. About 6,000 people are diagnosed with ALS each year in the U.S., and the average survival time is two to five years.  

The disease results when the cells in the brain or spinal cord that instruct muscles to move—called motor neurons—die off. People with the disease lose the ability to move their muscles and, over time, the muscles atrophy and people become paralyzed and eventually die. There is no effective therapy for the disease. 

Using Stem Cells to Treat ALS 

In a news release, senior author Clive Svendsen, PhD, executive director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, says using stem cells shows lots of promise in treating patients with ALS.  

“We were able to show that the engineered stem cell product can be safely transplanted in the human spinal cord. And after a one-time treatment, these cells can survive and produce an important protein for over three years that is known to protect motor neurons that die in ALS,” Svendsen says.  

Aimed at preserving leg function in patients with ALS, the engineered cells could pave the way to a therapeutic option for this disease that causes progressive muscle paralysis, robbing people of their ability to move, speak and breathe.   

The study used stem cells originally designed in Svendsen’s laboratory to produce a protein called glial cell line-derived neurotrophic factor (GDNF). This protein can promote the survival of motor neurons, which are the cells that pass signals from the brain or spinal cord to a muscle to enable movement.  

In patients with ALS, diseased glial cells can become less supportive of motor neurons, and these motor neurons progressively degenerate, causing paralysis.   

By transplanting the engineered protein-producing stem cells in the central nervous system, where the compromised motor neurons are located, these stem cells can turn into new supportive glial cells and release the protective protein GDNF, which together helps the motor neurons stay alive.   

Ensuring Safety in the Trial 

The primary goal of the trial was to ensure that delivering the cells releasing GDNF to the spinal cord did not have any safety issues or negative effects on leg function.   

In this trial, none of the 18 patients treated with the therapy—developed by Cedars-Sinai scientists and funded by CIRM—had serious side effects after the transplantation, according to the data. 

Because patients with ALS usually lose strength in both legs at a similar rate, investigators transplanted the stem cell-gene product into only one side of the spinal cord so that the therapeutic effect on the treated leg could be directly compared to the untreated leg.  

After the transplantation, patients were followed for a year so the team could measure the strength in the treated and untreated legs. The goal of the trial was to test for safety, which was confirmed, as there was no negative effect of the cell transplant on muscle strength in the treated leg compared to the untreated leg.    

What’s Next? 

Investigators expect to start a new study with more patients soon. They will be targeting lower in the spinal cord and enrolling patients at an earlier stage of the disease to increase the chances of seeing effects of the cells on the progression of ALS. 

“We are very grateful to all the participants in the study,” said Svendsen. “ALS is a very tough disease to treat, and this research gives us hope that we are getting closer to finding ways to slow down this disease.”   

The Cedars-Sinai team is also using the GDNF-secreting stem cells in another CIRM-funded clinical trial for ALS, transplanting the cells into a specific brain region, called the motor cortex that controls the initiation of movement in the hand. The clinical trial is also funded by CIRM. 

The California Institute for Regenerative Medicine (CIRM) remains committed to funding research and clinical trials to treat ALS. To date, CIRM has provided $93 million in funding for research to treat ALS.  

Read the original source release of the study here.  

How this scientist uses Legos to explain the power of stem cells 

Explaining science is hard. Explaining stem cells, which have their very own unique complexities, can be even more of a challenge, especially when communicating with a non-scientific audience.  

That’s why when we received this blog submission from a CIRM SPARK Program intern through UCSF’s High School Intern Program (HIP) explaining stem cells in a simple, straightforward way using Legos, we knew we had to share it with our readers.

Before we share the intern’s brilliant explanation of stem cells, here’s how the California Institute for Regenerative Medicine (CIRM) defines stem cells. These and other key terms can be found on our website

The first thing to know about stem cells is that there is not just one kind. In fact, there are many different types of stem cells, each with very different potential to treat disease. There are various types of stem cells, including pluripotent, embryonic, adult, and iPSC (induced pluripotent stem cell).  

Stem cells also have the potential to become other kinds of cells in the body. For example, embryonic stem cells can become many other kinds of cells, whereas adult stem cells, such as in fat, can only become bone or cartilage. 

Now, the fun part! Here’s what the student shared in their prize-winning SPARK Program blog submission.


If someone were to ask me what stem cells are in a simple and perhaps figurative way now, I would say that stem cells are just like Legos. Legos are special building-blocks that are in a blank or default-like state, but can be something greater and unique on its own later on.  

Similarly, stem cells are called “unspecialized cells” because they are yet to be “specialized” or become a certain type of cell. They can be a blood, brain, heart, and basically all types of cells respectively, with little to no exceptions. Moreover, not all Legos are built the same. Some can be regular block-shaped, while some can be circular or even triangular. Therefore, this limits Legos’ abilities to a certain degree. Similarly, not all stem cells are necessarily the same. 

With just the right amount and type of Legos, you can easily assemble and build a house, a car, or whatever you could possibly think about. Similarly, the possibilities are endless with stem cells as well, which is why it’s truly a promising and key aspect in regenerative medicine today. 


Bravo! In addition to creating a unique way of explaining stem cells during their internship, the student also learned how to differentiate the different types and sources of stem cells from one another through hands-on experience at a world-renowned institution.  

The student added, “My newly-found interest in regenerative medicine and stem cells is definitely something that I’m looking forward to with great passion and knowledge moving forward.” 

To learn more about CIRM’s internship programs, visit our website. To read another prize-winning blog submission from a SPARK intern, click here.

Stem cells explained in different languages

Science is hard. Explaining complex science to non-scientists is SUPER hard. But explaining science to non-native English speakers presents a whole new set of challenges.  

I would know. I’m a first-generation immigrant whose highly-educated parents arrived in their new home—the United States—a tad too late to become fluent in its native tongue. I’ve also had the unique experience of participating in a clinical trial using stem cells—a topic which my family still has trouble grasping.  

I still remember the day of my accident, which left me paralyzed from the chest down. My mother came into my room to cheerfully tell me that there was “something” that would “help me walk” again. Those “something” were human embryonic stem cells. The “help me walk” part was doctors simply explaining the potential of the treatment. In her frazzled mind, she could hardly understand Farsi, much less English. Being told that I was a candidate to participate in a stem cell trial somehow translated into being cured.

And she kept looking for the magic bullet. Countless internet searches revealed all sorts of clinics and wellness centers that offered a cure to just about any disease imaginable. My mom wondered, “Were these the same stem cells from my daughter’s trial? Maybe they are even better since they are curing so many folks!”

I tried my best to explain but there was always something missing in translation. I found that troubling. The language barrier made it so difficult to make informed decisions. I couldn’t imagine being a non-native English speaker and learning about such a complicated matter in a language I hadn’t yet mastered.

After all, stem cells are a topic that concerns the people of the world, not just certain countries or certain people speaking only in certain languages.

Dr. Paul Knoepfler would know. And not just because the statement comes straight from him. Paul is a stem cell scientist at UC Davis (full disclosure, we have funded some of his work). His blog, The Niche, is one of the longest-running blogs about regenerative medicine and an especially great resource for those without a science background.

More importantly, in 2021 Dr. Knoepfler launched SCOPE, an outreach effort to make available on the internet a basic page of facts about stem cells in as many languages as possible. What started with “Stem Cells in Spanish” has quickly transformed into a stem cell white paper now available in 35 different languages!

Naturally, I wasted no time and sent the Farsi version to my parents and the French one to my francophone mother-in-law. And it isn’t just me who is finding this information useful. Dr. Knoepfler says, “SCOPE has been a big hit and as the number of languages has grown, the number of page views of my white paper ‘What are stem cells?’ in languages besides English has skyrocketed. For example, just our Stem Cells in Spanish page has received over 680,000 views as of the first half of 2021, while our Indonesian page has over 300,000 views and our Arabic page has a quarter of a million. We are getting readers from all over the world who appreciate reading about stem cells in their own languages.”

To learn more about this initiative, visit Dr. Knoepfler’s blog.

Study shows sleep deprivation impairs stem cells in the cornea 

We spend around one third of our life sleeping—or at least we should. Not getting enough sleep can have serious consequences on many aspects of our health and has been linked to high blood pressure, heart disease and stroke. 

A study by the American Sleep Apnea Association found that some 70 percent of Americans report getting too little sleep at least one night a month, and 11 percent report not enough sleep every night. Over time that can take a big toll on your mental and physical health. Now a new study says that impact can also put you at increased risk for eye disease.  

The study published in the journal Stem Cell Reports, looked at how sleep deprivation affects corneal stem cells. These cells are essential in replacing diseased or damaged cells in the cornea, the transparent tissue layer that covers and protects the eye.  

Researchers Wei Li, Zugou Liu and colleagues from Xiamen University, China and Harvard Medical School, USA, found that, in mice short-term sleep deprivation increased the rate at which stem cells in the cornea multiplied. Having too many new cells created vision problems.  

They also found that long-term sleep deprivation had an even bigger impact on the health of the cornea. Sleep-deprived mice had fewer active stem cells and so were not as effective in replacing damaged or dying cells. That in turn led to a thinning of the cornea and a loss of transparency in the remaining cells.  

The cornea— the transparent tissue layer covering the eye—is maintained by stem cells, which divide to replace dying cells and to repair small injuries.

The findings suggest that sleep deprivation negatively affects the stem cells in the cornea, possibly leading to vision impairment in the long run. It’s not clear if these findings also apply to people, but if they do, the implications could be enormous.  

The California Institute for Regenerative Medicine (CIRM) is also heavily involved in searching for treatments for diseases or conditions that affect vision. We have invested almost $150 million in funding 31 projects on vision loss including a clinical trial with UCLA’s Dr. Sophie Deng targeting the cornea, and other clinical trials for age-related macular degeneration and retinitis pigmentosa. 

Shared with permission from International Society for Stem Cell Research. Read the source release here

UCLA-led team creates first comprehensive map of human blood stem cell development

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Human blood stem cells emerging from specialized endothelial cells in the wall of an embryonic aorta. UCLA scientists’ confirmation of this process clarifies a longstanding controversy about the stem cells’ cellular origin. Image Credit: Hanna Mikkola Lab/UCLA, Katja Schenke-Layland Lab/University of Tübingen, Nature

California researchers from UCLA and colleagues have created a first-of-its-kind roadmap that traces each step in the development of blood stem cells in the human embryo, providing scientists with a blueprint for producing fully functional blood stem cells in the lab. 

The research, published in the journal Nature, could help expand treatment options for blood cancers like leukemia and inherited blood disorders such as sickle cell disease, said UCLA’s Dr. Hanna Mikkola, who led the study. 

The California Institute for Regenerative Medicine (CIRM) has funded and supported Mikkola’s earlier blood stem cell research through various grants

Overcoming Limitations 

Blood stem cells, also called hematopoietic stem cells, can make unlimited copies of themselves and differentiate into every type of blood cell in the human body. For decades, doctors have used blood stem cells from the bone marrow of donors and the umbilical cords of newborns in life-saving transplant treatments for blood and immune diseases.  

However, these treatments are limited by a shortage of matched donors and hampered by the low number of stem cells in cord blood. 

Researchers have long sought to create blood stem cells in the lab from human pluripotent stem cells, which can potentially give rise to any cell type in the body. But success has been elusive, in part because scientists have lacked the instructions to make lab-grown cells become self-renewing blood stem cells rather than short-lived blood progenitor cells, which can only produce limited blood cell types. 

“Nobody has succeeded in making functional blood stem cells from human pluripotent stem cells because we didn’t know enough about the cell we were trying to generate,” said Mikkola. 

A New Roadmap

The new roadmap will help researchers understand the fundamental differences between the two cell types, which is critical for creating cells that are suitable for use in transplantation therapies, said UCLA scientist Vincenzo Calvanese, a co–first author of the research, along with UCLA’s Sandra Capellera-Garcia and Feiyang Ma. 

Researchers Vincenzo Calvanese and Hanna Mikkola. | Credit: Eddy Marcos Panos (left); Reed Hutchinson/UCLA

“We now have a manual of how hematopoietic stem cells are made in the embryo and how they acquire the unique properties that make them useful for patients,” said Calvanese, who is also a group leader at University College London.  

The research team created the resource using new technologies that enable scientists to identify the unique genetic networks and functions of thousands of individual cells and to reveal the location of these cells in the embryo. 

The data make it possible to follow blood stem cells as they emerge and migrate through various locations during their development, starting from the aorta and ultimately arriving in the bone marrow. Importantly, the map unveils specific milestones in their maturation process, including their arrival in the liver, where they acquire the special abilities of blood stem cells. 

The research group also pinpointed the exact precursor in the blood vessel wall that gives rise to blood stem cells. This discovery clarifies a longstanding controversy about the stem cells’ cellular origin and the environment that is needed to make a blood stem cell rather than a blood progenitor cell. 

Through these insights into the different phases of human blood stem cell development, scientists can see how close they are to making a transplantable blood stem cell in the lab. 

A Better Understanding of Blood Cancers

In addition, the map can help scientists understand how blood-forming cells that develop in the embryo contribute to human disease. For example, it provides the foundation for studying why some blood cancers that begin in utero are more aggressive than those that occur after birth. 

“Now that we’ve created an online resource that scientists around the world can use to guide their research, the real work is starting,” Mikkola said. “It’s a really exciting time to be in the field because we’re finally going to be seeing the fruits of our labor.” 

Read the full release here

Recovery from muscle loss injuries hindered by immune cell conflicts

During a game in 2018, Alex Smith suffered a compound fracture that broke both the tibia and fibula in his right leg. The gruesome injury aside, the former 49ers quarterback soon developed life-threatening necrotizing fasciitis — a rare bacterial infection — that resulted in sepsis and required him to undergo 17 surgeries.

In a battle to save his life and avoid amputating his leg, doctors had to remove a great deal of his muscle tissue leading to volumetric muscle loss (VML). When Smith returned to the field after nearly two years of recovery, many called his comeback a “miracle”. 

Skeletal muscle is one of the most dynamic tissues of the human body. It defines how we move and can repair itself after injury using stem cells. However, when significant chunks of muscle are destroyed through severe injury (e.g. gunshot wound) or excessive surgery (like that of Smith’s), VML overwhelms the regenerative capacity of the muscle stem cells.

Despite the prevalence of these injuries, no standardized evaluation protocol exists for the characterization and quantification of VML and little is understood about why it consistently overwhelms the body’s natural regenerative processes. Current treatment options include functional free muscle transfer and the use of advanced bracing designs.

However, new research from the University of Michigan (U-M) may have just discovered why tissues often fail to regenerate from traumatic muscle loss injuries.

When researchers from U-M collaborated with partners at Georgia Tech, Emory University and the University of Oregon to study VML injuries in mice, they found that that sometimes post-injury immune cells become dysregulated and prevent stem cell repair. In VML injuries that don’t heal, neutrophils — a type of white blood cell — remain at the injured site longer than normal meaning that they’re not doing their job properly.

In addition, researchers found that intercellular communication between neutrophils and natural killers cells impacted muscle stem cell-mediated repair. When neutrophils communicated with natural killer cells, they were essentially prompted to self-destruct.

The findings suggest that by altering how the two cell types communicate, different healing outcomes may be possible and could offer new treatment strategies that eventually restore function and prevent limb loss. The team of researchers hope that better treatments could mean that recovery from VML injuries is no longer considered a “miracle”.

To read the source release, click here.

Promoting stem cell therapies, racial justice and fish breeding

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Jan Nolta, PhD, in her lab at UC Davis; Photo courtesy UC Davis

Working at CIRM you get to meet many remarkable people and Dr. Jan Nolta certainly falls into that category. Jan is the Director of the Stem Cell Program at UC Davis School of Medicine. She also directs the Institute for Regenerative Cures and is scientific director of both the Good Manufacturing Practice clean room facility at UC Davis and the California Umbilical Cord Blood Collection Program.

As if that wasn’t enough Jan is part of the team helping guide UC Davis’ efforts to expand its commitment to diversity, equity and inclusion using a variety of methods including telemedicine, to reach out into rural and remote communities.

She is on the Board of several enterprises, is the editor of the journal Stem Cells and, in her copious spare time, has dozens of aquariums and is helping save endangered species.

So, it’s no wonder we wanted to chat to her about her work and find out what makes her tick. Oh, and what rock bands she really likes. You might be surprised!

That’s why Jan is the guest on the latest edition of our podcast ‘Talking ‘Bout (re)Generation’.

I hope you enjoy it.

CIRM CNS Consortium Workshop – Held Feb. 24 & 25, 2022

Note: Post edited to include post-event workshop videos. Watch both workshop videos here and here.

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Shared Stem Cell Laboratory at UCLA

Advance World Class Science, Deliver Real World Solutions, Provide Opportunity for All. 

These comprise the themes of our bold 5-year Strategic Plan. Since its launch less than two months ago, we have hit the ground running. Under the second and third strategic themes, we have already received ICOC approval for 2 concepts: Alpha Clinics Network Expansion and COMPASS educational program. We are now working on the execution of our first theme.  

As indicated in our Strategic Plan, we strongly believe advancing world class science relies on collaborative research that leverages collective scientific knowledge. To that end, we have organized the virtual CIRM CNS Consortium Workshop (click for the agenda and see registration details below) to help us gather feedback from a panel of experts about the best approach for promoting a culture of collaboration.

The vision for this workshop was informed by multiple layers of stakeholder discussions and input that started even prior to the passage of Proposition 14. A quick walk down memory lane reminds us of CIRM’s early and deliberate effort to identify areas of opportunity for promoting a paradigm shift with a “team science” approach, especially in the context of complex diseases such as those affecting the CNS: 

  • In 2019, we organized Brainstorming Neurodegeneration, a workshop where broad stakeholder input was received about the benefits and bottlenecks of developing a consortium approach where genomics and big data, novel stem cell models, and patient data could be collectively leveraged to advance the field of neurodegenerative research in a collaborative manner.  
  • In 2020, just before the passage of Prop 14 and based on input from the 2019 workshop, we already had our eyes on target: the future of collaborative research is in sharable data, and sharing petabytes or more of data requires a collaborative data infrastructure. To better understand the status and bottlenecks of knowledge platforms that could leverage data sharing, we brought together a panel of experts at our 2020 Grantee Meeting. We were encouraged to learn that our laser-focused approach for promoting knowledge sharing was right on target and the panelists suggested that CIRM has a great opportunity to promote a paradigm shift in this area.   
  • In early 2021, immediately after the passage of Prop 14 and building upon our previous conversations, we formed a Strategic Scientific Advisory Panel comprising a distinguished group of national and international scientists in the stem cell field. Once again, we were advised to expand sharable resources (especially in the context of stem cell modeling), bring more attention to complex diseases such as neurodegenerative and neuropsychiatric disorders, and facilitate knowledge sharing.  
  • In mid 2021, as we were forming our Strategic Plan based on the above input, we pressure-tested our paradigm-shifting vision in a Town Hall and further gathered feedback from California stakeholders about their needs. Again, all arrows pointed to shared resources and data as critical elements for accelerating research.  
CIRM Town Hall workshop hosted in 2021
  • Finally, in late 2021, just before the launch of our Strategic Plan, we organized a Data Biosphere Advisory Committee to advise us on ways to facilitate collaborative knowledge sharing. Here, we explored various models for leveraging and/or generating a data infrastructure in which CIRM-funded data could be managed and shared. The main outcome of this meeting was a recommendation to organize a workshop to test the feasibility and approach for generation of a CIRM knowledge platform. The Committee concluded that CIRM is uniquely positioned to contribute a wealth of data to the broader scientific community. A knowledge platform would provide an avenue for data sharing and collaboration with other groups that are dedicated to accelerating progress in the development of therapies, especially for CNS disorders.  

We were walking on solid ground! In December of 2021, paralleling the input we had received from experts and stakeholders, we launched our 5-year Strategic Plan with the goal of advancing world class science by promoting a culture of collaboration. 

To deliver on this goal, CIRM’s approach is to build the infrastructure (and we don’t mean bricks and mortar) that organizes and democratizes data through:  

  1. A network of shared resources labs that facilitate validation and standardization to support California regenerative medicine researchers  
  1. A data infrastructure where CIRM-funded data can be shared and external datasets leveraged to maximize real-world impact  
  1. We have held a virtual CNS Consortium Workshop on February 24th and 25th where we explored the development of these two resources through the deployment of a consortium and starting in the CNS space as a use case. While the discussions at the workshop centered on the CNS, the shared resources labs will be implemented across cell types and organs. The Data Infrastructure is intended to be a global resource for data sharing and fostering a culture of open science for all CIRM grantees—and the world. The complete workshop agenda can be found here.  

    Watch video recordings of Day 1 and Day 2 of the CNS workshop.

CIRM-funded stem cell clinical trial patients: Where are they now?

Ronnie with his parents Pawash Priyank and Upasana Thakur.

Since its launch in 2004, the California Institute for Regenerative Medicine (CIRM) has been a leader in growing the stem cell and regenerative medicine field while keeping the needs of patients at the core of its mission. 

To date, CIRM has:  

  • Advanced stem cell research and therapy development for more than 75 diseases. 
  • Funded 76 clinical trials with 3,200+ patients enrolled. 
  • Helped cure over 40 children of fatal immunological disorders with gene-modified cell therapies. 

One of these patients is Ronnie, who just days after being born was diagnosed with severe combined immunodeficiency (SCID), a rare immune disorder that is often fatal within two years. 

A recent photo of Ronnie enjoying a day at the beach.

Fortunately, doctors told his parents about a CIRM-funded clinical trial conducted by UC San Francisco and St. Jude Children’s Hospital. Doctors took some of Ronnie’s own blood stem cells and, in the lab, corrected the genetic mutation that caused the condition. They then gave him a mild dose of chemotherapy to clear space in his bone marrow for the corrected cells to be placed and to grow. Over the next few months, the blood stem cells created a new blood supply and repaired Ronnie’s immune system. He is now a happy, healthy four-year-old boy who loves going to school with other children. 

Evie Junior participated in a CIRM-funded clinical trial in 2020. Photo: Jaquell Chandler

Another patient, Evie Junior, is pioneering the search for a cure for sickle cell disease: a painful, life-threatening condition.  

In July of 2020, Evie took part in a CIRM-funded clinical trial where his own blood stem cells were genetically modified to overcome the disease-causing mutation. Those cells were returned to him, and the hope is they’ll create a sickle cell-free blood supply. Evie hasn’t had any crippling bouts of pain or had to go to the hospital since his treatment.

To demonstrate treatment efficacy, study investigators will continue to monitor the recovery of Evie, Ronnie, and others who participate in clinical trials. 

CIRM’s new strategic plan seeks to help real life patients like Ronnie and Evie by optimizing its clinical trial funding partnership model to advance more therapies to FDA for approval.  

In addition, CIRM will develop ways to overcome manufacturing hurdles for the delivery of regenerative medicine therapies and create Community Care Centers of Excellence that support diverse patient participation in the rapidly maturing regenerative medicine landscape. Stay tuned as we cover these goals here on The Stem Cellar. 

To learn more about CIRM’s approach to deliver real world solutions for patients, check out our new 5-year strategic plan.  

The Most Read Stem Cellar Blog Posts of 2021

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

This year was a momentous one for the California Institute for Regenerative Medicine (CIRM). We celebrated the passage of Proposition 14, and as a result, introduced our new strategic plan and added a group of talented individuals to our team.  

We shared our most exciting updates and newsworthy stories—topics ranging from stem cell research to diversity in science—right here on The Stem Cellar. Nearly 100,000 readers followed along throughout the year! 

In case you missed them, here’s a recap of our most popular blogs of 2021. We look forward to covering even more topics in 2022 and send a sincere thank you to our wonderful Stem Cellar readers for tuning in!  

Image courtesy of ViaCyte
  1. Type 1 Diabetes Therapy Gets Go-Ahead for Clinical Trial 
    This past year, ViaCyte and CRISPR Therapeutics put their heads together to develop a novel treatment for type 1 diabetes (T1D). The result was an implantable device containing embryonic stem cells that develop into pancreatic progenitor cells, which are precursors to the islet cells destroyed by T1D. The hope is that when this device is transplanted under a patient’s skin, the progenitor cells will develop into mature insulin-secreting cells that can properly regulate the glucose levels in a patient’s blood. 
CIRM’s new General Counsel Kevin Marks
  1. CIRM Builds Out World Class Team With 5 New hires 
    After the Passage of Proposition 14 in 2020, CIRM set ambitious goals as part of our new strategic plan. To help meet these goals and new responsibilities, we added a new group of talented individuals with backgrounds in legal, finance, human resources, project management, and more. The CIRM team will continue to grow in 2022, as we add more team members who will work to fulfil our mission of accelerating world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and world. 
Image source: Doug Blackiston
  1. Meet Xenobots 2.0 – the Next Generation of Living Robots 
    In 2020, we wrote about how researchers at the University of Vermont and Tufts University were able to create what they call xenobots – the world’s first living, self-healing robots created from frog stem cells. Fast forward to 2021: the same team created an upgraded version of these robots that they have dubbed Xenobots 2.0. These upgraded robots can self-assemble a body from single cells, do not require muscle cells to move, and demonstrate the capability to record memory. Interesting stuff! 
Pictured: Clive Svendsen, Ph.D.
  1. CIRM Board Approves New Clinical Trial for ALS 
    In June, CIRM’s governing Board awarded $11.99 million to Cedars-Sinai to fund a clinical trial for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease. Clive Svendsen, Ph.D. and his team will be conducting a trial that uses a combined cell and gene therapy approach as a treatment for ALS. The trial builds upon CIRM’s first ALS trial, also conducted by Cedars-Sinai and Svendsen. 
Image courtesy of Karolina Grabowska
  1. COVID is a Real Pain in the Ear 
    Viral infections are a known cause of hearing loss and other kinds of infection. That’s why before the pandemic started, Dr. Konstantina Stantovic at Massachusetts Eye and Ear and Dr. Lee Gherke at MIT had been studying how and why things like measles, mumps and hepatitis affected people’s hearing. After COVID hit, they heard reports of patients experiencing sudden hearing loss and other problems, so they decided to take a closer look. 

And there you have it: The Stem Cellar’s top blog posts of 2021! If you’re looking for more ways to get the latest updates from The Stem Cellar and CIRM, follow us on social media on FacebookTwitterLinkedIn, and Instagram