Creating a ‘bespoke’ approach to rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Up until recently the word “bespoke” meant just one thing to me, a hand-made suit, customized and fitted to you. There’s a street in London, Saville Row, that specializes in these suits. They’re gorgeous. They’re also very expensive and so I thought I’d never have a bespoke anything.

I was wrong. Because CIRM is now part of a bespoke arrangement. It has nothing to do with suits, it’s far more important than that. This bespoke group is aiming to create tailor-made gene therapies for rare diseases.

It’s called the Bespoke Gene Therapy Consortium (BGTC). Before we go any further I should warn you there’s a lot of acronyms heading your way. The BGTC is part of the Accelerating Medicines Partnership® (AMP®) program. This is a public-private partnership between the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA), and multiple public and private organizations, such as CIRM.

The program is managed by the Foundation for the NIH (FNIH) and it aims to develop platforms and standards that will speed the development and delivery of customized or ‘bespoke’ gene therapies that could treat the millions of people affected by rare diseases.

Why is it necessary? Well, it’s estimated that there are around 7,000 rare diseases and these affect between 25-30 million Americans. Some of these diseases affect only a few hundred, or even a few dozen people. With so few people they almost always struggle to raise the funds needed to do research to find an effective therapy. However, many of these rare diseases are linked to a mutation or defect in a single gene, which means they could potentially be treated by highly customizable, “bespoke” gene therapy approaches.

Right now, individual disease programs tend to try individual approaches to developing a treatment. That’s time consuming and expensive. The newly formed BGTC believes that if we create a standardized approach, we could develop a template that can be widely used to develop bespoke gene therapies quickly, more efficiently and less expensively for a wide array of rare diseases.

“At CIRM we have funded several projects using gene therapy to help treat, and even cure, people with rare diseases such as severe combined immunodeficiency,” says Dr. Maria T. Millan, the President and CEO of CIRM. “But even an agency with our resources can only do so much. This agreement with the Bespoke Gene Therapy Consortium will enable us to be part of a bigger partnership, one that can advance the field, overcome obstacles and lead to breakthroughs for many rare diseases.”

With gene therapy the goal is to identify the genetic defect that is causing the disease and then deliver a normal copy of the gene to the right tissues and organs in the body, replacing or correcting the mutation that caused the problem. But what is the best way to deliver that gene? 

The BGTC’s is focusing on using an adeno-associated virus (AAV) as a delivery vehicle. This approach has already proven effective in Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and spinal muscular atrophy. The consortium will test several different approaches using AAV gene therapies starting with basic research and supporting those all the way to clinical trials. The knowledge gained from this collaborative approach, including developing ways to manufacture these AAVs and creating a standard regulatory approach, will help build a template that can then be used for other rare diseases to copy.

As part of the consortium CIRM will identify specific rare disease gene therapy research programs in California that are eligible to be part of the AMP BGTC. CIRM funding can then support the IND-enabling research, manufacturing and clinical trial activities of these programs.

“This knowledge network/consortium model fits in perfectly with our mission of accelerating transformative regenerative medicine treatments to a diverse California and world,” says Dr. Millan. “It is impossible for small, often isolated, groups of patients around the world to fund research that will help them. But pooling our resources, our skills and knowledge with the consortium means the work we support here may ultimately benefit people everywhere.”

The bootcamp helping in the fight against rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Emil Kakkis at the Rare Entrepreneur Bootcamp

Imagine you or someone you love is diagnosed with a rare disease and then told, “There is no cure, there are no treatments and because it’s so rare no one is even doing any research into developing a treatment.” Sadly for millions of people that’s an all-too-common occurrence.

There are around 7,000 rare diseases affecting some 25-30 million Americans. Some of these are ultra-rare conditions where worldwide there may be only a few hundred people, or even a few dozen, diagnosed with it. And of all these rare diseases, only 5% have an approved therapy.

For the people struggling with a rare disease, finding a sense of hope in the face of all this can be challenging. Some say it feels as if they have been abandoned by the health care system. Others fight back, working to raise both awareness about the disease and funds to help support research to develop a treatment. But doing that without experience in the world of fund raising and drug development can pose a whole new series of challenges.

That’s where Ultragenyx comes into the picture. The company has a simple commitment to patients. “We aim to develop safe and effective treatments for many serious rare diseases as fast as we can, and we are committed to helping the whole rare disease community move forward by sharing our science and expertise to advance future development, whether by us or others.”

They live up to that commitment by hosting a Rare Entrepreneur Bootcamp. Every year they bring together a dozen or so patient or family organizations that are actively raising funds for a potential treatment approach and give them a 3-day crash course in what they’ll need to know to have a chance to succeed in rare disease drug development.

A panel discussion at the Rare Entrepreneur Bootcamp

Dr. Emil Kakkis, the founder of Ultragenyx, calls these advocates “warriors” because of all the battles they are going to face. He told them, “Get used to hearing no, because you are going to hear that a lot. But keep fighting because that’s the only way you get to ‘yes’.”

The bootcamp brings in experts to coach and advise the advocates on everything from presentation skills when pitching a potential investor, to how to collaborate with academic researchers, how to design a clinical trial, what they need to understand about manufacturing or intellectual property rights.

In a blog about the event, Arjun Natesan, vice president of Translational Research at Ultragenyx, wrote, “We are in a position to share what we’ve learned from bringing multiple drugs to market – and making the process easier for these organizations aligns with our goal of treating as many rare disease patients as possible. Our aim is to empower these organizations with guidance and tools and help facilitate their development of life-changing rare disease treatments.”

For the advocates it’s not just a chance to gain an understanding of the obstacles ahead and how to overcome them, it’s also a chance to create a sense of community. Meeting others who are fighting the same fight helps them realize they are not alone, that they are part of a bigger, albeit often invisible, community, working tirelessly to save the lives of their children or loved ones.  

CIRM also has a commitment to supporting the search for treatments for rare diseases. We are funding more than two dozen clinical trials, in addition to many earlier stage research projects, targeting rare conditions.

Rare Disease: An Uphill Battle for Diagnosis and Treatment

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

From left to right: Baby Dalia pre-diagnosis, Dalia on her way to the kindergarten, and Dalia today.

When Dalia was 5 years old, she was finally diagnosed with MERRF syndrome– an extremely rare form of mitochondrial disease. By then, her parents had been searching for an answer for three frustrating years. And like most parents of a child suffering from an undiagnosed medical condition, they expected that Dalia’s diagnosis would start a path to recovery. 

Unfortunately for Dalia and millions of Americans who have a rare disease, the condition is chronic and life-threating. More than 90% of rare diseases have no treatment. None are curable. Even more heartbreaking for Dalia’s family, MERRF is degenerative. Time is of essence.

According to research published in The Journal of Rare Disorders, it takes seeing 7.3 physicians and trying for 4.8 years before getting an accurate rare disease diagnosis. This uphill battle aside, diagnosis is merely the first challenge. For the 7,000 known rare diseases, less than 600 have FDA-approved treatments.  

The irony of rare diseases is that a lot of people have them. The total number of Americans living with a rare disease is estimated at between 25-30 million. Two-thirds of these patients are children. “You feel alone, because by definition, your child’s diagnosis is exceptional. And yet, 1 in 10 Americans and 300 million people globally are living with a rare disease,” explains Jessica Fein, Dalia’s mother, in a heartfelt HuffPost article detailing her daughter’s diagnostic odyssey. 

For decades, the rare disease community has pointed to these staggering numbers to highlight that while individual diseases may be rare, the total number of people with a rare disease is large. 

In 1983, Congress passed the Orphan Drug Act in order to provide incentives for drug companies to develop treatments for rare diseases. Between 1973 and 1983, fewer than 10 treatments for rare diseases were approved. Since 1983, hundreds of drugs and biologic products for rare diseases have been approved by the FDA. While researchers have made progress in learning how to diagnose, treat, and even prevent a variety of rare diseases, there is still much to do because like Dalia, most patients living with a rare disorder have no treatments to even consider. 

Four years after her diagnosis, Dalia lost her ability to walk, talk, eat, and breathe without a ventilator. At the time she was only 9 years old. More than a decade after her diagnosis, Dalia is finally enrolled in a clinical trial. Her parents hope that awareness about rare diseases and their prevalence will lead to research, funding, advocacy and health equity. 

Here at the California Institute for Regenerative Medicine (CIRM), we understand the importance of funding research that impacts not just the most common diseases. In fact, more than one third of all the projects we fund target a rare disease or condition such as: Retinitis pigmentosa, Sickle cell disease, Huntington’s disease, and Duchenne Muscular Dystrophy.

“[If] each of us learned a bit about just one rare disease… it probably wouldn’t change the trajectory for most of the people who are currently suffering, but it might help someone be diagnosed earlier. We’ve made leaps and bounds with awareness, research and treatment for AIDS, cancer and depression, all diseases that were once unknown… Awareness and action aren’t things that can be put on the back burner until more common illnesses are cured. We must do what we can today- and every day moving forward.”

A rare chance to help those in need

Recently the CIRM Board voted to support the creation of a Rare Disease Advisory Council (RDAC) in California. An RDAC is an advisory body providing a platform for the rare community to have a stronger voice in state government. They address the needs of rare patients and families by giving stakeholders an opportunity to make recommendations to state leaders on critical issues including the need for increased awareness, diagnostic tools and access to affordable treatments and cures.  

California is now in the process of creating an RDAC but, as a recent article in STAT highlighted, we are far from the only one.

Guadalupe Hayes-Mota

21 states give rare disease patients a seat at the table. The other 29 need to follow suit
By Guadalupe Hayes-Mota Originally published by STAT on July 26, 2021

A powerful movement is taking shape in the U.S. rare disease community that could transform the lives of millions of people. That’s right — millions. Even though a single rare disease may affect only a few individuals, there are several thousand of these problematic diseases that are difficult to identify and treat.

Since 2015, 21 U.S. states have passed legislation to create Rare Disease Advisory Councils that provide platforms for patients and family members to communicate with experts, policymakers, and the broader public. It’s critical to seize this hopeful moment because the needs of so many people living with rare diseases go unaddressed.

I know because I’m one of them.

I was born and raised in a small town in Mexico and diagnosed at birth with hemophilia, a rare genetic disease that prevents the blood from clotting after trauma or injury. While treatment existed in other parts of the world, I had only limited access to it, forcing me to live an isolated childhood indoors, protected and isolated from the world.

When my appendix burst at age 12, I underwent emergency surgery, followed by a desperate eight-hour ambulance ride to a hospital in another town in search of better medication to stop the bleeding. Doctors told my parents I was unlikely to survive, but against all odds I did — after clinically dying twice in the operating room. I am one of the few lucky people with my condition to have survived severe bleeding events without treatment.

After this traumatic incident, my family moved to a small town in California’s Mojave Desert. Navigating the health care system as an immigrant and not knowing the language was complicated. Accessing treatment and services for my disease was almost impossible at first. The nearest specialist was 90 minutes away. Thankfully, with help from the hemophilia association chapter in our area, I gained access to care and treatment.

Read the complete article here.

Using film to break down barriers around rare disease

You can read about a disease or hear someone talking about it and be engaged and interested. But when you see and hear the people who have the disease talking about it and the impact it has on their lives, that’s when a profound impact occurs. When you look into their eyes and hear them describe, in their own words, how it affects them, you are moved, truly moved, in ways that are hard to describe.

That’s the goal of the Rare Disease Film Festival taking place in San Francisco Saturday November 9 and Sunday November 10. Over two days they’ll be showing 50 films on rare diseases. The film “Rare But Not Alone” highlights conditions such as Batten Disease, Sanfilippo Syndrome and Epidermolysis Bullosa. It shows how families with rare conditions can often feel isolated and alone, but through the internet they can create support groups and a community to help them cope with the pain and challenges that these conditions create.

Daniel DeFabio, the co-founder of the festival, says the idea grew out of his own experiences as a parent.

“I had run a film festival before, it was general interest short independent films. But when my son was diagnosed with Menkes Disease, I made a film about that. After exploring the best festivals and conferences to screen a rare disease film I saw an unmet need.  There was nothing out there like a film festival focused on the rare disease community.  A community of 30 million Americans seemed to deserve its own festival.”

A rare disease is one that affects fewer than 200,000 people. In the US they are also called “Orphan diseases” because drug companies were not interested in adopting them to help create cures or new treatments. At CIRM we are committed to funding research into these kinds of condition. We are not in the business of making a profit. We are here to try and save lives. Of the 60 clinical trials we now fund more than a dozen of them target rare conditions.

DeFabio says the festival is designed to be a place for people to come and share their experiences, but he also hopes it has a more practical, tangible result.

“I partnered with Bo Bigelow. His daughter has USP7. We knew we wanted more than just increased awareness. We wanted awareness that could lead to action. We structured the festival to get the right people together and talking about what they learn in the films. You know Debussy’s line on how music is what happens in the space between the notes? We felt advocacy was what happens in the space between the films. We hope after a screening people stay for a while and start conversations in our lobby. Ideally, they’ll make connection to a new researcher, or a researcher might realize a new application for work that has already been done.”

“We say of our festival you may never be more moved at the movies. And we provide the packs to tissues to our audience in case we’re right.”

Rare disease gets go-ahead to run clinical trial

crf

A young girl with cystinosis: Photo courtesy CRF

Cystinosis is one of those diseases most people have never heard of and should be very grateful they haven’t. It’s rare – affecting only around 500 children and young adults in the US and just 2,000 people worldwide – but it’s nasty. Up to now the treatments for it have been very limited. But a new clinical trial, just given the go-ahead by the Food and Drug Administration (FDA), could help change that.

Cystinosis usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. It is caused by a genetic mutation that allows an amino acid, cysteine, to build up in and damage the kidneys, eyes, liver, muscles, pancreas and brain.

There is one approved therapy, cysteamine, but this only delays progression of the disease, has severe side effects and people taking it still require kidney transplants, and develop diabetes, neuromuscular disorders and hypothyroidism.

All those are reasons why, in September 2016, the CIRM Board approved $5.2 million for U.C. San Diego researcher Stephanie Cherqui, Ph.D. and her team to try a different approach. Their goal is to take blood stem cells from people with cystinosis, genetically-modify them to remove the mutation that causes the disease, then return them to the patient. The hope is that the modified blood stem cells will create a new, healthy, blood system free of the disease.

Results from pre-clinical work testing this approach in mice have been so encouraging that the FDA has given the go-ahead for that work to now be tested in people.

In a news release Nancy Stack, the Founder and President of the Cystinosis Research Foundation (CRF), the largest provider of grants for cystinosis research in the world, says this is exciting news for a community that has been waiting for a breakthrough:

“We are thrilled that CRF’s dedication to funding Dr. Cherqui’s work has resulted in FDA approval for the first-ever stem cell and gene therapy treatment for individuals living with cystinosis. This approval from the FDA brings us one step closer to what we believe will be a cure for cystinosis and will be the answer to my daughter Natalie’s wish made fifteen years ago, ‘to have my disease go away forever.’ We are so thankful to our donors and our cystinosis families who had faith and believed this day would come.”

Dr. Cherqui says if this is successful it could help more than just people with cystinosis:

“We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis,. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders. If so, CRF, through their years of support will have helped an untold number of patients with untreatable, debilitating diseases.”

Those with questions on the trials can call toll free: 844-317-7836 (STEM) and/or visit www.cystinosisresarch.org

Stem Cell Agency’s supporting role in advancing research for rare diseases

Orchard

The recent agreement transferring GSK’s rare disease gene therapies to Orchard Therapeutics was good news for both companies and for the patients who are hoping this research could lead to new treatments, even cures, for some rare diseases. It was also good news for CIRM, which played a key role in helping Orchard grow to the point where this deal was possible.

In a news releaseMaria Millan, CIRM’s President & CEO, said:

“At CIRM, our value proposition is centered around our ability to advance the field of regenerative medicine in many different ways. Our funding and partnership has enabled the smooth transfer of Dr. Kohn’s technology from the academic to the industry setting while conducting this important pivotal clinical trial. With our help, Orchard was able to attract more outside investment and now it is able to grow its pipeline utilizing this platform gene therapy approach.”

Under the deal, GSK not only transfers its rare disease gene therapy portfolio to Orchard, it also becomes a shareholder in the company with a 19.9 percent equity stake. GSK is also eligible to receive royalties and commercial milestone payments. This agreement is both a recognition of Orchard’s expertise in this area, and the financial potential of developing treatments for rare conditions.

Dr. Millan says it’s further proof that the agency’s impact on the field of regenerative medicine extends far beyond the funding it offers companies like Orchard.

“Accelerating stem cell therapies to patients with unmet medical needs involves a lot more than just funding research; it involves supporting the research at every stage and creating partnerships to help it fulfill its potential. We invest when others are not ready to take a chance on a promising but early stage project. That early support not only helps the scientists get the data they need to show their work has potential, but it also takes some of the risk out of investments by venture capitalists or larger pharmaceutical companies.”

CIRM’s early support helped UCLA’s Don Kohn, MD, develop a stem cell therapy for severe combined immunodeficiency (SCID). This therapy is now Orchard’s lead program in ADA-SCID, OTL-101.

Sohel Talib, CIRM’s Associate Director Therapeutics and Industry Alliance, says this approach has transformed the lives of dozens of children born with this usually fatal immune disorder.

“This gene correction approach for severe combined immunodeficiency (SCID) has already transformed the lives of dozens of children treated in early trials and CIRM is pleased to be a partner on the confirmatory trial for this transformative treatment for patients born with this fatal immune disorder.”

Dr. Donald B. Kohn UCLA MIMG BSCRC Faculty 180118Dr. Kohn, now a member of Orchard’s scientific advisory board, said:

“CIRM funding has been essential to the overall success of my work, supporting me in navigating the complex regulatory steps of drug development, including interactions with FDA and toxicology studies that enhanced and helped drive the ADA-SCID clinical trial.”

CIRM funding has allowed Orchard Therapeutics to expand its technical operations footprint in California, which now includes facilities in Foster City and Menlo Park, bringing new jobs and generating taxes for the state and local community.

Mark Rothera, Orchard’s President and CEO, commented:

“The partnership with CIRM has been an important catalyst in the continued growth of Orchard Therapeutics as a leading company transforming the lives of patients with rare diseases through innovative gene therapies. The funding and advice from CIRM allowed Orchard to accelerate the development of OTL-101 and to build a manufacturing platform to support our development pipeline which includes 5 clinical and additional preclinical programs for potentially transformative gene therapies”.

Since CIRM was created by the voters of California the Agency has been able to use its support for research to leverage an additional $1.9 billion in funds for California. That money comes in the form of co-funding from companies to support their own projects, partnerships between outside investors or industry groups with CIRM-funded companies to help advance research, and additional funding that companies are able to attract to a project because of CIRM funding.

Bridging the divide: stem cell students helping families with rare diseases become partners in research

Bridges & Rare Science

CIRM’s Bridges students and Rare Science’s families with rare diseases

Sometimes it’s the simplest things that make the biggest impact. For example, introducing a scientist to a patient can help them drive stem cell research forward faster than either one could do on their own.

Want proof? This year, students in CIRM’s Bridges to Stem Cell Research and Therapy program at California State University (CSU) San Marcos teamed up with parents of children with rare diseases, and the partnerships had a profound impact on all of them, one we hope might produce some long-term benefits.

Christina Waters, who helped create the partnerships, calls it “science with love.”

“We wanted to change the conversation and have researchers and families communicate, making families equal stakeholders in the research. The students bonded with the families and I truly feel that we made a difference in the lives of future researchers, in knowing how much their work can make a life changing impact on the lives of patients’ families who now have hope.”

The CIRM Bridges program helps prepare California’s undergraduate and master’s graduate students for highly productive careers in stem cell research. Students get a paid internship where they get hands-on training and education in stem cell research. They also work with patients and take part in outreach activities so they get an understanding of research that extends beyond the lab.

That’s where Christina Waters comes in. Christina is the founder of Rare Science, a non-profit group focused on rare diseases in children – we blogged about her work here – and she teamed up with CSU San Marcos to partner their Bridges students with five patient families with different rare diseases.

Cutting edge science

One of those families was Aaron Harding’s. Aaron’s son Jaxon has SYNGAP, a genetic disorder that can cause seizures, mental retardation, speech problems and autistic-like behavior. Two of the Bridges students who were doing their internship at ThermoFisher Scientific, Uju Nwizu and Emily Asbury, were given the task of using the gene-editing tool CRISPR Cas9 to help develop a deeper understanding of SYNGAP.

