Hits and Myths as people celebrate Stem Cell Awareness Day

UC Davis #1

Stem Cell Awareness Day at UC Davis

Every year, the second Wednesday in October is set aside as Stem Cell Awareness Day, a time to celebrate the progress being made in the field and to remind us of the challenges that lie ahead.

While the event began here in California in 2008, with then-Governor Arnold Schwarzenegger highlighting the work of CIRM, saying: ”The discoveries being made today in our Golden State will have a great impact on many around the world for generations to come.” It has since grown to become a global event.

Here in California, for example, UC Davis and the University of Southern California (USC) both held events to mark the day.

At UC Davis Jan Nolta, PhD., the Director of the Stem Cell Program, introduced a series of speakers who highlighted the terrific work being done at the university. Peter Belafsky talked about using stem cells to repair damaged trachea and to help people who are experiencing voice or swallowing disorders. Mark Lee highlighted the progress being made in using stem cells to repair hard-to-heal broken bones. Aijun Wang focused on some really exciting work that could one day lead to a therapy for spina bifida (including some ridiculously cute video of English bulldogs who are able to walk again because of this therapy.)

USC hosted 100 local high school students for a panel presentation and discussion about careers in stem cell research. The panel featured four scientists talking about their experience, why the students should think about a career in science and how to go about planning one. USC put together a terrific video of the researchers talking about their experiences, something that can help any student around the US consider becoming part of the future of stem cell research.

Similar events were held in other institutions around California. But the celebration wasn’t limited to the Golden State. At the Texas Heart Institute in Houston, Texas, they held an event to talk to the public about the clinical trials they are supporting using stem cells to help people suffering from heart failure or other heart-related issues.

RegMedNet

Finally, the UK-based RegMedNet, a community site that unites the diverse regenerative medicine community, marked the day by exploring some of the myths and misconceptions still surrounding stem cells and stem cell research.

You can read those here.

Every group takes a different approach to celebrating Stem Cell Awareness Day, but each is united by a common desire, to help people understand the progress being made in finding new treatments and even cures for people with unmet medical needs.

Starving stem cells of oxygen can help build stronger bones

Leach_Kent_BME.2012

J. Kent Leach: Photo courtesy UC Davis

We usually think that starving something of oxygen is going to make it weaker and maybe even kill it. But a new study by J. Kent Leach at UC Davis shows that instead of weakening bone defects, depriving them of oxygen might help boost their ability to create new bone or repair existing bone.

Leach says in the past the use of stem cells to repair damaged or defective bone had limited success because the stem cells often didn’t engraft in the bone or survive long if they did. That was because the cells were being placed in an environment that lacked oxygen (concentration levels in bone range from 3% to 8%) so the cells found it hard to survive.

However, studies in the lab had shown that if you preconditioned mesenchymal stem cells (MSCs), by exposing them to low oxygen levels before you placed them on the injury site, you helped prolong their viability. That was further enhanced by forming the MSCs into three dimensional clumps called spheroids.

Lightbulb goes off

In the  current study, published in Stem Cells, Leach says the earlier spheroid results  gave him an idea:

“We hypothesized that preconditioning MSCs in hypoxic (low oxygen) culture before spheroid formation would increase cell viability, proangiogenic potential (ability to create new blood vessels), and resultant bone repair compared with that of individual MSCs.”

So, the researchers placed one group of human MSCs, taken from bone marrow, in a dish with just 1% oxygen, and another identical group of MSCs in a dish with normal oxygen levels. After three days both groups were formed into spheroids and placed in an alginate hydrogel, a biopolymer derived from brown seaweed that is often used to build cellular cultures.

Seaweed

Brown seaweed

The team found that the oxygen-starved cells lasted longer than the ones left in normal oxygen, and the longer those cells were deprived of oxygen the better they did.

Theory is great, how does it work in practice?

Next was to see how those two groups did in actually repairing bones in rats. Leach says the results were encouraging:

“Once again, the oxygen-deprived, spheroid-containing gels induced significantly more bone healing than did gels containing either preconditioned individual MSCs or acellular gels.”

The team say this shows the use of these oxygen-starved cells could be an effective approach to repairing hard-to-heal bone injuries in people.

“Short‐term exposure to low oxygen primes MSCs for survival and initiates angiogenesis (the development of new blood vessels). Furthermore, these pathways are sustained through cell‐cell signaling following spheroid formation. Hypoxic (low oxygen) preconditioning of MSCs, in synergy with transplantation of cells as spheroids, should be considered for cell‐based therapies to promote cell survival, angiogenesis, and bone formation.”

CIRM & Dr. Leach

While CIRM did not fund this study we have invested more than $1.8 million in another study Dr. Leach is doing to develop a new kind of imaging technology that will help us see more clearly what is happening in bone and cartilage-targeted therapies.

In addition, back in March of 2012, Dr. Leach spoke to the CIRM Board about his work developing new approaches to growing bone.

 

UC Davis Stem Cell Director Jan Nolta Shares Her Thoughts on the Importance of Mentoring Young Scientists

Dr. Jan Nolta (UC Davis Health)

Jan Nolta is a scientific rockstar. She is a Professor at UC Davis and the Director of the Stem Cell Program at the UC Davis School of Medicine. Her lab’s research is dedicated to developing stem cell-based treatments for Huntington’s disease (HD). Jan is a tireless advocate for both stem cell and HD research and you’ll often see her tweeting away about the latest discoveries in the field to her followers.

What I admire most about Dr. Nolta is her dedication to educating and mentoring young students. Dr. Nolta helped write the grant that funded the CIRM Bridges master’s program at Sacramento State in 2009. Over the years, she has mentored many Bridges students (we blogged about one student earlier this year) and also high school students participating in CIRM’s SPARK high school internship program. Many of her young trainees have been accepted to prestigious colleges and universities and gone on to pursue exciting careers in STEM.

I reached out to Dr. Nolta and asked her to share her thoughts on the importance of mentoring young scientists and supporting their career ambitions. Below is a summary of our conversation. I hope her passion and devotion will inspire you to think about how you can get involved with student mentorship in your own career.


Describe your career path from student to professor.

I was an undergraduate student at Sacramento State University. I was a nerdy student and did research on sharks. I was planning to pursue a medical degree, but my mentor, Dr. Laurel Heffernan, encouraged me to consider science. I was flabbergasted at the suggestion and asked, “people pay you to do this stuff??” I didn’t know that you could be paid to do lab research. My life changed that day.

I got my PhD at the University of Southern California. I studied stem cell gene therapy under Don Kohn, who was a fabulous mentor. After that, I worked in LA for 15 years and then went back home to UC Davis in 2007 to direct their Stem Cell Program.

It was shortly after I got to Davis that I reconnected with my first mentor, Dr. Heffernan, and we wrote the CIRM Bridges grant. Davis has a large shared translational lab with seven principle investigators including myself and many of the Bridges students work there. Being a scientist can be stressful with grant deadlines and securing funding. Mentoring students is the best part of the job for me.

Why is it important to fund educational programs like Bridges and SPARK?

There is a serious shortage of well-trained specialists in regenerative medicine in all areas of the workforce. The field of regenerative medicine is still relatively new and there aren’t enough people with the required skills to develop and manufacture stem cell treatments. The CIRM Bridges program is critical because it trains students who will fill those key manufacturing and lab manager jobs. Our Bridges program at Sacramento State is a two-year master’s program in stem cell research and lab management. They are trained at the UC Davis Good Manufacturing Practice (GMP) training facility and learn how to make induced pluripotent stem cells (iPSCs) and other stem cell products. There aren’t that many programs like ours in the country and all of our students get competitive job offers after they complete our program.

We are equally passionate about our high school SPARK program. It’s important to capture students’ interests early whether they want to be a scientist or not. It’s important they get exposed to science as early as possible and even if they aren’t going to be a scientist or healthcare professional, it’s important that they know what it’s about. It’s inspiring how many of these students stay in STEM (Science, Technology, Engineering and Math) because of this unique SPARK experience.

Jan Nolta with the 2016 UC Davis SPARK students.

Can you share a student success story?

I’m so proud of Ranya Odeh. She was a student in our 2016 SPARK program who worked in my lab. Ranya received a prestigious scholarship to Stanford largely due to her participation in the CIRM SPARK program. I got to watch her open the letter on Instagram, and it was a really incredible experience to share that part of her life.

I’m also very proud of our former Bridges student Jasmine Carter. She was a mentor to one of our SPARK students Yasmine this past summer. She was an excellent role model and her passion for teaching and research was an inspiration to all of us. Jasmine was hoping to get into graduate school at UC Davis this fall. She not only was accepted into the Neuroscience Graduate Program, but she also received a prestigious first year program fellowship!

UC Davis Professors Jan Nolta and Kyle Fink with CIRM Bridges student Jasmine Carter

[Side note: We’ve featured Ranya and Jasmine previously on the Stem Cellar and you can read about their experiences here and here.]

Why is mentoring important for young students?

I can definitely relate to the importance of having a mentor. I was raised by a single mom, and without scholarships and great mentors, there’s no way I would be where I am today. I’m always happy to help other students who think maybe they can’t do science because of money, or because they think that other people know more than they do or are better trained. Everybody who wants to work hard and has a passion for science deserves a chance to shine. I think these CIRM educational programs really help the students see that they can be what they dream they can be.

What are your favorite things about being a mentor?

Everyday our lab is full of students, science, laughter and fun. I love coming in to the lab. Our young people bring new ideas, energy and great spirit to our team. I think every team should have young trainees and high school kids working with them because they see things in a different way.

Do you have advice for mentoring young scientists?

You can sum it up in one word: Listen. Ask them right away what their dreams are, where do they imagine themselves in the future, and how can you help them get there. Encourage them to always ask questions and let them know that they aren’t bothering you when they do. I also let my students know that I’m happy to be helping them and that the experience is rewarding for me as well.

So many students are shy when they first start in the lab and don’t get all that they can out of the experience. I always tell my students of any age: what you really want to do is try in life. Follow your tennis ball. Like when a golden retriever sees a tennis ball going by, everything else becomes secondary and they follow that ball. You need to find what that tennis ball is for you and then just try to follow it.

What advice can you give to students who want to be scientific professors or researchers?

Find somebody who is a good mentor and cares about you. Don’t go into a lab where the Principle Investigator (PI) is not there most of the time. You will get a lot more out of the experience if you can get input from the PI.

A good mentor is more present in the lab and will take you to meetings and introduce you to people. I find that often students read papers from well-established scientists, and they think that their positions are unattainable. But if they can meet them in person at a conference or a lecture, they will realize that all of the established scientists are people too. I want young students to know that they can do it too and these careers are attainable for anybody.

CIRM Board Appoints Dr. Maria Millan as President and CEO

Dr. Maria Millan, President and CEO of CIRM, at the September Board meeting. (Todd Dubnicoff, CIRM)

Yesterday was a big day for CIRM. Our governing Board convened for its September ICOC meeting and appointed Dr. Maria Millan as our new President and CEO. Dr. Millan has been serving as the Interim President/CEO since July, replacing former President Dr. Randal Mills.

Dr. Millan has been at CIRM since 2012 and was instrumental in the development of CIRM’s infrastructure programs including the Alpha Stem Cell Clinics Network and the agency’s Strategic Plan, a five-year plan that lays out our agency’s goals through 2020. Previously, Dr. Millan was the Vice President of Therapeutics at CIRM, helping the agency fund 23 new clinical trials since the beginning of 2016.

The Board vote to appoint Dr. Millan as President and CEO was unanimous and enthusiastic. Chairman of the Board, Jonathan Thomas, shared the Board’s sentiments when he said,

“Dr. Millan is absolutely the right person for this position. Having seen Dr. Millan as the Interim CEO of CIRM for three months and how she has operated in that position, I am even more enthusiastic than I was before. I am grateful that we have someone of Maria’s caliber to lead our Agency.”

Dr. Millan has pursued a career devoted to helping patients. Before working at CIRM, she was an organ transplant surgeon and researcher and served as an Associate Professor of Surgery and Director of the Pediatric Organ Transplant Program at Stanford University. Dr. Millan was also the Vice President and Chief Medical Officer at StemCells, Inc.

In her permanent role as President, Dr. Millan is determined to keep CIRM on track to achieve the goals outlined in our strategic plan and to achieve its mission to accelerate treatments to patients with unmet needs. She commented in a CIRM press release,

“I joined the CIRM team because I wanted to make a difference in the lives of patients. They are the reason why CIRM exists and why we fund stem cell research. I am humbled and very honored to be CIRM’s President and look forward to further implementing our agency’s Strategic Plan in the coming years.”

The Board also voted to fund two new Alpha Stem Cell Clinics at UC Davis and UC San Francisco and five new clinical trials. Three of the clinical awards went to projects targeting cancer.

The City of Hope received $12.8 million to fund a Phase 1 trial targeting malignant gliomas (an aggressive brain cancer) using CAR-T cell therapy. Forty Seven Inc. received $5 million for a Phase 1b clinical trial treating acute myeloid leukemia. And Nohla Therapeutics received $6.9 million for a Phase 2 trial testing a hematopoietic stem cell and progenitor cell therapy to help patients suffering from neutropenia, a condition that leaves people susceptible to deadly infections, after receiving chemotherapy for acute myeloid leukemia.

The other two trials target diabetes and end stage kidney failure. ViaCyte, Inc. was awarded $20 million to fund a Phase 1/2 clinical trial to test its PEC-Direct islet cell replacement therapy for high-risk type 1 diabetes. Humacyte Inc. received $14.1 million to fund a Phase 3 trial that is comparing the performance of its acellular bioengineered vessel with the current standard of dialysis treatment for kidney disease patients.

The Board also awarded $5.2 million to Stanford Medicine for a late stage preclinical project that will use CRISPR gene editing technology to correct the sickle cell disease mutation in blood-forming stem cells to treat patients with sickle cell disease. This award was particularly well timed as September is Sickle Cell Awareness month.

The Stanford team, led by Dr. Matthew Porteus, hopes to complete the final experiments required for them to file an Investigational New Drug (IND) application with the FDA so they can be approved to start a clinical trial hopefully sometime in 2018. You can read more about Dr. Porteus’ work here and you can read our past blogs featuring Sickle Cell Awareness here and here.

With the Board’s vote yesterday, CIRM’s clinical trial count rises to 40 funded trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan bringing us close to the half way point of funding 50 new clinical trials by 2020. With more “shots-on-goal” CIRM hopes to increase the chances that one of these trials will lead to an FDA-approved therapy for patients.


Related Links:

CIRM Bridges Student Researcher Discovers Mentoring is a Two-Way Street

Jasmine Carter is a CIRM Bridges Scholar a Sacramento State University. She currently is interning in the lab of Dr. Kyle Fink at UC Davis and her research focuses on developing induced neurons from skin cells to model neurological disorders and develop novel therapeutics. Jasmine was a mentor to one of our UC Davis CIRM SPARK high school students this summer, and we asked her to share her thoughts on the importance of mentorship in science.

I began my scientific journey as an undergraduate student in the biomedical sciences, determined to get into medical school to become a surgeon. But I was perpetually stressed, always pushing towards the next goal and never stopping to smell the roses. Until one day, I did stop because a mentor encouraged me to figure out how I wanted to contribute to the medical field. In the midst of contemplating this important question, I was offered an undergraduate research position studying stem cells. It wasn’t long before I realized I had found my calling. Those little stem cells were incredibly fascinating to me, and I really enjoyed my time in a research lab. Being able to apply my scientific knowledge at the lab bench and challenge myself to solve biological problems was truly enjoyable to me so I applied to and was accepted into Sacramento State’s CIRM Bridges Program.

Jasmine working with stem cells in the cell culture hood.

To say I was excited to learn more about stem cell biology would be an understatement. I started volunteering in the Translational Research Lab at the Institute for Regenerative Cures at UC Davis as soon as I could. And I started to feel way outside my comfort zone as I walked into the lab because the seemingly endless rows of research benches and all the lab equipment can be a lot to take in when you first begin your research journey. When I started to actually run experiments, I worried that I may have messed the experiment up. I worried that I might SAY or DO something that would make me appear less intelligent because everyone was so knowledgeable. I struggled with figuring out whether or not I was cut out for the research environment.

I have now started my formal research internship and am constantly amazed at the mentorship I receive and collaboration I witness every day; everyone is always willing to lend a helping hand or simply be a sounding board for ideas. I have learned an immense amount of knowledge about stem cell research and its potential to improve knowledge for the scientific community and treatment options for patients. But I would not have had the opportunity to grow as an intern and learn from experts in various disciplines if it were not for the CIRM Bridges Program. The Bridges Program has allowed me to apply basic biological principles as I learn about stem cell biology and the applications of stems cells while completing a Master’s research project. Diving into the research environment has been challenging at times, but guidance from knowledgeable and encouraging mentors in the Translational Research Laboratory has helped to shape me into a more confident researcher.

Jasmine and Yasmine.

As fate would have it, just as I was becoming more and more confident in myself as a researcher, I found myself becoming a mentor to our CIRM SPARK high school intern, Yasmine. During Yasmine’s first week, I saw the exact same feelings of doubt on her face that I had experienced when I first volunteered in the laboratory. I saw how she challenged herself to absorb and understand every word and concept we said to her. I saw that familiar worried expression she’d displayed when unsure if she just messed up on an experiment or the hesitation when trying to figure out if the question she was about to ask was the “right” one. Because I had faced the same struggles, I could assure her that the internship was a learning experience and that each success and setback she encountered while working on her project would make her a better scientist.

During Yasmine’s eight-week summer internship, she observed and helped members of our team on various experiments while conducting her own research project. At the end of the first week, Yasmine commented on how diligent all the researchers in the lab were; how she hadn’t known the amount of effort and work that’s required to develop and complete a research project. Yasmine’s project focused on optimizing the protocols, or recipes, for editing genes in different types of cells for use as potential treatments for neurological disorders. Many days, you’d find Yasmine peering into the microscope and imaging cells – for her project or one of ours. Being able to visually assess the success of our experiments was exciting for her. The time we spent trying to track down just one fluorescent cell was a great opportunity for us to review the experiment and brainstorm the next set of experiments we wanted to run. I enjoyed explaining the science behind the experiments we set up, and Yasmine’s thought provoking questions sometimes led to a learning session where we figured out the answer together. Yasmine even used the knowledge she was acquiring in a graduate level Good Manufacturing Practice (GMP) course to explain her flow cytometry results to our team during a lab meeting.

Yasmine at the microscope.

