Modeling the Human Brain in 3D

(Image from Pasca Lab, Stanford University)

Can you guess what the tiny white balls are in this photo? I’ll give you a hint, they represent the organ that you’re using right now to answer my question.

These are 3D brain organoids generated from human pluripotent stem cells growing in a culture dish. You can think of them as miniature models of the human brain, containing many of the brain’s various cell types, structures, and regions.

Scientists are using brain organoids to study the development of the human nervous system and also to model neurological diseases and psychiatric disorders. These structures allow scientists to dissect the inner workings of the brain – something they can’t do with living patients.

Brain-in-a-Dish

Dr. Sergiu Pasca is a professor at Stanford University who is using 3D cultures to understand human brain development. Pasca and his lab have previously published methods to make different types of brain organoids from induced pluripotent stem cells (iPSCs) that recapitulate human brain developmental events in a dish.

Sergiu Pasca, Stanford University (Image credit: Steve Fisch)

My colleague, Todd Dubnicoff, blogged about Pasca’s research last year:

“Using brain tissue grown from patient-derived iPSCs, Dr. Sergiu Pasca and his team recreated the types of nerve cell circuits that form during the late stages of pregnancy in the fetal cerebral cortex, the outer layer of the brain that is responsible for functions including memory, language and emotion. With this system, they observed irregularities in the assembly of brain circuitry that provide new insights into the cellular and molecular causes of neuropsychiatric disorders like autism.”

Pasca generated brain organoids from the iPSCs of patients with a genetic disease called Timothy Syndrome – a condition that causes heart problems and some symptoms of autism spectrum disorder in children. By comparing the nerve cell circuits in patient versus healthy brain organoids, he observed a disruption in the migration of nerve cells in the organoids derived from Timothy Syndrome iPSCs.

“We’ve never been able to recapitulate these human-brain developmental events in a dish before,” said Pasca in a press release, “the process happens in the second half of pregnancy, so viewing it live is challenging. Our method lets us see the entire movie, not just snapshots.”

The Rise of 3D Brain Cultures

Pasca’s lab is just one of many that are working with 3D brain culture technologies to study human development and disease. These technologies are rising in popularity amongst scientists because they make it possible to study human brain tissue in normal and abnormal conditions. Brain organoids have also appeared in the mainstream news as novel tools to study how epidemics like the Zika virus outbreak affect the developing fetal brain (more here and here).

While these advances are exciting and promising, the field is still in its early stages and the 3D organoid models are far from perfect at representing the complex biology of the human brain.

Pasca addresses the progress and the hurdles of 3D brain cultures in a review article titled “The rise of three-dimensional brain cultures” published this week in the journal Nature. The article, describes in detail how pluripotent stem cells can assemble into structures that represent different regions of the human brain allowing scientists to observe how cells interact within neural circuits and how these circuits are disrupted by disease.

The review goes on to compare different approaches for creating 3D brain cultures (see figure below) and their different applications. For instance, scientists are culturing organoids on microchips (brains-on-a-chip) to model the blood-brain barrier – the membrane structure that protects the brain from circulating pathogens in the blood but also makes drug delivery to brain very challenging. Brain organoids are also being used to screen for new drugs and to model complex diseases like Alzheimer’s.

Human pluripotent stem cells, adult stem cells or cancer cells  can be used to derive microfluidics-based organs-on-a-chip (top), undirected organoids (middle), and region-specific brain organoids or organ spheroids (bottom). These 3D cultures can be manipulated with CRISPR-Cas9 genome-editing technologies, transplanted into animals or used for drug screening. (Pasca, Nature)

Pasca ends the review by identifying the major hurdles facing 3D brain culture technologies. He argues that “3D cultures only approximate the appearance and architecture of neural tissue” and that the cells and structures within these organoids are not always predictable. These issues can be address over time by enforcing quality control in how these 3D cultures are made and by using new biomaterials that enable the expansion and maturation of these cultures.

Nonetheless, Pasca believes that 3D brain cultures combined with advancing technologies to study them have “the potential to give rise to novel features for studying human brain development and disease.”

He concludes the review with a cautiously optimistic outlook:

“This is an exciting new field and as with many technologies, it may follow a ‘hype’ cycle in which we overestimate its effects in the short run and underestimate its effects in the long run. A better understanding of the complexity of this platform, and bringing interdisciplinary approaches will accelerate our progress up a ‘slope of enlightenment’ and into the ‘plateau of productivity’.”

3D brain culture from the Pasca Lab, Stanford University


Related Links:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.