The students say it was an amazing experience:

Uju: “It had a huge impact on me. Every time I thought about SYNGAP I saw Jaxon’s face. This motivated me a lot.”

Emily: “People who work in labs everyday are most often working out the minutiae of research. They don’t often get a chance to see how their research can change or save the lives of real people. Meeting patients is so motivating because afterwards you aren’t just studying a mechanism, you now have a friend with the disease, so you can’t help but be personally invested in the search for a treatment.”

Emily and Uju are working to create iPSCs (induced pluripotent stem cells) that have the SYNGAP mutation. They hope these can be used to study the disease in greater depth and, maybe one day, lead to treatments for some of the symptoms.

Aaron says for families like his, knowing there are scientists working on his child’s disorder is a source of comfort, and hope:

“Personalizing diseases by connecting scientists with those they seek to impact is so important. Emily and Uju took this opportunity and ran with it, and that says a lot about them, and the team at ThermoFisher, taking on an exploring the unknown. That attitude is the heart of a scientist.”

Hearing stories like this is very gratifying, not just for the students and families involved, but for everyone here at CIRM. When we created the Bridges program our goal was to help students get the skills and experience needed to pursue a career in science. Thanks to the people at CSU San Marcos and Rare Science these students got a whole lot more.

Christina Waters: “We learned, we shared hope, we celebrated the courage of our families and the commitment of the students. It takes a village, and it is all of us working together that will make great changes for kids with rare diseases.”

For Uju and Emily, their experience in the Bridges program has made them doubly certain they want to pursue a career in science.

Uju: “I love stem cells and the promise they hold. After this program I hope to be part of a team that is committed to accelerating new stem cell therapies for rare and chronic diseases.”

Emily: “I’ve learned that I love research. After I finish my bachelor’s degree at CSU San Marcos I plan to pursue a graduate degree in molecular or cellular biology.”

 

Raising awareness about Rare Disease Day

rare-disease-day-logo

One of the goals we set ourselves at CIRM in our 2016 Strategic Plan was to fund 50 new clinical trials over the next five years, including ten rare or orphan diseases. Since then we have funded 13 new clinical trials including four targeting rare diseases (retinitis pigmentosa, severe combined immunodeficiency, ALS or Lou Gehrig’s disease, and Duchenne’s Muscular Dystrophy). It’s a good start but clearly, with almost 7,000 rare diseases, this is just the tip of the iceberg. There is still so much work to do.

And all around the world people are doing that work. Today we have asked Emily Walsh, the Community Outreach Director at the Mesothelioma Cancer Alliance,  to write about the efforts underway to raise awareness about rare diseases, and to raise funds for research to develop new treatments for them.

“February 28th marks the annual worldwide event for Rare Disease Day. This is a day dedicated to raising awareness for rare diseases that affect people all over the world. The campaign works to target the general public as well as policy makers in hopes of bringing attention to diseases that receive little attention and funding. For the year 2017 it was decided that the focus would fall on “research,” with the slogan, “With research, possibilities are limitless.”

Getting involved for Rare Disease Day means taking this message and spreading it far and wide. Awareness for rare diseases is extremely important, especially among researchers, universities, students, companies, policy makers, and clinicians. It has long been known that the best advocates for rare diseases are the patients themselves. They use their specific perspectives to raise their voice, share their story, and shed light on the areas where additional funding and research are most necessary.

To see how you can help support the Rare Disease Day efforts this year, click here.

Groups like the Mesothelioma Cancer Alliance and the Mesothelioma Group are adding their voices to the cause to raise awareness about mesothelioma cancer, a rare form of cancer caused by exposure and inhalation of airborne asbestos fibers

Rare diseases affect 300 million people worldwide, but only 5% of them have an FDA approved treatment or cure. Malignant mesothelioma is among the 95 percent that doesn’t have a treatment or cure.

Asbestos has been used throughout history in building materials because of its fire retardant properties. Having a home with asbestos insulation, ceiling tiles, and roof shingles meant that the house was safer. However, it was found that once asbestos crumbled and became powder-like, the tiny fibers could become airborne and be inhaled and lodge themselves in lung tissue causing mesothelioma. The late stage discovery of mesothelioma is often what causes it to have such a high mortality rate. Symptoms can have a very sudden onset, even though the person may have been exposed decades prior.

Right now, treatment for mesothelioma includes the usual combination of chemotherapy, radiation, and surgery, but researchers are looking at other approaches to see if they can be more effective or can help in conjunction with the standard methods. For example one drug, Defactinib, has shown some promise in inhibiting the growth and spread of cancer stem cells – these are stem cells that can evade chemotherapy and cause patients to relapse.”

Some people might ask why spend limited resources on something that affects so few people. But the lessons we learn in developing treatments for a rare disease can often lead us to treatments for diseases that affect many millions of people.

But numbers aside, there is no hierarchy of need, no scale to say the suffering of people with Huntington’s disease is any greater or less than that of people with Alzheimer’s. We are not in the business of making value judgements about who has the greatest need. We are in the business of accelerating treatments to patients with unmet medical needs. And those suffering from rare disease are very clearly  people in need.

 


Related Links:

Partnering with the best to help find cures for rare diseases

As a state agency we focus most of our efforts and nearly all our money on California. That’s what we were set up to do. But that doesn’t mean we don’t also look outside the borders of California to try and find the best research, and the most promising therapies, to help people in need.

Today’s meeting of the CIRM Board was the first time we have had a chance to partner with one of the leading research facilities in the country focusing on children and rare diseases; St. Jude Children’s Researech Hospital in Memphis, Tennessee.

a4da990e3de7a2112ee875fc784deeafSt. Jude is getting $11.9 million to run a Phase I/II clinical trial for x-linked severe combined immunodeficiency disorder (SCID), a catastrophic condition where children are born without a functioning immune system. Because they are unable to fight off infections, many children born with SCID die in the first few years of life.

St. Jude is teaming up with researchers at the University of California, San Francisco (UCSF) to genetically modify the patient’s own blood stem cells, hopefully creating a new blood system and repairing the damaged immune system. St. Jude came up with the method of doing this, UCSF will treat the patients. Having that California component to the clinical trial is what makes it possible for us to fund this work.

This is the first time CIRM has funded work with St. Jude and reflects our commitment to moving the most promising research into clinical trials in people, regardless of whether that work originates inside or outside California.

The Board also voted to fund researchers at Cedars-Sinai to run a clinical trial on ALS or Lou Gehrig’s disease. Like SCID, ALS is a rare disease. As Randy Mills, our President and CEO, said in a news release:

CIRM CEO and President, Randy Mills.

CIRM CEO and President, Randy Mills.

“While making a funding decision at CIRM we don’t just look at how many people are affected by a disease, we also look at the severity of the disease on the individual and the potential for impacting other diseases. While the number of patients afflicted by these two diseases may be small, their need is great. Additionally, the potential to use these approaches in treating other disease is very real. The underlying technology used in treating SCID, for example, has potential application in other areas such as sickle cell disease and HIV/AIDS.”

We have written several blogs about the research that cured children with SCID.

The Board also approved funding for a clinical trial to develop a treatment for type 1 diabetes (T1D). This is an autoimmune disease that affects around 1.25 million Americans, and millions more around the globe.

T1D is where the body’s own immune system attacks the cells that produce insulin, which is needed to control blood sugar levels. If left untreated it can result in serious, even life-threatening, complications such as vision loss, kidney damage and heart attacks.

Researchers at Caladrius Biosciences will take cells, called regulatory T cells (Tregs), from the patient’s own immune system, expand the number of those cells in the lab and enhance them to make them more effective at preventing the autoimmune attack on the insulin-producing cells.

The focus is on newly-diagnosed adolescents because studies show that at the time of diagnosis T1D patients usually have around 20 percent of their insulin-producing cells still intact. It’s hoped by intervening early the therapy can protect those cells and reduce the need for patients to rely on insulin injections.

David J. Mazzo, Ph.D., CEO of Caladrius Biosciences, says this is hopeful news for people with type 1 diabetes:

David Mazzo

David Mazzo

“We firmly believe that this therapy has the potential to improve the lives of people with T1D and this grant helps us advance our Phase 2 clinical study with the goal of determining the potential for CLBS03 to be an effective therapy in this important indication.”

 


Related Links: