Using film to break down barriers around rare disease

You can read about a disease or hear someone talking about it and be engaged and interested. But when you see and hear the people who have the disease talking about it and the impact it has on their lives, that’s when a profound impact occurs. When you look into their eyes and hear them describe, in their own words, how it affects them, you are moved, truly moved, in ways that are hard to describe.

That’s the goal of the Rare Disease Film Festival taking place in San Francisco Saturday November 9 and Sunday November 10. Over two days they’ll be showing 50 films on rare diseases. The film “Rare But Not Alone” highlights conditions such as Batten Disease, Sanfilippo Syndrome and Epidermolysis Bullosa. It shows how families with rare conditions can often feel isolated and alone, but through the internet they can create support groups and a community to help them cope with the pain and challenges that these conditions create.

Daniel DeFabio, the co-founder of the festival, says the idea grew out of his own experiences as a parent.

“I had run a film festival before, it was general interest short independent films. But when my son was diagnosed with Menkes Disease, I made a film about that. After exploring the best festivals and conferences to screen a rare disease film I saw an unmet need.  There was nothing out there like a film festival focused on the rare disease community.  A community of 30 million Americans seemed to deserve its own festival.”

A rare disease is one that affects fewer than 200,000 people. In the US they are also called “Orphan diseases” because drug companies were not interested in adopting them to help create cures or new treatments. At CIRM we are committed to funding research into these kinds of condition. We are not in the business of making a profit. We are here to try and save lives. Of the 60 clinical trials we now fund more than a dozen of them target rare conditions.

DeFabio says the festival is designed to be a place for people to come and share their experiences, but he also hopes it has a more practical, tangible result.

“I partnered with Bo Bigelow. His daughter has USP7. We knew we wanted more than just increased awareness. We wanted awareness that could lead to action. We structured the festival to get the right people together and talking about what they learn in the films. You know Debussy’s line on how music is what happens in the space between the notes? We felt advocacy was what happens in the space between the films. We hope after a screening people stay for a while and start conversations in our lobby. Ideally, they’ll make connection to a new researcher, or a researcher might realize a new application for work that has already been done.”

“We say of our festival you may never be more moved at the movies. And we provide the packs to tissues to our audience in case we’re right.”

Rare disease gets go-ahead to run clinical trial

crf

A young girl with cystinosis: Photo courtesy CRF

Cystinosis is one of those diseases most people have never heard of and should be very grateful they haven’t. It’s rare – affecting only around 500 children and young adults in the US and just 2,000 people worldwide – but it’s nasty. Up to now the treatments for it have been very limited. But a new clinical trial, just given the go-ahead by the Food and Drug Administration (FDA), could help change that.

Cystinosis usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. It is caused by a genetic mutation that allows an amino acid, cysteine, to build up in and damage the kidneys, eyes, liver, muscles, pancreas and brain.

There is one approved therapy, cysteamine, but this only delays progression of the disease, has severe side effects and people taking it still require kidney transplants, and develop diabetes, neuromuscular disorders and hypothyroidism.

All those are reasons why, in September 2016, the CIRM Board approved $5.2 million for U.C. San Diego researcher Stephanie Cherqui, Ph.D. and her team to try a different approach. Their goal is to take blood stem cells from people with cystinosis, genetically-modify them to remove the mutation that causes the disease, then return them to the patient. The hope is that the modified blood stem cells will create a new, healthy, blood system free of the disease.

Results from pre-clinical work testing this approach in mice have been so encouraging that the FDA has given the go-ahead for that work to now be tested in people.

In a news release Nancy Stack, the Founder and President of the Cystinosis Research Foundation (CRF), the largest provider of grants for cystinosis research in the world, says this is exciting news for a community that has been waiting for a breakthrough:

“We are thrilled that CRF’s dedication to funding Dr. Cherqui’s work has resulted in FDA approval for the first-ever stem cell and gene therapy treatment for individuals living with cystinosis. This approval from the FDA brings us one step closer to what we believe will be a cure for cystinosis and will be the answer to my daughter Natalie’s wish made fifteen years ago, ‘to have my disease go away forever.’ We are so thankful to our donors and our cystinosis families who had faith and believed this day would come.”

Dr. Cherqui says if this is successful it could help more than just people with cystinosis:

“We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis,. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders. If so, CRF, through their years of support will have helped an untold number of patients with untreatable, debilitating diseases.”

Those with questions on the trials can call toll free: 844-317-7836 (STEM) and/or visit www.cystinosisresarch.org

Stem Cell Agency’s supporting role in advancing research for rare diseases

Orchard

The recent agreement transferring GSK’s rare disease gene therapies to Orchard Therapeutics was good news for both companies and for the patients who are hoping this research could lead to new treatments, even cures, for some rare diseases. It was also good news for CIRM, which played a key role in helping Orchard grow to the point where this deal was possible.

In a news releaseMaria Millan, CIRM’s President & CEO, said:

“At CIRM, our value proposition is centered around our ability to advance the field of regenerative medicine in many different ways. Our funding and partnership has enabled the smooth transfer of Dr. Kohn’s technology from the academic to the industry setting while conducting this important pivotal clinical trial. With our help, Orchard was able to attract more outside investment and now it is able to grow its pipeline utilizing this platform gene therapy approach.”

Under the deal, GSK not only transfers its rare disease gene therapy portfolio to Orchard, it also becomes a shareholder in the company with a 19.9 percent equity stake. GSK is also eligible to receive royalties and commercial milestone payments. This agreement is both a recognition of Orchard’s expertise in this area, and the financial potential of developing treatments for rare conditions.

Dr. Millan says it’s further proof that the agency’s impact on the field of regenerative medicine extends far beyond the funding it offers companies like Orchard.

“Accelerating stem cell therapies to patients with unmet medical needs involves a lot more than just funding research; it involves supporting the research at every stage and creating partnerships to help it fulfill its potential. We invest when others are not ready to take a chance on a promising but early stage project. That early support not only helps the scientists get the data they need to show their work has potential, but it also takes some of the risk out of investments by venture capitalists or larger pharmaceutical companies.”

CIRM’s early support helped UCLA’s Don Kohn, MD, develop a stem cell therapy for severe combined immunodeficiency (SCID). This therapy is now Orchard’s lead program in ADA-SCID, OTL-101.

Sohel Talib, CIRM’s Associate Director Therapeutics and Industry Alliance, says this approach has transformed the lives of dozens of children born with this usually fatal immune disorder.

“This gene correction approach for severe combined immunodeficiency (SCID) has already transformed the lives of dozens of children treated in early trials and CIRM is pleased to be a partner on the confirmatory trial for this transformative treatment for patients born with this fatal immune disorder.”

Dr. Donald B. Kohn UCLA MIMG BSCRC Faculty 180118Dr. Kohn, now a member of Orchard’s scientific advisory board, said:

“CIRM funding has been essential to the overall success of my work, supporting me in navigating the complex regulatory steps of drug development, including interactions with FDA and toxicology studies that enhanced and helped drive the ADA-SCID clinical trial.”

CIRM funding has allowed Orchard Therapeutics to expand its technical operations footprint in California, which now includes facilities in Foster City and Menlo Park, bringing new jobs and generating taxes for the state and local community.

Mark Rothera, Orchard’s President and CEO, commented:

“The partnership with CIRM has been an important catalyst in the continued growth of Orchard Therapeutics as a leading company transforming the lives of patients with rare diseases through innovative gene therapies. The funding and advice from CIRM allowed Orchard to accelerate the development of OTL-101 and to build a manufacturing platform to support our development pipeline which includes 5 clinical and additional preclinical programs for potentially transformative gene therapies”.

Since CIRM was created by the voters of California the Agency has been able to use its support for research to leverage an additional $1.9 billion in funds for California. That money comes in the form of co-funding from companies to support their own projects, partnerships between outside investors or industry groups with CIRM-funded companies to help advance research, and additional funding that companies are able to attract to a project because of CIRM funding.

Bridging the divide: stem cell students helping families with rare diseases become partners in research

Bridges & Rare Science

CIRM’s Bridges students and Rare Science’s families with rare diseases

Sometimes it’s the simplest things that make the biggest impact. For example, introducing a scientist to a patient can help them drive stem cell research forward faster than either one could do on their own.

Want proof? This year, students in CIRM’s Bridges to Stem Cell Research and Therapy program at California State University (CSU) San Marcos teamed up with parents of children with rare diseases, and the partnerships had a profound impact on all of them, one we hope might produce some long-term benefits.

Christina Waters, who helped create the partnerships, calls it “science with love.”

“We wanted to change the conversation and have researchers and families communicate, making families equal stakeholders in the research. The students bonded with the families and I truly feel that we made a difference in the lives of future researchers, in knowing how much their work can make a life changing impact on the lives of patients’ families who now have hope.”

The CIRM Bridges program helps prepare California’s undergraduate and master’s graduate students for highly productive careers in stem cell research. Students get a paid internship where they get hands-on training and education in stem cell research. They also work with patients and take part in outreach activities so they get an understanding of research that extends beyond the lab.

That’s where Christina Waters comes in. Christina is the founder of Rare Science, a non-profit group focused on rare diseases in children – we blogged about her work here – and she teamed up with CSU San Marcos to partner their Bridges students with five patient families with different rare diseases.

Cutting edge science

One of those families was Aaron Harding’s. Aaron’s son Jaxon has SYNGAP, a genetic disorder that can cause seizures, mental retardation, speech problems and autistic-like behavior. Two of the Bridges students who were doing their internship at ThermoFisher Scientific, Uju Nwizu and Emily Asbury, were given the task of using the gene-editing tool CRISPR Cas9 to help develop a deeper understanding of SYNGAP.

The students say it was an amazing experience:

Uju: “It had a huge impact on me. Every time I thought about SYNGAP I saw Jaxon’s face. This motivated me a lot.”

Emily: “People who work in labs everyday are most often working out the minutiae of research. They don’t often get a chance to see how their research can change or save the lives of real people. Meeting patients is so motivating because afterwards you aren’t just studying a mechanism, you now have a friend with the disease, so you can’t help but be personally invested in the search for a treatment.”

Emily and Uju are working to create iPSCs (induced pluripotent stem cells) that have the SYNGAP mutation. They hope these can be used to study the disease in greater depth and, maybe one day, lead to treatments for some of the symptoms.

Aaron says for families like his, knowing there are scientists working on his child’s disorder is a source of comfort, and hope:

“Personalizing diseases by connecting scientists with those they seek to impact is so important. Emily and Uju took this opportunity and ran with it, and that says a lot about them, and the team at ThermoFisher, taking on an exploring the unknown. That attitude is the heart of a scientist.”

Hearing stories like this is very gratifying, not just for the students and families involved, but for everyone here at CIRM. When we created the Bridges program our goal was to help students get the skills and experience needed to pursue a career in science. Thanks to the people at CSU San Marcos and Rare Science these students got a whole lot more.

Christina Waters: “We learned, we shared hope, we celebrated the courage of our families and the commitment of the students. It takes a village, and it is all of us working together that will make great changes for kids with rare diseases.”

For Uju and Emily, their experience in the Bridges program has made them doubly certain they want to pursue a career in science.

Uju: “I love stem cells and the promise they hold. After this program I hope to be part of a team that is committed to accelerating new stem cell therapies for rare and chronic diseases.”

Emily: “I’ve learned that I love research. After I finish my bachelor’s degree at CSU San Marcos I plan to pursue a graduate degree in molecular or cellular biology.”

 

Raising awareness about Rare Disease Day

rare-disease-day-logo

One of the goals we set ourselves at CIRM in our 2016 Strategic Plan was to fund 50 new clinical trials over the next five years, including ten rare or orphan diseases. Since then we have funded 13 new clinical trials including four targeting rare diseases (retinitis pigmentosa, severe combined immunodeficiency, ALS or Lou Gehrig’s disease, and Duchenne’s Muscular Dystrophy). It’s a good start but clearly, with almost 7,000 rare diseases, this is just the tip of the iceberg. There is still so much work to do.

And all around the world people are doing that work. Today we have asked Emily Walsh, the Community Outreach Director at the Mesothelioma Cancer Alliance,  to write about the efforts underway to raise awareness about rare diseases, and to raise funds for research to develop new treatments for them.

“February 28th marks the annual worldwide event for Rare Disease Day. This is a day dedicated to raising awareness for rare diseases that affect people all over the world. The campaign works to target the general public as well as policy makers in hopes of bringing attention to diseases that receive little attention and funding. For the year 2017 it was decided that the focus would fall on “research,” with the slogan, “With research, possibilities are limitless.”

Getting involved for Rare Disease Day means taking this message and spreading it far and wide. Awareness for rare diseases is extremely important, especially among researchers, universities, students, companies, policy makers, and clinicians. It has long been known that the best advocates for rare diseases are the patients themselves. They use their specific perspectives to raise their voice, share their story, and shed light on the areas where additional funding and research are most necessary.

To see how you can help support the Rare Disease Day efforts this year, click here.

Groups like the Mesothelioma Cancer Alliance and the Mesothelioma Group are adding their voices to the cause to raise awareness about mesothelioma cancer, a rare form of cancer caused by exposure and inhalation of airborne asbestos fibers

Rare diseases affect 300 million people worldwide, but only 5% of them have an FDA approved treatment or cure. Malignant mesothelioma is among the 95 percent that doesn’t have a treatment or cure.

Asbestos has been used throughout history in building materials because of its fire retardant properties. Having a home with asbestos insulation, ceiling tiles, and roof shingles meant that the house was safer. However, it was found that once asbestos crumbled and became powder-like, the tiny fibers could become airborne and be inhaled and lodge themselves in lung tissue causing mesothelioma. The late stage discovery of mesothelioma is often what causes it to have such a high mortality rate. Symptoms can have a very sudden onset, even though the person may have been exposed decades prior.

Right now, treatment for mesothelioma includes the usual combination of chemotherapy, radiation, and surgery, but researchers are looking at other approaches to see if they can be more effective or can help in conjunction with the standard methods. For example one drug, Defactinib, has shown some promise in inhibiting the growth and spread of cancer stem cells – these are stem cells that can evade chemotherapy and cause patients to relapse.”

Some people might ask why spend limited resources on something that affects so few people. But the lessons we learn in developing treatments for a rare disease can often lead us to treatments for diseases that affect many millions of people.

But numbers aside, there is no hierarchy of need, no scale to say the suffering of people with Huntington’s disease is any greater or less than that of people with Alzheimer’s. We are not in the business of making value judgements about who has the greatest need. We are in the business of accelerating treatments to patients with unmet medical needs. And those suffering from rare disease are very clearly  people in need.

 


Related Links:

Partnering with the best to help find cures for rare diseases

As a state agency we focus most of our efforts and nearly all our money on California. That’s what we were set up to do. But that doesn’t mean we don’t also look outside the borders of California to try and find the best research, and the most promising therapies, to help people in need.

Today’s meeting of the CIRM Board was the first time we have had a chance to partner with one of the leading research facilities in the country focusing on children and rare diseases; St. Jude Children’s Researech Hospital in Memphis, Tennessee.

a4da990e3de7a2112ee875fc784deeafSt. Jude is getting $11.9 million to run a Phase I/II clinical trial for x-linked severe combined immunodeficiency disorder (SCID), a catastrophic condition where children are born without a functioning immune system. Because they are unable to fight off infections, many children born with SCID die in the first few years of life.

St. Jude is teaming up with researchers at the University of California, San Francisco (UCSF) to genetically modify the patient’s own blood stem cells, hopefully creating a new blood system and repairing the damaged immune system. St. Jude came up with the method of doing this, UCSF will treat the patients. Having that California component to the clinical trial is what makes it possible for us to fund this work.

This is the first time CIRM has funded work with St. Jude and reflects our commitment to moving the most promising research into clinical trials in people, regardless of whether that work originates inside or outside California.

The Board also voted to fund researchers at Cedars-Sinai to run a clinical trial on ALS or Lou Gehrig’s disease. Like SCID, ALS is a rare disease. As Randy Mills, our President and CEO, said in a news release:

CIRM CEO and President, Randy Mills.

CIRM CEO and President, Randy Mills.

“While making a funding decision at CIRM we don’t just look at how many people are affected by a disease, we also look at the severity of the disease on the individual and the potential for impacting other diseases. While the number of patients afflicted by these two diseases may be small, their need is great. Additionally, the potential to use these approaches in treating other disease is very real. The underlying technology used in treating SCID, for example, has potential application in other areas such as sickle cell disease and HIV/AIDS.”

We have written several blogs about the research that cured children with SCID.

The Board also approved funding for a clinical trial to develop a treatment for type 1 diabetes (T1D). This is an autoimmune disease that affects around 1.25 million Americans, and millions more around the globe.

T1D is where the body’s own immune system attacks the cells that produce insulin, which is needed to control blood sugar levels. If left untreated it can result in serious, even life-threatening, complications such as vision loss, kidney damage and heart attacks.

Researchers at Caladrius Biosciences will take cells, called regulatory T cells (Tregs), from the patient’s own immune system, expand the number of those cells in the lab and enhance them to make them more effective at preventing the autoimmune attack on the insulin-producing cells.

The focus is on newly-diagnosed adolescents because studies show that at the time of diagnosis T1D patients usually have around 20 percent of their insulin-producing cells still intact. It’s hoped by intervening early the therapy can protect those cells and reduce the need for patients to rely on insulin injections.

David J. Mazzo, Ph.D., CEO of Caladrius Biosciences, says this is hopeful news for people with type 1 diabetes:

David Mazzo

David Mazzo

“We firmly believe that this therapy has the potential to improve the lives of people with T1D and this grant helps us advance our Phase 2 clinical study with the goal of determining the potential for CLBS03 to be an effective therapy in this important indication.”

 


Related Links:

Rare diseases are not so rare

brenden-and-dog

Brenden Whittaker – cured in a CIRM-funded clinical trial focusing on his rare disease

It seems like a contradiction in terms to say that there are nearly 7,000 diseases, affecting 30 million people, that are considered rare in the US. But the definition of a rare disease is one that affects fewer than 200,000 people and the National Institutes of Health’s (NIH) Genetic and Rare Diseases Information Center (GARD) has a database that lists every one of them.

Those range from relatively well known conditions such as sickle cell disease and cerebral palsy, to lesser known ones such as attenuated familial adenomatous polyposis (AFAP) – an inherited condition that increases your risk of colon cancer.

Because disease like these are so rare, in the past many individuals with them felt isolated and alone. Thanks to the internet, people are now able to find online support groups where they can get advice on coping strategies, ideas on potential therapies and, just as important, can create a sense of community.

One of the biggest problems facing the rare disease community is a lack of funding for research to develop treatments or cures. Because these diseases affect fewer than 200,000 people most pharmaceutical companies don’t invest large sums of money developing treatments; they simply wouldn’t be able to get a big enough return on their investment. This is not a value judgement. It’s just a business reality.

And that’s where CIRM comes in. We were created, in part, to help those who can’t get help from other sources. This week alone, for example, our governing Board is meeting to vote on funding clinical trials for two rare and deadly diseases – ALS or Lou Gehrig’s disease, and Severe Combined Immunodeficiency or SCID. This kind of funding can mean the difference between life and death.

cirm-2016-annual-report-web-12

For proof, you need look no further than Evie Vaccaro, the young girl we feature on the front of our 2016 Annual Report. Evie was born with SCID and faced a bleak future. But UCLA researcher Don Kohn, with some help from CIRM, developed a therapy that cured Evie. This latest clinical trial could help make a similar therapy available to other children with SCID.

But with almost 7,000 rare diseases it’s clear we can’t help everyone. In fact, there are only around 450 FDA-approved therapies for all these conditions. That’s why the National Organization for Rare Disorders (NORD) and groups like them are organizing events around the US on February 28th, which has been designated as Rare Disease Day. The goal is to raise awareness about rare diseases, and to advocate for action to help this community. Here’s a link to Advocacy Events in different states around the US.

Alone, each of these groups is small and easily overlooked. Combined they have a powerful voice, 30 million strong, that demands to be heard.

 

 

Stem Cells Profile in Courage: Pat Furlong, Patient Advocate

pat-furlong

Pat Furlong: Photo by Colin McGuire – http://www.colinmcguire.com

One of the true joys for me in helping put together this year’s Annual Report was getting to know the patients and patient advocates that we profiled in the report. These are some extraordinary individuals and the short profiles we posted only touch the surface of just how extraordinary.

So, over the next few weeks we are going to feature four of these people at greater length, allowing them, in their own words, to talk about what makes them tic, and how they keep going in the face of what is often heartbreak and tragedy.

We begin with Pat Furlong, a Patient Advocate and the Founding President and CEO of Parent Project Muscular Dystrophy (PPMD), the largest nonprofit organization in the United States solely focused on Duchenne muscular dystrophy (DMD).

DMD is the most common fatal, genetic childhood disorder, which affects approximately 1 out of every 3,500 boys each year worldwide. It’s a progressive muscle disorder that leads to loss of muscle function, meaning you lose your ability to walk, to use your arms, and ultimately to breathe. And because the heart is a muscle, that is often seriously affected. There is no cure, and treatment options are limited. At the time her sons were diagnosed life expectancy was in the teens.

Pat’s story:

“When my sons, Chris and Pat were diagnosed with DMD, at the ages of 4 and 6, there was nothing available for them. Doctors cared about them but they didn’t have the tools they needed, or the National Institutes of Health the money it needed to do research.

Doctors were faced with diagnosing a disease and saying “there’s nothing we can do”. And then parents like me, coming to them hearing there was nothing they could do, no hope, no help. When your son is diagnosed with something like this you are told go home and love them.

When I asked questions, I was often ignored or dismissed by some doctors.

When my sons were diagnosed with DMD I would drop them off at school and go walking and that would help me deal with the anger.

For me staying in this is to be able to say to Chris and Pat in the universe, when you were here I tried my very best and when you were gone I continued to try my best so that others would have advantages that you didn’t receive.

I haven’t stood back and said I can’t go on.

The family is all scarred, we all suffered this loss. It’s much more apparent when we are together, there are empty chairs, emptiness. If we go to a family gathering we wish Chris and Pat were here, could be married. Now there’s my husband and our two daughters. We have a granddaughter, who is wonderful, but still we are incomplete and we will live with that forever.

I am trained as a nurse and I find DMD equal parts fascinating disease, heartbreaking and painful. I try to emphasize the fascinating so I can keep going. There are frustrations; lack of money, the slow process of regulatory approval, but I have an incredible team of very smart people and we are passionate about change so that helps keep us going.

Your only interest can’t be DMD, it can’t be. For me it’s certainly a priority, but it’s not my only interest. I love to go to an art museum and see how creative people work. I love Cirque du Soleil because they do things with their muscles I can’t imagine. Going outside and seeing these things makes the world better.

I am interested in the expression of art, to see how people dress, to see how people are creative, I love creativity, I think the human spirit is pretty amazing and the creativity around it. I think we are all pretty amazing but sometimes we don’t say it enough.

I recently saw a woman on the subway with a pair of tennis shoes that said “you are beautiful” and people around her were looking at her shoes and smiling, just because of those shoes. We forget to interact, and that was such a simple way of doing that.

bucket-feet

 

I relax by doing yoga, 90-minute hot yoga, as often as I can. I’ve also done a number of half marathons, but I’m more a walker than a runner. I find getting outside or hot yoga makes me concentrate on what I’m doing so that I can’t think of anything else. I can put it down and think about nothing and whisper prayers to my sons and say am I doing the right thing, is there something I should be doing differently? It’s my time to think about them and meditate about what they think would be important.

You need to give your mind time to cope, so it’s putting your phone down and your computer away. It’s getting rid of those interruptions. To put the phone, the computer down and get in a hot room and do yoga, or run around outside, to look at a tree and think about the changing season, the universe, the sun. It’s an incredible break for the brain to be able to rest.

I think the disease has made us kinder people and more thoughtful. When Chris died, we found a notebook he kept. In it was written “the meaning of life is a life of meaning”. I think that’s where we have all landed, what we all strive for, a life of meaning.

 

 

 

Meeting the scientists who are turning their daughter’s cells into a research tool – one that could change her life forever

There’s nothing like a face-to-face meeting to really get to know someone. And when the life of someone you love is in the hands of that person, then it’s a meeting that comes packed with emotion and importance.

lilly-grossman

Lilly Grossman

Last week Gay and Steve Grossman got to meet the people who are working with their daughter Lilly’s stem cells. Lilly was born with a rare, debilitating condition called ADCY5-related dyskinesia. It’s an abnormal involuntary movement disorder caused by a genetic mutation that results in muscle weakness and severe pain. Because it is so rare, little research has been done on developing a deeper understanding of it, and even less on developing treatments.

buck-team

The Grossmans and Chris Waters meet the Buck team

 

That’s about to change. CIRM’s Induced Pluripotent Stem Cell  iPSC Bank – at the Buck Institute for Research on Aging – is now home to some of Lilly’s cells, and these are being turned into iPS cells for researchers to study the disease, and to hopefully develop and test new drugs or other therapies.

Gay said that meeting the people who are turning Lilly’s tissue sample into a research tool was wonderful:

“I think meeting the people who are doing the actual work at the lab is so imperative, and so important. I want them to see where their work is going and how they are not only affecting our lives and our daughter’s life but also the lives of the other kids who are affected by this rare disease and all rare diseases.”

Joining them for the trip to the Buck was Chris Waters, the driving force behind getting the Bank to accept new cell lines. Chris runs Rare Science a non-profit organization that focuses on children with rare diseases by partnering with patient family communities and foundations.

chris-gay-steve1

Steve and Gay Grossman and Chris Waters

In a news release, Chris says there are currently 7,000 identified rare diseases and 50 percent of those affect children; tragically 30 percent of those children die before their 5th birthday:

“The biggest gap in drug development is that we are not addressing the specific needs of children, especially those with rare diseases.  We need to focus on kids. They are our future. If it takes 14 years and $2 billion to get FDA approval for a new drug, how is that going to address the urgent need for a solution for the millions of children across the world with a rare disease? That’s why we created Rare Science. How do we help kids right now, how do we help the families? How do we make change?”

Jonathan Thomas, the Chair of the CIRM Board, said one way to help these families and drive change is by adding samples of stem cells from rare diseases like ADCY5 to the iPSC Bank:

“Just knowing the gene that causes a particular problem is only the beginning. By having the iPSCs of individuals, we can start to investigate the diseases of these kids in the labs. Deciphering the biology of why there are similarities and dissimilarities between these children could the open the door for life changing therapies.”

When CIRM launched the iPSC Initiative – working with CDI, Coriell, the Buck Institute and researchers around California – the goal was to build the largest iPSC Bank in the world.  Adding new lines, such as the cells from people with ADCY5, means the collection will be even more diverse than originally planned.

Chris hopes this action will serve as a model for other rare diseases, creating stem cell lines from them to help close the gap between discovery research and clinical impact. And she says seeing the people who are turning her idea into reality is just amazing:

“Oh my gosh. It’s just great to be here, to see all these people who are making this happen, they’re great. And I think they benefit too, by being able to put a human face on the diseases they are working on. I think you learn so much by meeting the patients and their families because they are the ones who are living with this every day. And by understanding it through their eyes, you can improve your research exponentially. It just makes so much more sense.”

bears

RARE Bears for RARE Science

To help raise funds for this work Rare Science is holding a special auction, starting tomorrow, of RARE Bears. These are bears that have been hand made by, and this is a real thing, “celebrity quilters”, so you know the quality is going to be amazing. All proceeds from the auction go to help RARE Science accelerate the search for treatments for the 200 million kids around the world who are undiagnosed or who have a rare disease.

 

How research on a rare disease turned into a faster way to make stem cells

Forest Gump. (Paramount Pictures)

Forest Gump. (Paramount Pictures)

If Forest Gump were a scientist, I’d like to think he would have said his iconic line a little differently. Dr. Gump would have said, “scientific research is like a box of chocolates – you never know what you’re gonna get.”

A new CIRM-funded study coming out of the Gladstone Institutes certainly proves this point. Published yesterday in the Proceedings of the National Academy of Sciences, the study found that a specific genetic mutation known to cause a rare disease called fibrodysplasia ossificans progressiva (FOP) makes it easier to reprogram adult skin cells into induced pluripotent stem cells (iPSCs).

Shinya Yamanaka received the Nobel Prize in medicine in 2012 for his seminal discovery of the iPSC technology, which enabled scientists to generate patient specific pluripotent stem cell lines from adult cells like skin and blood. These iPSC lines are useful for modeling disease in a dish, identifying new therapeutic drugs, and potentially for clinical applications in patients. However, one of the rate-limiting steps to this technology is the inefficient process of making iPSCs.

Yamanaka, a senior investigator at Gladstone, knows this problem all too well. In a Gladstone news release he commented, “inefficiency in creating iPSCs is a major roadblock toward applying this technology to biomedicine. Our study identified a surprising way to increase the number of iPSCs that we can generate.”

So how did Yamanaka and his colleagues discover this new trick for making iPSCs more efficiently? Originally, their intentions were to model a rare genetic disease called FOP. It’s commonly known as “stone man syndrome” because the disease converts normal muscle and connective tissue into bone either spontaneously or spurred by injury. Bone growth begins at a young age starting at the neck and progressively moving down the body. Because there is no treatment or cure, patients typically have a lifespan of only 40 years.

The Gladstone team wanted to understand this rare disease better by modeling it in a dish using iPSCs generated from patients with FOP. These patients had a genetic mutation in the ACVR1 gene, which plays an important role in the development of the embryo. FOP patients have a mutant form of ACVR1 that overstimulates this developmental pathway and boosts the activity of a protein called BMP (bone morphogenic protein). When BMP signaling is ramped up, they discovered that they could produce significantly more iPSCs from the skin cells of FOP patients compared to normal, healthy skin cells.

First author on the study, Yohei Hayashi, explained their hypothesis for why this mutation makes it easier to generate iPSCs:

“Originally, we wanted to establish a disease model for FOP that might help us understand how specific gene mutations affect bone formation. We were surprised to learn that cells from patients with FOP reprogrammed much more efficiently than cells from healthy patients. We think this may be because the same pathway that causes bone cells to proliferate also helps stem cells to regenerate.”

To be sure that enhanced BMP signaling caused by the ACVR1 mutation was the key to generating more iPSCs, they blocked this signal and discovered that much fewer iPSCs were made from FOP patient skin cells.

Senior Investigator Bruce Conklin, who was a co-author on this study, succinctly summarized the importance of their findings:

“This is the first reported case showing that a naturally occurring genetic mutation improves the efficiency of iPSC generation. Creating iPSCs from patient cells carrying genetic mutations is not only useful for disease modeling, but can also offer new insights into the reprogramming process.”

Gladstone investigators Bruce Conklin and Shinya Yamanaka. (Photo courtesy of Chris Goodfellow, Gladstone Institutes)

Gladstone investigators Bruce Conklin and Shinya Yamanaka. (Photo courtesy of Chris Goodfellow, Gladstone Institutes)