It was actually during one of these lab meetings when I was practicing my poster presentation for the 2017 Annual CIRM Bridges Trainee Meeting when Yasmine said, “I finally understand your project”. She and I had frequently discussed my project, but towards the end of the internship she was integrating what she learned in lectures, whiteboard review sessions and scientific papers to the research we were doing at the lab bench. It was incredibly gratifying to see how much she had learned and how her confidence as a young scientist grew while she interned with us. The internship was an invaluable experience for Yasmine because it helped to reinforce her commitment to improving the lives of patients who suffer from brain cancer. She hopes to use the research skills that the SPARK program provided to seek out research opportunities in college.

But the learning wasn’t one-sided this summer because I was also learning from Yasmine. The CIRM SPARK students are encouraged to document their internship on social media. And with Yasmine’s encouragement, I have started to document my experiences in the Bridges program by showing what the day to day life of a graduate student looks like, what experiments are going well and how I am trouble-shooting the failed experiments. Sometimes those failed experiments can be discouraging, but taking the time to discuss it with a mentor, mentee or an individual on social media can help me to figure out how I should change the experiment. So, when self-doubt sprouted back up as I began to document my experiences in the program, I reminded myself that being pushed outside my comfort zone is a great way to learn. But one of the greatest lessons I learned from Yasmine’s summer internship is the importance of sharing in a mentor-mentee relationship. After sharing my knowledge with Yasmine, I got to watch her confidence shine when she took the reins with experiments and then shared the fruits of her labor with me.

There can be a lot of ups and downs in research. However, opportunities for mentorship and learning with such bright, enthusiastic and dedicated students has certainly validated the importance of the CIRM Bridges and SPARK programs. The mentorship and collaboration that occurs between high school interns, undergraduates, graduate students, post-docs and principal investigators to develop therapies for patients with unmet medical needs is truly amazing.

Mentorship leads to productive careers and friendships.

Jasmine Carter is also an avid science communicator. You can follow her science journey on Instagram and Twitter.

Stem Cell Stories That Caught Our Eye: Halting Brain Cancer, Parkinson’s disease and Stem Cell Awareness Day

Stopping brain cancer in its tracks.

Experiments by a team of NIH-funded scientists suggests a potential method for halting the expansion of certain brain tumors.Michelle Monje, M.D., Ph.D., Stanford University.

Scientists at Stanford Medicine discovered that you can halt aggressive brain cancers called high-grade gliomas by cutting off their supply of a signaling protein called neuroligin-3. Their research, which was funded by CIRM and the NIH, was published this week in the journal Nature. 

The Stanford team, led by senior author Michelle Monje, had previously discovered that neuroligin-3 dramatically spurred the growth of glioma cells in the brains of mice. In their new study, the team found that removing neuroligin-3 from the brains of mice that were transplanted with human glioma cells prevented the cancer cells from spreading.

Monje explained in a Stanford news release,

“We thought that when we put glioma cells into a mouse brain that was neuroligin-3 deficient, that might decrease tumor growth to some measurable extent. What we found was really startling to us: For several months, these brain tumors simply didn’t grow.”

The team is now exploring whether targeting neuroligin-3 will be an effective therapeutic treatment for gliomas. They tested two inhibitors of neuroligin-3 secretion and saw that both were effective in stunting glioma growth in mice.

Because blocking neuroligin-3 doesn’t kill glioma cells and gliomas eventually find ways to grow even in the absence of neuroligin-3, Monje is now hoping to develop a combination therapy with neuroligin-3 inhibitors that will cure patients of high-grade gliomas.

“We have a really clear path forward for therapy; we are in the process of working with the company that owns the clinically characterized compound in an effort to bring it to a clinical trial for brain tumor patients. We will have to attack these tumors from many different angles to cure them. Any measurable extension of life and improvement of quality of life is a real win for these patients.”

Parkinson’s Institute CIRM Research Featured on KTVU News.

The Bay Area Parkinson’s Institute and Clinical Center located in Sunnyvale, California, was recently featured on the local KTVU news station. The five-minute video below features patients who attend the clinic at the Parkinson’s Institute as well as scientists who are doing cutting edge research into Parkinson’s disease (PD).

Parkinson’s disease in a dish. Dopaminergic neurons made from PD induced pluripotent stem cells. (Image courtesy of Birgitt Schuele).

One of these scientists is Dr. Birgitt Schuele, who recently was awarded a discovery research grant from CIRM to study a new potential therapy for Parkinson’s using human induced pluripotent stem cells (iPSCs) derived from PD patients. Schuele explains that the goal of her team’s research is to “generate a model for Parkinson’s disease in a dish, or making a brain in a dish.”

It’s worth watching the video in its entirety to learn how this unique institute is attempting to find new ways to help the growing number of patients being diagnosed with this degenerative brain disease.

Click on photo to view video.

Mark your calendars for Stem Cell Awareness Day!

Every year on the second Wednesday of October is Stem Cell Awareness Day (SCAD). This is a day that our agency started back in 2009, with a proclamation by former California Mayor Gavin Newsom, to honor the important accomplishments made in the field of stem cell research by scientists, doctors and institutes around the world.

This year, SCAD is on October 11th. Our Agency will be celebrating this day with a special patient advocate event on Tuesday October 10th at the UC Davis MIND Institute in Sacramento California. CIRM grantees Dr. Jan Nolta, the Director of UC Davis Institute for Regenerative Cures, and Dr. Diana Farmer, Chair of the UC Davis Department of Surgery, will be talking about their CIRM-funded research developing stem cell models and potential therapies for Huntington’s disease and spina bifida (a birth defect where the spinal cord fails to fully develop). You’ll also hear an update on  CIRM’s progress from our President and CEO (Interim), Maria Millan, MD, and Chairman of the Board, Jonathan Thomas, PhD, JD. If you’re interested in attending this event, you can RSVP on our Eventbrite Page.

Be sure to check out a list of other Stem Cell Awareness Day events during the month of October on our website. You can also follow the hashtag #StemCellAwarenessDay on Twitter to join in on the celebration!

One last thing. October is an especially fun month because we also get to celebrate Pluripotency Day on October 4th. OCT4 is an important gene that maintains stem cell pluripotency – the ability of a stem cell to become any cell type in the body – in embryonic and induced pluripotent stem cells. Because not all stem cells are pluripotent (there are adult stem cells in your tissues and organs) it makes sense to celebrate these days separately. And who doesn’t love having more reasons to celebrate science?

Stem cell treatment helps puppies born with spina bifida walk again

Just when you thought puppies couldn’t get any cuter, this video appears in your twitter feed.

These adorable English bulldog puppies are named Darla and Spanky, and they were born with a birth defect called spina bifida where the bones and tissue surrounding the spinal cord fail to fuse completely. Spina bifida occurs in 1500-2000 children in the US each year and can cause serious problems such as paralysis and issues with walking, cognition, and bladder or bowel control. Dogs born with this condition usually cannot use their hind legs, and as a sad consequence, are typically put down at a young age.

Cutting edge research from UC Davis is now giving these unfortunate puppies hope. Diana Farmer, a fetal surgeon at UC Davis Health, and scientists from the university’s Veterinary Institute for Regenerative Cures have developed a combination surgery and stem cell transplant, using placenta-derived mesenchymal stromal cells (PMSCs), to treat puppies with spina bifida. Because prenatal screening for spina bifida is not done in dogs, Darla and Spanky received the treatment when they were ten weeks old.

With funding from a CIRM preclinical development award, Farmer has done similar surgeries in lambs that are still in the womb. A UC Davis news release provided historical background on Farmer’s work on spina bifida,

“Farmer pioneered the use of surgery prior to birth to improve brain development in children with spina bifida. She later showed that prenatal surgery combined with human placenta-derived mesenchymal stromal cells (PMSCs), held in place with a cellular scaffold, helped research lambs born with the disorder walk without noticeable disability.”

As you can see from the video, the surgeries were a success. Darla and Spanky are now able to live up to their full puppy potential and will live happily ever after with their adoptive family in New Mexico.

Looking forward, Farmer and her team would like to treat more dogs with spina bifida so they can improve another negative consequence of spina bifida called incontinence, or an uncontrollable bladder. The UC Davis release explained that, “while Darla and Spanky are very mobile and doing well on their feet, they still require diapers.” (Side note: this video proves that puppies can make anything look cute, even dirty diapers.)

Additionally, the team is hoping to receive regulatory approval from the US Food and Drug Administration to launch a clinical trial testing this therapy in humans. If this stem cell treatment proves to be both safe and effective in clinical trials, it could potentially prevent spina bifida from ever happening in animals and in humans.

English Bulldog undergoing spina bifida surgery at UC Davis Veterinary Medical Teaching Hospital. (Gregory Urquiaga/UC Davis)

Treatments, cures and clinical trials: an in-person update on CIRM’s progress

Patients and Patient Advocates are at the heart of everything we do at CIRM. That’s why we are holding three free public events in the next few months focused on updating you on the stem cell research we are funding, and our plans for the future.

Right now we have 33 projects that we have funded in clinical trials. Those range from heart disease and stroke, to cancer, diabetes, ALS (Lou Gehrig’s disease), two different forms of vision loss, spinal cord injury and HIV/AIDS. We have also helped cure dozens of children battling deadly immune disorders. But as far as we are concerned we are only just getting started.

Over the course of the next few years, we have a goal of adding dozens more clinical trials to that list, and creating a pipeline of promising therapies for a wide range of diseases and disorders.

That’s why we are holding these free public events – something we try and do every year. We want to let you know what we are doing, what we are funding, how that research is progressing, and to get your thoughts on how we can improve, what else we can do to help meet the needs of the Patient Advocate community. Your voice is important in helping shape everything we do.

The first event is at the Gladstone Institutes in San Francisco on Wednesday, September 6th from noon till 1pm. The doors open at 11am for registration and a light lunch.

Gladstone Institutes

Here’s a link to an Eventbrite page that has all the information about the event, including how you can RSVP to let us know you are coming.

We are fortunate to be joined by two great scientists, and speakers – as well as being CIRM grantees-  from the Gladstone Institutes, Dr. Deepak Srivastava and Dr. Steve Finkbeiner.

Dr. Srivastava is working on regenerating heart muscle after it has been damaged. This research could not only help people recover from a heart attack, but the same principles might also enable us to regenerate other organs damaged by disease. Dr. Finkbeiner is a pioneer in diseases of the brain and has done ground breaking work in both Alzheimer’s and Huntington’s disease.

We have two other free public events coming up in October. The first is at UC Davis in Sacramento on October 10th (noon till 1pm) and the second at Cedars-Sinai in Los Angeles on October 30th (noon till 1pm). We will have more details on these events in the coming weeks.

We look forward to seeing you at one of these events and please feel free to share this information with anyone you think might be interested in attending.

License to heal: UC Davis deal looks to advance stem cell treatment for bone loss and arthritis

Nancy Lane

Wei Yao and Nancy Lane of UC Davis: Photo courtesy UC Davis

There are many challenges in taking even the most promising stem cell treatment and turning it into a commercial product approved by the Food and Drug Administration (FDA). One of the biggest is expertise. The scientists who develop the therapy may be brilliant in the lab but have little experience or expertise in successfully getting their work through a clinical trial and ultimately to market.

That’s why a team at U.C. Davis has just signed a deal with a startup company to help them move a promising stem cell treatment for arthritis, osteoporosis and fractures out of the lab and into people.

The licensing agreement combines the business acumen of Regenerative Arthritis and Bone Medicine (RABOME) with the scientific chops of the UC Davis team, led by Nancy Lane and Wei Yao.

They plan to test a hybrid molecule called RAB-001 which has shown promise in helping direct mesenchymal stem cells (MSCs) – these are cells typically found in the bone marrow and fat tissue – to help stimulate bone growth and increase existing bone mass and strength. This can help heal people suffering from conditions like osteoporosis or hard to heal fractures. RAB-001 has also shown promise in reducing inflammation and so could prove helpful in treating people with inflammatory arthritis.

Overcoming problems

In a news article on the UC Davis website, Wei Yao, said RAB-001 seems to solve a problem that has long puzzled researchers:

“There are many stem cells, even in elderly people, but they do not readily migrate to bone.  Finding a molecule that attaches to stem cells and guides them to the targets we need provides a real breakthrough.”

The UC Davis team already has approval to begin a Phase 1 clinical trial to test this approach on people with osteonecrosis, a disease caused by reduced blood flow to bones. CIRM is funding this work.

The RABOME team also hopes to test RAB-001 in clinical trials for healing broken bones, osteoporosis and inflammatory arthritis.

CIRM solution

To help other researchers overcome these same regulatory hurdles in developing stem cell therapies CIRM created the Stem Cell Center with QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider that has deep experience and therapeutic expertise. The Stem Cell Center will help researchers overcome the challenges of manufacturing and testing treatments to meet FDA standards, and then running a clinical trial to test that therapy in people.

Life after SPARK: CIRM high school intern gets prestigious scholarship to Stanford

As part of our CIRM scholar blog series, we’re featuring the research and career accomplishments of CIRM funded students.

Ranya Odeh

Ranya Odeh

Meet Ranya Odeh. She is a senior at Sheldon high school in Elk Grove, California, and a 2016 CIRM SPARK intern. The SPARK program provides stem cell research internships to underprivileged high school students at leading research institutes in California.

This past summer, Ranya worked in Dr. Jan Nolta’s lab at UC Davis improving methods that turn mesenchymal stem cells into bone and fat cells. During her internship, Ranya did an excellent job of documenting her journey in the lab on Instagram and received a social media prize for her efforts.

Ranya is now a senior in high school and was recently accepted into Stanford University through the prestigious QuestBridge scholarship program. She credits the CIRM SPARK internship as one of the main reasons why she was awarded this scholarship, which will pay for all four years of her college.

I reached out to Ranya after I heard about her exciting news and asked her to share her story so that other high school students could learn from her experience and be inspired by her efforts.


How did you learn about the CIRM SPARK program?

At my high school, one of our assignments is to build a website for the Teen Biotech Challenge (TBC) program at UC Davis. I was a sophomore my first year in the program, and I didn’t feel passionate about my project and website. The year after, I saw that some of my friends had done the CIRM SPARK internship after they participated in the TBC program. They posted pictures about their internship on Instagram, and it looked like a really fun and interesting thing to do. So I decided to build another website (one that I was more excited about) in my junior year on synthetic biology. Then I entered my website in the TBC and got first prize in the Nanobiotechnology field. Because I was one of the winners, I got the SPARK internship.

What did you enjoy most about your SPARK experience?

For me, it was seeing that researchers aren’t just scientists in white lab coats. The Nolta lab (where I did my SPARK internship) had a lot of personality that I wasn’t really expecting. Working with stem cells was so cool but it was also nice to see at the same time that people in the lab would joke around and pull pranks on each other. It made me feel that if I wanted to have a future in research, which I do, it wouldn’t be doing all work all the time.

What was it like to do research for the first time?

Ranya taking care of her stem cells!

Ranya taking care of her stem cells!

The SPARK internship was my first introduction to research. During my first experiment, I remember I was changing media and I thought that I was throwing my cells away by mistake. So I freaked out, but then my mentor told me that I hadn’t and everything was ok. That was still a big deal and I learned a lesson to ask more questions and pay more attention to what I was doing.

Did the SPARK program help you when you applied to college?

Yes, I definitely feel like it did. I came into the internship wanting to be a pharmacist. But my research experience working with stem cells made me want to change my career path. Now I’m looking into a bioengineering degree, which has a research aspect to it and I’m excited for that. Having the SPARK internship on my college application definitely helped me out. I also got to have a letter of recommendation from Dr. Nolta, which I think played a big part as well.

Tell us about the scholarship you received!

I got the QuestBridge scholarship, which is a college match scholarship for low income, high achieving students. I found out about this program because my career counselor gave me a brochure. It’s actually a two-part scholarship. The first part was during my junior year of high school and that one didn’t involve a college acceptance. It was an award that included essay coaching and a conference that told you about the next step of the scholarship.

The second part during my senior year was called the national college match scholarship. It’s an application on its own that is basically like a college application. I submitted it and got selected as a finalist. After I was selected, they have partner colleges that offer full scholarships. You rank your choice of colleges and apply to them separately with a common application. If any of those colleges want to match you and agree to pay for all four years of your college, then you will get matched to your top choice. There’s a possibility that more than one college would want to match you, but you will only get matched with the one that you rank the highest. That was Stanford for me, and I am very happy about that.

Why did you pick Stanford as your top choice?

It’s the closest university to where I grew up that is very prestigious. It was also one of the only colleges I’ve visited. When I was walking around on campus, I felt I could see myself there as a student and with the Stanford community. Also, it will be really nice to be close to my family.

What do you do in your free time?

I don’t have a lot of free time because I’m in Academic Decathalon and I spend most of my time doing that. When I do have free time, I like to watch Netflix, blogs on YouTube, and I try to go to the gym [laughs].

Did you enjoy posting about your SPARK internship on Instagram?

I had a lot of fun posting pictures of me in the lab on Instagram. It was also nice during the summer to see other SPARK students in different programs talk about the same things. We shared jokes about micropipettes and culturing stem cells. It was really cool to see that you’re not the only one posting nerdy science pictures. I also felt a part of a larger community outside of the SPARK program. Even people at my school were seeing and commenting on what I was doing.

UC Davis CIRM SPARK program 2016

UC Davis CIRM SPARK program 2016

I also liked that I got feedback about what I was doing in the lab from other SPARK students. When I posted pictures during my internship, I talked about working with mesenchymal stem cells. Because we all post to the same #CIRMSPARKlab hashtag, I saw students from CalTech commenting that they worked with those stem cells too. That motivated me to work harder and accomplish more in my project. Instagram also helped me with my college application process. I saw that there were other students in the same position as me that were feeling stressed out. We also gave each other feedback on college essays and having advice about what I was doing really helped me out.

Do you think it’s important for students to be on social media?

Yes, I think it’s important with boundaries of course. There are probably some people who are on social media too often, and you should have a balance. But it’s nice to see what other students are doing to prepare for college and to let loose and catch up with your friends.

What advice would you give to younger high school students about pursuing science?

I feel like students can’t expect things to be brought to them. If they are interested in science, they need to take the initiative to find something that they are going to want to do. The CIRM internship was brought to my attention. But I have friends that were interested in medicine and they found their own internships and ways to learn more about what they wanted to do. So my advice is to take initiative and not be scared of rejection, because if you’re scared of rejection you’re not going to do anything.

To hear more about Ranya’s SPARK internship experience, read her blog “Here’s what you missed this summer on the show coats.” You can also follow her on Instagram and Twitter. For more information about the CIRM SPARK internship program, please visit the CIRM website.


Related Links: