Starving stem cells of oxygen can help build stronger bones

Leach_Kent_BME.2012

J. Kent Leach: Photo courtesy UC Davis

We usually think that starving something of oxygen is going to make it weaker and maybe even kill it. But a new study by J. Kent Leach at UC Davis shows that instead of weakening bone defects, depriving them of oxygen might help boost their ability to create new bone or repair existing bone.

Leach says in the past the use of stem cells to repair damaged or defective bone had limited success because the stem cells often didn’t engraft in the bone or survive long if they did. That was because the cells were being placed in an environment that lacked oxygen (concentration levels in bone range from 3% to 8%) so the cells found it hard to survive.

However, studies in the lab had shown that if you preconditioned mesenchymal stem cells (MSCs), by exposing them to low oxygen levels before you placed them on the injury site, you helped prolong their viability. That was further enhanced by forming the MSCs into three dimensional clumps called spheroids.

Lightbulb goes off

In the  current study, published in Stem Cells, Leach says the earlier spheroid results  gave him an idea:

“We hypothesized that preconditioning MSCs in hypoxic (low oxygen) culture before spheroid formation would increase cell viability, proangiogenic potential (ability to create new blood vessels), and resultant bone repair compared with that of individual MSCs.”

So, the researchers placed one group of human MSCs, taken from bone marrow, in a dish with just 1% oxygen, and another identical group of MSCs in a dish with normal oxygen levels. After three days both groups were formed into spheroids and placed in an alginate hydrogel, a biopolymer derived from brown seaweed that is often used to build cellular cultures.

Seaweed

Brown seaweed

The team found that the oxygen-starved cells lasted longer than the ones left in normal oxygen, and the longer those cells were deprived of oxygen the better they did.

Theory is great, how does it work in practice?

Next was to see how those two groups did in actually repairing bones in rats. Leach says the results were encouraging:

“Once again, the oxygen-deprived, spheroid-containing gels induced significantly more bone healing than did gels containing either preconditioned individual MSCs or acellular gels.”

The team say this shows the use of these oxygen-starved cells could be an effective approach to repairing hard-to-heal bone injuries in people.

“Short‐term exposure to low oxygen primes MSCs for survival and initiates angiogenesis (the development of new blood vessels). Furthermore, these pathways are sustained through cell‐cell signaling following spheroid formation. Hypoxic (low oxygen) preconditioning of MSCs, in synergy with transplantation of cells as spheroids, should be considered for cell‐based therapies to promote cell survival, angiogenesis, and bone formation.”

CIRM & Dr. Leach

While CIRM did not fund this study we have invested more than $1.8 million in another study Dr. Leach is doing to develop a new kind of imaging technology that will help us see more clearly what is happening in bone and cartilage-targeted therapies.

In addition, back in March of 2012, Dr. Leach spoke to the CIRM Board about his work developing new approaches to growing bone.

 

CIRM Supported Scientist Makes Surprising Discovery with Parasitic Gut Worms

 

Lgr5-mTmG

Image of gut lining and parasites.  Photo courtesy of UCSF/ Michael Fortes

 

It’s no secret that researchers have long believed adult stem cells could contribute to wound healing in the gut and skin, but in a new paper in Nature — a group of scientists at UC San Francisco made a surprising discovery.

Through several experiments using parasitic worms in the mouse gut, they found that as parasites dug into the intestinal walls of mice, the gut responded in an unexpected way – by reactivating a type of cell growth previously seen in fetal tissues.

So why is this important?

Simply put, it gives scientists new targets to go after. According to UCSF CIRM supported scientist Ophir Klein, MD, Ph.D., this discovery could be paradigm-shifting in terms of our understanding of how the mammalian body can repair damage and could help scientists develop more ways to enhance the body’s natural healing abilities.

Adult stem cells in the intestines are vital for maintaining the digestive status quo. The gut lining is made up of epithelial cells which absorb nutrients and produce protective mucus. These cells are replaced every few days by the stem cells at the base of crypts — indentations in the gut lining. Researchers expected that the same stem cells could also help repair tears in the gut.

How did they do it?

Larvae from parasites like H. polygyrus invade the gut lining in a mouse’s intestine, burying themselves to develop in the tissue. Based on prevailing ideas in the field, the scientists predicted that, in response, nearby stem cells would increase their productivity and patch up the worm-created wounds, but that is not what happened.

Instead, signs of the stem cells in worm-infected areas disappeared entirely; fluorescent markers that should have been expressed by one of the genes in the regular stem cell program completely vanished. And yet, even with no identifiable stem cells in the area, the wounded tissue regenerated more quickly than ever.

Researchers spent years trying to resolve this mystery and after a number of false starts and dead ends, the team eventually noticed the recurrence of a different gene, known as Sca-1.

Using antibody staining for the Sca-1 protein, the researchers realized that where the stem cell genes had disappeared, a different gene program was expressed instead: one that resembled the way that mouse guts develop in utero.

Upon their discovery, the researchers wondered whether the reactivation of this fetal program was a specific response to parasite infections, or if it could be a general strategy for many kinds of gut injury. Additional experiments showed that shutting down gut stem cells with irradiation or genetically targeting them for destruction triggered aspects of the same response: despite an absence of detectable stem cell activity, undifferentiated tissue grew rapidly nonetheless.

Later, once the acute injury is repaired, the gut may return to the normal stem cell program of producing differentiated cells that perform specific functions.

Many other injured tissues could benefit from the ability to quickly and efficiently make generalized repairs before returning to specialized adult cell production, opening up therapeutic opportunities. For example, developing treatments that bestow an ability to control the change between adult and fetal genetic programs might offer new strategies to manage conditions such as inflammatory bowel disease (IBD).

Stem Cell Roundup: New understanding of Huntington’s; how stem cells can double your DNA; and using “the Gary Oldman of cell types” to reverse aging

This week’s roundup highlights how we are constantly finding out new and exciting ways that stem cells could help change the way we treat disease.

Our Cool Stem Cell Image of the Week comes from our first story, about unlocking some of the secrets of Huntington’s disease. It comes from the Laboratory of Stem Cell Biology and Molecular Embryology at The Rockefeller University

Huntington's neurons

A new approach to studying and developing therapies for Huntington’s disease

Researchers at Rockefeller University report new findings that may upend the way scientists study and ultimately develop therapies for Huntington’s disease, a devastating, inherited neurodegenerative disorder that has no cure. Though mouse models of the disease are well-established, the team wanted to focus on human biology since our brains are more complex than those of mice. So, they used CRISPR gene editing technology in human embryonic stem cells to introduce the genetic mutations that cause HD.

Though symptoms typically do not appear until adulthood, the researchers were surprised to find that in their human cell-based model of HD, abnormalities in nerve cells occur at the earliest steps in brain development. These results suggest that HD therapies should focus on treatments much earlier in life.

The researchers observed another unexpected twist: cells that lack Huntingtin, the gene responsible for HD, are very similar to cells found in HD. This suggests that too little Huntingtin may be causing the disease. Up until now, the prevailing idea has been that Huntington’s symptoms are caused by the toxicity of too much mutant Huntingtin activity.

We’ll certainly be keeping an eye on how further studies using this new model affect our understanding of and therapy development for HD.

This study was published in Development and was picked by Science Daily.

How you can double your DNA

dna

As you can imagine we get lots of questions about stem cell research here at CIRM. Last week we got an email asking if a stem cell transplant could alter your DNA? The answer is, under certain circumstances, yes it could.

A fascinating article in the Herald Review explains how this can happen. In a bone marrow transplant bad blood stem cells are killed and replaced with healthy ones from a donor. As those cells multiply, creating a new blood supply, they also carry the DNA for the donor.

But that’s not the only way that people may end up with dual DNA. And the really fascinating part of the article is how this can cause all sorts of legal and criminal problems.

One researcher’s efforts to reverse aging

gary-oldman

Gary Oldman: Photo courtesy Variety

“Stem cells are the Gary Oldman of cell types.” As a fan of Gary Oldman (terrific as Winston Churchill in the movie “Darkest Hour”) that one line made me want to read on in a profile of Stanford University researcher Vittorio Sebastiano.

Sebastiano’s goal is, to say the least, rather ambitious. He wants to reverse aging in people. He believes that if you can induce a person’s stem cells to revert to a younger state, without changing their function, you can effectively turn back the clock.

Sebastiano says if you want to achieve big things you have to think big:

“Yes, the ambition is huge, the potential applications could be dramatic, but that doesn’t mean that we are going to become immortal in some problematic way. After all, one way or the other, we have to die. We will just understand aging in a better way, and develop better drugs, and keep people happier and healthier for a few more years.”

The profile is in the journal Nautilus.

Family, faith and funding from CIRM inspire one patient to plan for his future

Caleb Sizemore speaks to the CIRM Board at the June 2017 ICOC meeting.

Having been to many conferences and meetings over the years I have found there is a really simple way to gauge if someone is a good speaker, if they have the attention of people in the room. You just look around and see how many people are on their phones or laptops, checking their email or the latest sports scores.

By that standard Caleb Sizemore is a spellbinding speaker.

Last month Caleb spoke to the CIRM Board about his experiences in a CIRM-funded clinical trial for Duchenne Muscular Dystrophy. As he talked no one in the room was on their phone. Laptops were closed. All eyes and ears were on him.

To say his talk was both deeply moving and inspiring is an understatement. I could go into more detail but it’s so much more powerful to hear it from  Caleb himself. His words are a reminder to everyone at CIRM why we do this work, and why we have to continue to do all that we can to live up to our mission statement and accelerate stem cell treatments to patients with unmet medical needs.

Video produced by Todd Dubnicoff/CIRM


Related Links:

One day, scientists could grow the human cardiovascular system from stem cells

The human cardiovascular system is an intricate, complex network of blood vessels that include arteries, capillaries and veins. These structures distribute blood from the heart to all parts of the body, from our head to our toes, and back again.

This week, two groups of scientists published studies showing that they can create key components of the human cardiovascular system from human pluripotent stem cells. These technologies will not only be valuable for modeling the cardiovascular system, but also for developing transplantable tissues to treat patients with cardiovascular or vascular diseases.

Growing capillaries using 3D printers

Scientists from Rice University and the Baylor College of Medicine are using 3D printers to make functioning capillaries. These are tiny, thin vessels that transport blood from the arteries to the veins and facilitate the exchange of oxygen, nutrients and waste products between the blood and tissues. Capillaries are made of a single layer of endothelial cells stitched together by cell structures called tight junctions, which create an impenetrable barrier between the blood and the body.

In work published in the journal Biomaterials Science, the scientists discovered two materials that coax human stem cell-derived endothelial cells to develop into capillary-like structures. They found that adding mesenchymal stem cells to the process, improved the ability of the endothelial cells to form into the tube-like structures resembling capillaries. Lead author on the study, Gisele Calderon, explained their initial findings in an interview with Phys.org,

“We’ve confirmed that these cells have the capacity to form capillary-like structures, both in a natural material called fibrin and in a semisynthetic material called gelatin methacrylate, or GelMA. The GelMA finding is particularly interesting because it is something we can readily 3-D print for future tissue-engineering applications.”

Scientists grow capillaries from stem cells using 3D gels. (Image Credit: Jeff Fitlow/Rice University)

The team will use their 3D printing technology to develop more accurate models of human tissues and their vast network of capillaries. Their hope is that these 3D printed tissues could be used for more accurate drug testing and eventually as implantable tissues in the clinic. Co-senior author on the study, Jordan Miller, summarized potential future applications nicely.

“Ultimately, we’d like to 3D print with living cells … to create fully vascularized tissues for therapeutic applications. You could foresee using these 3D printed tissues to provide a more accurate representation of how our bodies will respond to a drug. The potential to build tissue constructs made from a particular patient represents the ultimate test bed for personalized medicine. We could screen dozens of potential drug cocktails on this type of generated tissue sample to identify candidates that will work best for that patient.”

Growing functioning arteries

In a separate study published in the journal PNAS, scientists from the University of Wisconsin-Madison and the Morgridge Institute reported that they can generate functional arterial endothelial cells, which are cells that line the insides of human arteries.

The team used a lab technique called single-cell RNA sequencing to identify important signaling factors that coax human pluripotent stem cells to develop into arterial endothelial cells. The scientists then used the CRISPR/Cas9 gene editing technology to develop arterial “reporter cell lines”, which light up like Christmas trees when candidate factors are successful at coaxing stem cells to develop into arterial endothelial cells.

Arterial endothelial cells derived from human pluripotent stem cells. (The Morgridge Institute for Research)

Using this two-pronged strategy, they generated cells that displayed many of the characteristic functions of arterial endothelial cells found in the body. Furthermore, when they transplanted these cells into mice that suffered a heart attack, the cells helped form new arteries and improved the survival rate of these mice significantly. Mice who received the transplanted cells had an 83% survival rate compared to untreated mice who only had a 33% survival rate.

In an interview with Genetic Engineering & Biotechnology News, senior author on the study James Thomson, explained the significance of their findings,

“Our ultimate goal is to apply this improved cell derivation process to the formation of functional arteries that can be used in cardiovascular surgery. This work provides valuable proof that we can eventually get a reliable source for functional arterial endothelial cells and make arteries that perform and behave like the real thing.”

In the future, the scientists have set their sights on developing a universal donor cell line that can treat large populations of patients without fear of immune rejection. With cardiovascular disease being the leading cause of death around the world, the demand for such a stem cell-based therapy is urgent.

Stem Cell Stories that Caught our Eye: finding the perfect match, imaging stem cells and understanding gene activity

Here are the stem cell stories that caught our eye this week. Enjoy!

LAPD officer in search of the perfect match.

LAPD Officer Matthew Medina with his wife, Angelee, and their daughters Sadie and Cassiah. (Family photo)

This week, the San Diego Union-Tribune featured a story that tugs at your heart strings about an LAPD officer in desperate need of a bone marrow transplant. Matthew Medina is a 40-year-old man who was diagnosed earlier this year with aplastic anemia, a rare disorder that prevents the bone marrow from producing enough blood cells and platelets. Patients with this disorder are prone to chronic fatigue and are at higher risk for infection and uncontrolled bleeding.

Matthew needs a bone marrow transplant to replace his diseased bone marrow with healthy marrow from a donor, but so far, he has yet to find a match. Part of the reason for this difficulty is the lack of diversity in the national bone marrow registry, which has over 25 million registered donors, the majority of which are white Americans of European decent. As a Filipino, Matthew has a 40% chance of finding a perfect match in the national registry compared to a 75% chance if he were white. An even more unsettling fact is that Filipinos make up less than 1% of donors on the national registry.

Matthew has a sister, but unfortunately, she wasn’t a match. For now, Matthew is being kept alive with blood transfusions at his home in Bellflower while he waits for good news. With the support of his family and friends, the hope is that he won’t have to wait for long. Already 1000 people in his local community have signed up to be bone marrow donors.

On a larger scale, organizations like A3M and Mixed Marrow are hoping to help patients like Matthew by increasing the diversity of the national bone marrow registry. A3M specifically recruits Asian donors while Mixed Match focuses on people with multi-ethnic backgrounds. Ayumi Nagata, a recruitment manager at A3M, said their main challenge is making healthy people realize the importance of being a bone marrow donor.

“They could be the cure for someone’s cancer or other disease and save their life. How often do we have that kind of opportunity?”

An algorithm that makes it easier to see stem cell development.

To understand how certain organs like the brain develop, scientists rely on advanced technologies that can track individual stem cells and monitor their fate as they mature into more specialized cells. Scientists can observe stem cell development with fluorescent proteins that light up when a stem cell expresses specific transcription factors that help decide the cell’s fate. Using a time-lapse microscope, these fluorescent stem cells can easily be identified and tracked throughout their lifetime.

But the pictures don’t always come out crystal clear. Just as a dirty camera lens makes for a dirty picture, images produced by time-lapse microscopy images can be plagued by shadows, artifacts and lighting inconsistencies, making it difficult to observe the orchestrated expression of transcription factors involved in a stem cell’s development.

This week in the journal Nature Communications, a team of scientists from Germany reported a solution that gives a clear view of stem cell development. The team developed a computer algorithm called BaSiC that acts like a filter and removes the background noise from time-lapse images of individual cells. Unlike previous algorithms, BaSiC requires fewer reference images to make its corrections.

The software BaSiC improves microscope images. (Credit: Tingying Peng / TUM/HMGU)

In coverage by Phys.org, author Dr. Tingying Peng explained the advantages of their algorithm,

“Contrary to other programs, BaSiC can correct changes in the background of time-lapse videos. This makes it a valuable tool for stem cell researchers who want to detect the appearance of specific transcription factors early on.”

The team proved that BaSiC is an effective image correcting tool by using it to study the development of hematopoietic or blood stem cells. They took time-lapse videos of blood stem cells over six days and observed that the stem cells chose between two developmental tracks that produced different types of mature blood cells. Using BaSiC, they found that blood stem cells that specialized into white blood cells expressed the transcription factor Pu.1 while the stem cells that specialized into red blood cells did not. Without the algorithm, they didn’t see this difference.

Senior author on the study, Dr. Nassir Navab, concluded by highlighting the importance of their technology and sharing his team’s vision for the future.

“Using BaSiC, we were able to make important decision factors visible that would otherwise have been drowned out by noise. The long-term goal of this research is to facilitate influencing the development of stem cells in a targeted manner, for example to cultivate new heart muscle cells for heat-attack patients. The novel possibilities for observation are bringing us a step closer to this goal.”

Silenced vs active genes: it’s like oil and water (Todd Dubicoff)

The DNA from just one of your cells would be an astounding six feet in length if stretched out end to end. To fit into a nucleus that is a mere 4/10,000th of an inch in diameter, DNA’s double helical structure is organized into intricate twists within twists with the help of proteins called histones.

Together the DNA and histones are called chromatin. And it turns out that chromatin isn’t just for stuffing all that genetic material into a tiny space. The amount of DNA folding also affects the regulation of genes. Areas of chromatin that are less densely packed are more accessible to DNA-binding proteins called transcription factors that activate gene activity. Other regions, called heterochromatin, are compacted which leads to silencing of genes because transcription factors are shut out.

But there’s a wrinkle in this story. More recently, scientists have shown that large proteins are able to wriggle their way into heterochromatin while smaller proteins cannot. So, there must be additional factors at play. This week, a CIRM-funded research project published in Nature provides a possible explanation.

Liquid-like fusion of heterochromatin protein 1a droplets is shown in the embryo of a fruit fly. (Credit: Amy Strom/Berkeley Lab)

Examining the nuclei of fruit fly embryos, a UC Berkeley research team report that various regions of heterochromatin coalesce into liquid droplets which physically separates them from regions where gene activity is high. This phenomenon, called phase-phase separation, is what causes oil droplets to fuse together when added to water. Lead author Dr. Amy Strom explained the novelty of this finding and its implications in a press release:

“We are excited about these findings because they explain a mystery that’s existed in the field for a decade. That is, if compaction [of chromatin] controls access to silenced [DNA] sequences, how are other large proteins still able to get in? Chromatin organization by phase separation means that proteins are targeted to one liquid or the other based not on size, but on other physical traits, like charge, flexibility, and interaction partners.”

Phase-phase separation can also affect other cell components, and problems with it have been linked to neurological disorders like dementia. In diseases like Alzheimer’s and Huntington’s, proteins aggregate causing them to become more solid than liquid over time. Strom is excited about how phase-phase separation insights could lead to novel therapeutic strategies:

“If we can better understand what causes aggregation, and how to keep things more liquid, we might have a chance to combat these types of disease.”

Listen Up: A stem cell-based solution for hearing loss

Can you hear me now?

If you’re old enough, you probably recognize this phrase from an early 2000’s Verizon Wireless commercial where the company claims to be “the nation’s largest, most reliable wireless network”. However, no matter how hard wireless companies like Verizon try, there are still dead zones where cell phone reception is zilch and you can’t in fact hear me now.

This cell phone coverage is a good analogy for the 5% of the world population, or 360 million people, that suffer from hearing loss. There are many causes for hearing loss including genetic predispositions, birth defects, constant exposure to loud noises, infectious diseases, certain drugs, ear infections and aging. There is no cure that fully restores hearing, but patients can benefit from hearing aids, cochlear implants and other hearing devices.

But listen to this. A new stem cell-based technique developed by the Massachusetts Eye and Ear Infirmary may restore hearing in patients with hearing loss. The team discovered that stem cells in the inner ear can be manipulated in a culture dish to expand and develop into large quantities of cochlear hair cells, which make it possible for your brain to detect sound. Their work was published this week in the journal Cell Reports.

In a previous study, the Boston team found that stem cells in the inner ears of mice could be directly converted into cochlear hair cells, but they weren’t able to generate enough hair cells to fully restore hearing in these mice. Building on this work, the team isolated these stem cells, which express a protein called LGR5, and developed an augmentation technique consisting of drugs and growth factors to expand these stem cells and then specialize them into larger populations of hair cells.

A new technique converts stems cells into hair cells. Image credit Will McLean, Albert Edge, Massachusetts Eye and Ear

A new technique converts stems cells into hair cells. Image credit Will McLean, Albert Edge, Massachusetts Eye and Ear.

From a single mouse cochlea, they made more than 11,500 hair cells using their new augmentation method, which is more than 50 times the number of hair cells they made using a more basic method.

In a news release, senior author on the study, Dr. Albert Edge, explained the importance of their findings for patients with hearing loss:

Albert Edge

Albert Edge

“We have shown that we can expand Lgr5-expressing cells to differentiate into hair cells in high yield, which opens the door for drug discovery for hearing. We hope that by stimulating these cells to divide and differentiate that we will improve on our previous results in restoring hearing. With this knowledge, we can make better shots on goal, which is critical for repairing damaged ears. We have identified the cells of interest and have identified the pathways and drugs to target to improve on previous results. These clues may lead us closer to finding drugs that could treat hearing loss in adults.”

Wishing You and Your Stem Cells a Happy Valentine’s Day!

cirm-valentines-day

Roses are Red, 

Violets are Blue,

 Let’s thank pluripotent stem cells,

For making humans like me and you

Happy Valentine’s Day from me and everyone at CIRM! Today, we are celebrating this day of love by sending our warmest wishes to you our readers. We’re grateful for your interest in learning more about stem cells and your steadfast support for the advancement of stem cell research.

We also want to wish a Happy Valentine’s Day to your stem cells, yes that’s right the stem cells you have in your body. Without pluripotent stem cells, which are embryonic cells that generate all the cells in your body, humans wouldn’t exist. And without adult stem cells, which live in your tissues and organs, we wouldn’t have healthy, functioning bodies.

So, as you’re wishing your loved ones, friends, and colleagues a Happy Valentine’s Day, take a moment to thank your body and the stem cells living in it for keeping you alive.

I’ll leave you with a few Valentine’s Day themed stem cell blogs for you to enjoy. Have a wonderful day!


Valentine’s Day Themed Blogs:

1) Toronto Scientists Have an Affair with the Heart by OIRMexpression

Ventricular heart muscle cells. Image courtesy of Dr. Michael Laflamme

Ventricular heart muscle cells. Image courtesy of Dr. Michael Laflamme

2) A Cardiac Love Triangle: How Transcription Factors Interact to Make a Heart by the Stem Cellar

© Gladstone Institutes photo credit: Kim Cordes / Gladstone Institute Lay Description: In this image, human embryonic stem cells have been differentiated into cardiomyocytes, or heart muscle cells, and stained to show the expression of cardiac Troponin T (red), a protein that helps cardiomyocytes to contract, and cell nuclei (blue). Scientific Description: Cultured human iPSCs reprogrammed into CMs. Stain for cTnT (red), and DAPI (blue). Original caption: cardiomyocytes.tif

Heart cells made from human induced pluripotent stem cells. © Gladstone Institutes
photo credit: Kim Cordes / Gladstone Institute

3) Stem Cells on Valentine’s Day: Update on Cardiac Regenerative Medicine by Paul Knoepfler on the Niche Blog

4) Hope For Broken Hearts this Valentine’s Day – a Clinical Trial to Repair the Damage by the Stem Cellar


Special thanks to Samantha Yammine for letting us her her “Icy Astrocytes” photo in our Valentine’s Day graphic.

Failed stem cells may cause deadly lung disease

pf

Breathing is something we take for granted. It’s automatic. We don’t need to think about it. But for people with pulmonary fibrosis, breathing is something that is always on their minds.

Pulmonary fibrosis (PF) is a disease where the tissue in your lungs becomes thick and stiff, even scarred, making it difficult to breathe. It can be a frightening experience; and it doesn’t just affect your lungs.

Because your lungs don’t work properly they aren’t able to move as much oxygen as you need into your bloodstream, and that can have an impact on all your other organs, such as your brain and heart. There are some treatments but no cures, in large part because we didn’t know the cause of the disease. Many patients with PF live only 3-5 years after diagnosis.

Now a new CIRM-funded study from researchers at Cedars-Sinai has uncovered clues as to the cause of the disease, and that in turn could pave the way to new treatments.

The study, published in the journal Nature, found that a class of stem cells in the lung, called AEC2s, are responsible for helping repair damage caused by things such as pollution or infection. People who have PF have far fewer of these AEC2 cells, and those cells also had a much lower concentration of a chemical substance called hyaluronan, which is essential for repair damaged tissue.

They tested this theory with laboratory mice and found that by removing hyaluronan the mice developed thick scarring in their lungs.

In a news release from Cedars-Sinai Carol Liang, the study’s first author, said knowing the cause of the problem may help identify potential solutions:

“These findings are the first published evidence that idiopathic pulmonary fibrosis is primarily a disease of AEC2 stem cell failure. In further studies, we will explore how the loss of hyaluronan promotes fibrosis and how it might be restored to cell surfaces. These endeavors could lead to new therapeutic approaches.”

Knowing that a problem with AEC2 cells causes PF means the researchers can now start testing different medications to see which ones might help boost production of replacement AEC2 cells, or help protect those still functioning.

Seeing is Believing: New Video on the Power of Stem Cells

skepticThe world is full of skeptics. Remember when you first heard about self-driving cars? I’m sure that information was met with comments like, “When pigs fly!” or “I’ll believe it when I see it!” Well, it turns out that the best way to get people to believe something is possible, is to show them.

And that’s our mission at CIRM. To show people that stem cell research is important and funding it is essential for the development of future therapies that can help patients with all sorts of diseases be they rare, acute, or chronic.

We’re doing this in multiple ways through our Stem Cellar blog and social media channels where we post about the latest advances in regenerative medicine research towards the clinic, through disease walks and support groups where we educate patients about stem cells, and through fun and engaging videos about the cutting-edge research that our agency is funding.

Last month, the world celebrated Stem Cell Awareness Day on October 12th. One of the ways we celebrated at CIRM was to give talks at local institutes about the power of stem cells for research and therapeutic development. One of these talks was at the Buck Institute for Research on Aging in Novato as part of their special public event on “Turning Promise of Regenerative Medicine into Reality” supported by the STEAM ENGINE, the teacher outreach program at the Buck Institute.

Kevin, CIRM’s communicators director, and I did a joint presentation on the different ways that scientists are using stem cells to model disease and to develop new treatments for patients. We also shared a few particularly exciting stories about new stem cell advancements that are being tested in clinical trials. One of them was a heartbreaking turned heartwarming story of Evangelina, a baby born with severe combined immunodeficiency (SCID), a disease that leaves children without a functioning immune system and often kills babies within a year of birth. Evangelina was part of a CIRM-funded clinical trial run by UC Los Angeles that transplanted the patient’s own genetically corrected blood stem cells. Evangelina is one of 30 children the UCLA team has cured and CIRM is now funding a Phase 2 clinical trial for this work.

Our talk was followed by exciting stories of stem cell research in the lab. Three talented postdoctoral fellows, who spoke about new developments in stem cell therapies for HIV, degenerative eye disease and neurodegenerative diseases. The talks were well received by the audience, who were actively speaking up to ask questions during the panel discussion with the speakers.

Panel on stem cells.

Stem cell panel: Kevin McCormack, Imilce Rodriguez-Fernandez, Joana Neves, Karen Ring.

It was a truly inspiring day full of learning and excitement about the future of stem cell research and regenerative medicine. But for the skeptics out there, don’t take my word for it, you can see for yourself by can watching the video recording here:


Related Links: