Hollywood and Patient Advocacy – two people who are on our Board but never boring

At first glance Lauren Miller Rogen and Dr. David Higgins seem an unlikely pair. She’s an actor, writer, director and has worked with some of the biggest names in Hollywood. He has a doctorate in molecular biology and genetics and has worked at some of the most well-known companies in biotech. But together they make a great team.

Lauren and David are both on the CIRM Board. She’s a patient advocate for Alzheimer’s and the driving force (with her husband Seth) of HFC (Hilarity for Charity), which has raised millions of dollars to help families battling the disease and to educate young people about the condition. It’s also made a lot of people laugh along the way. David is a patient advocate for Parkinson’s and has been instrumental is creating support groups that help patients and families cope with the disease.

Together they are a force for good. And they’re also really funny. And that’s why we invited them to be guests on the CIRM Podcast, Talking ‘Bout (re)Generation. They are smart, engaging, witty, and they don’t pull punches.

I know you are going to enjoy the show.

We’ve got cash, here’s how you can get some

When the voters of California approved Proposition 14 last November (thanks folks) they gave us $5.5 billion to continue the work we started way back in 2014. It’s a great honor, and a great responsibility.

It’s also a great opportunity to look at what we do and how we do it and try to come up with even better ways of funding groundbreaking research and helping create a new generation of researchers.

In addition to improving on what we already do, Prop 14 introduced some new elements, some new goals for us to add to the mix, and we are in the process of fleshing out how we can best do that.

Because of all these changes we decided it would be a good idea to hold a “Town Hall” meeting and let everyone know what these changes are and how they may impact applications for funding.

The Town Hall, on Tuesday June 29, was a great success with almost 200 participants. But we know that not everyone who wanted to attend could, so here’s the video of the event, and below that are the questions that were posed by people during the meeting, and the answers to those questions.

Having seen the video we would be eternally grateful if you could respond to a short online survey, to help us get a better idea of your research and education needs and to be better able to serve you and identify potential areas of opportunity for CIRM. Here’s a link to that survey: https://www.surveymonkey.com/r/VQMYPDL

We know that there may be issues or questions that are not answered here, so feel free to send those to us at info@cirm.ca.gov and we will make sure you get an answer.

Are there any DISC funding opportunities specific to early-stage investigators?

DISC funding opportunities are open to all investigators.  There aren’t any that are specific to junior investigators.

Are DISC funding opportunities available for early-mid career researchers based out of USA such as Australia?

Sorry, you have to be in California for us to fund your work.

Does tumor immunology/ cancer immunotherapy fall within the scope of the CIRM discovery grants?

Yes, they do.  Here is a link to various CIRM DISC Awards that fall within the cancer category.  https://www.cirm.ca.gov/grants?disease_focus%5B%5D=1427&program_type%5B%5D=1230

Will Disc1 (Inception awards) and/or seed funding mechanisms become available again?

CIRM is anticipating launching a program to meet this need toward the end of this year.

For DISC award is possible to contact a grant advisor for advice before applying?

Please email discovery@cirm.ca.gov to discuss Discovery stage applications before applying

Is co-funding requirement a MUST for clinical trials?

Co-funding requirements vary.  Please refer to the following link for more information: https://www.cirm.ca.gov/sites/default/files/files/about_cirm/CLIN2_Mini_Brochure2.pdf

Hi, when will reviews for DISC 2: CIRM Quest – Discovery Stage Research Projects (deadline March 2021) be available? Thanks!

Review summaries for the March 2021 Discovery submitted applications will be available by mid-August, with final board funding decisions at the August 24th Application Review Subcommittee Meeting

Has CIRM project made it to Phase III or product launch with FDA approval? What is CIRM strategy for start-up biotech companies?

CIRM has funded several late-stage Phase III/potentially pivotal clinical trials. You can view them here: https://www.cirm.ca.gov/our-impact/funding-clinical-trials

CIRM funding supports non-profit academic grantees as well as companies of all sizes.

I am studying stem cells using mouse. Is my research eligible for the CIRM grants?

Yes it is.

Your programs more specifically into stem cell research would be willing to take patients that are not from California?

Yes, we have treated patients who are not in California. Some have come to California for treatment and others have been treated in other states in the US by companies that are based here in California.

Can you elaborate how the preview of the proposals works? Who reviews them and what are the criteria for full review?

The same GWG panel both previews and conducts the full review. The panel first looks through all the applications to identify what each reviewer believes represents the most likely to be impactful and meet the goals of the CIRM Discovery program. Those that are selected by any reviewer moves forward to the next full review step.

If you meet your milestones-How likely is it that a DISC recipient gets a TRAN award?

The milestones are geared toward preparation of the TRAN stage.  However, this is a different application and review that is not guaranteed to result in funding.

Regarding Manufacturing Public Private partnerships – What specific activities is CIRM thinking about enabling these partnerships? For example, are out of state for profit commercial entities able to conduct manufacturing at CA based manufacturing centers even though the clinical program may be primarily based out of CA? If so, what percent of the total program budget must be expended in CA? How will CIRM enable GMP manufacturing centers interact with commercial entities?

We are in the early stages of developing this concept with continued input from various stakeholders. The preliminary vision is to build a network of academic GMP manufacturing centers and industry partners to support the manufacturing needs of CIRM-funded projects in California.

We are in the process of widely distributing a summary of the manufacturing workshop. Here’s a link to it:

If a center is interested in being a sharing lab or competency hub with CIRM, how would they go about it?

CIRM will be soliciting applications for Shared Labs/Competency hubs in potential future RFAs. The survey asks several questions asking for feedback on these concepts so it would really help us if you could complete the survey.

Would preclinical development of stem cell secretome-derived protein therapies for rare neuromuscular diseases and ultimately, age-related muscle wasting be eligible for CIRM TRAN1 funding? The goal is to complete IND-enabling studies for a protein-based therapy that enhances tissue regeneration to treat a rare degenerative disease. the screening to identify the stem-cell secreted proteins to develop as therapeutics is done by in vitro screening with aged/diseased primary human progenitor cells to identify candidates that enhance their differentiation . In vivo the protein therapeutic signals to several cell types , including precursor cells to improve tissue homeostasis.

I would suggest reaching out to our Translation team to discuss the details as it will depend on several factors. You can email the team at translational@cirm.ca.gov

Here are the slides used in the presentations.

Heads or tails? Stem cells help guide the decision

Two cell embryo

There are many unknown elements for what triggers the cells in an embryo to start dividing and multiplying and becoming every single cell in the body. Now researchers at the Gladstone Institutes in San Francisco have uncovered one of those elements, how embryos determine which cells become the head and which the tail.

In this CIRM-funded study the Gladstone team, led by Dr. Todd McDevitt, discovered almost by chance how the cells align in a heads-to-tail arrangement.

Todd McDevitt

They had created an organoid made from brain cells when they noticed that some of the cells were beginning to gather in an elongated fashion, in the same way that spinal cords do in a developing fetus.

In a news article, Nick Elder, a graduate student at Gladstone and the co-author of the study, published in the journal Development, says this was not what they had anticipated would happen: “Organoids don’t typically have head-tail directionality, and we didn’t originally set out to create an elongating organoid, so the fact that we saw this at all was very surprising.”

Further study enabled the team to identify which molecules were involved in signaling specific genes to switch on and off. These were similar to the process previously identified in developing mouse embryos.

“This is such a critical point in the early development of any organism, so having a new model to observe it and study it in the lab is very exciting,” says McDevitt.

This is not just of academic interest either, it could have real world implications in helping understand what causes miscarriages or birth defects.

“We can use this organoid to get at unresolved human developmental questions in a way that doesn’t involve human embryos,” says Dr. Ashley Libby, another member of the team. “For instance, you could add chemicals or toxins that a pregnant woman might be exposed to, and see how they affect the development of the spinal cord.”

Medeor Therapeutics Completes Enrollment in CIRM-Funded Clinical Trial for Kidney Transplant Patients

A CIRM-funded clinical trial to help kidney transplant patients avoid the need for anti-rejection or immunosuppressive medications has completed enrollment and transplantation of all patients.

Medeor Therapeutics’ MDR-101 Phase 3 multi-center clinical trial involved 30 patients; 20 of them were treated with MDR-101, and 10 control subjects were given standard care. CIRM awarded Medeor, based in South San Francisco, $18.8 million for this research in January 2018.

More than 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. For these people the best treatment option is a kidney transplant from a genetically matched, living donor. Even matched patients, however, face a lifetime on immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. These drugs can be effective at preventing rejection, but they come at a cost. Because they are toxic these medications increase a transplant patient’s life-time risk of cancer, diabetes, heart disease and infections.

Medeor Therapeutics developed its MDR-101 therapy to reprogram the patient’s immune system to accept a transplanted kidney without the need for long term use of immunosuppression drugs.

The company takes peripheral blood stem cells from the organ donor and infuses them into the patient receiving the donor’s kidney. This creates a condition called “mixed chimerism” where immune cells from the donor help the patient’s immune system adapt to and tolerate the donor’s kidney. 

After a standard kidney transplant, the patient is given a combination of three anti-rejection medications which they typically have to remain on for the rest of their lives. However, the Medeor patients, by day 40 post-transplant, are only taking one medication and the hope is that immunosuppression is discontinued at the end of one year.

“Chronic kidney disease and kidney failure are a growing problem in the US, that’s why it’s so important that we find new ways to reduce the burden on patients and increase the odds of a successful transplant with long term benefit,” says Maria T. Millan, M.D., President and CEO of CIRM. “Medeor’s approach may not only reduce the likelihood of a patient’s body rejecting the transplanted organ, but it can also improve the quality of life for these people and reduce overall health care costs by eliminating the need to stay on these immunosuppressive medications for life.”

In an earlier Phase 2 trial, a majority of patients achieved mixed chimerism. Approximately 74 percent of those patients have been off all immunosuppressive drugs for more than two years, including some who continue to be off immunosuppressive medications 15 years after their surgery.

“Today’s news is a tremendous milestone not only for Medeor but for the entire transplant community. This is the first randomized, multi-center pivotal study designed specifically to stop the use of all immunosuppressive anti-rejection drugs post-transplant. This therapy can be a true game changer in our efforts to transform transplant outcomes and help patients live healthier lives,” said Dan Brennan, MD, Chief Medical Officer at Medeor Therapeutics.

If the results from this pivotal clinical trial show that MDR-101 is both safe and effective, Medeor may apply to the Food and Drug Administration (FDA) for approval to market their approach to other patients in the U.S.

Hitting our Goals: Accelerating to the finish line

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #6 was Accelerate.

Ever wonder how long it takes for a drug or therapy to go from basic research to approval by the US Food and Drug Administration (FDA)? Around 12 years on average is the answer. That’s a long time. And it can take even longer for stem cell therapies to go that same distance.

There are a lot of reasons why it takes so long (safety being a hugely important element) but when we were sitting down in 2015 to put together our Strategic Plan we wanted to find a way to speed up that process, to go faster, without in any way reducing the focus on safety.

So, we set a goal of reducing the time it takes from identifying a stem cell therapy candidate to getting an Investigational New Drug (IND) approval from the FDA, which means it can be tested in a clinical trial. At the time it was taking us around eight years, so we decided to go big and try to reduce that time in half, to four years.

Then the question was how were we going to do that? Well, before we set the goal we did a tour of the major biomedical research institutions in California – you know, University of California Los Angeles (UCLA) UC San Francisco, Stanford etc. – and asked the researchers what would help them most. Almost without exception said “a clearing house”, a way to pair early stage investigators with later stage partners who possess the appropriate expertise and interest to advance the project to the next stage of development, e.g., helping a successful basic science investigator find a qualified partner for the project’s translational research phase.

So we set out to do that. But we didn’t stop there. We also created what we called Clinical Advisory Panels or CAPs. These consisted of a CIRM Science Officer with expertise on a particular area of research, an expert on the kind of research being done, and a Patient Representative. The idea was that CAPs would help guide and advise the research team, helping them overcome specific obstacles and get ready for a clinical trial. The Patient Representative could help the researchers understand what the needs of the patient community was, so that a trial could take those into account and be more likely to succeed. For us it wasn’t enough just to fund promising research, we were determined to do all we could to support the team behind the project to advance their work.

How did we do. Pretty good I would have to say. For our Translational stage projects, the average amount of time it took for them to move to the CLIN1 stage, the last stage before a clinical trial, was 4.18 years. For our CLIN1 programs, 73 percent of those achieved their IND within 2 years, meaning they were then ready to actually start an FDA-sanctioned clinical trial.

Of course moving fast doesn’t guarantee that the therapy will ultimately prove effective. But for an agency whose mission is “to accelerate stem cell therapies to patients with unmet medical needs”, going slow is not an option.

Hitting our goals: Making good progress

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #5 was Advance.

A dictionary definition of progression is “The act of moving forward or proceeding in a course.” That’s precisely what we set out to do when we set one of the goals in our 2015 Strategic Plan. We wanted to do all that we could to make sure the work we were funding could advance to the next stage. The goal we set was:

Advance: Increase projects advancing to the next stage of development by 50%.

The first question we faced was what did we mean by progression and how were we going to measure it? The answer basically boiled down to this: when a CIRM award completes one stage of research and gets CIRM funding to move on to the next stage or to develop a second generation of the same device or therapy.

In the pre-2016 days we’d had some success, on average getting around nine progression events every year. But if we were going to increase that by 50 percent we knew we had to step up our game and offer some incentives so that the team behind a successful project had a reason, other than just scientific curiosity, to try and move their research to the next level.

So, we created a series of linkages between the different stages of research, so the product of each successful investment was the prerequisite for the next stage of development for the research or technology.

We changed the way we funded projects, going from offering awards on an irregular basis to having them happen according to a pre-defined schedule with each program type offered multiple times a year. This meant potential applicants knew when the next opportunity to apply would come, enabling them to prepare and file at the time that was best for them and not just because we said so. We also timed these schedules so that programs could progress from one stage to the next without interruption.

But that’s not all. We recognized that some people may be great scientists at one level but didn’t have the experience or expertise to carry their project forward. So, we created both an Accelerating Center and Translating Center to help them do that. The Translating Center helped projects do the work necessary to get ready to apply to the US Food and Drug Administration (FDA) for permission to start a clinical trial. The Accelerating Center helped the team prepare that application for the trial and then plan how that trial would be carried out.

Creating these two centers had an additional benefit; it meant the work that did progress did so faster and was of a higher quality than it might otherwise have been.

Putting all those new building blocks in place meant a lot of work for the CIRM team, on top of their normal duties. But, as always, the team rose to the challenge. By the end of December 2020, a total of 74 projects had advanced or progressed to the next level, an increase of 100 percent on our pre-2016 days.

When we were laying out the goals we said that “The full implementation of these programs will create the chassis of a machine that provides a continuous, predictable, and timely pathway for the discovery and development of promising stem cell treatments.” Thanks to the voter approved Proposition 14 we now have the fund to help those treatments realize that promise.

Saying thanks and farewell to a friend

Tom Howing

In this job you get to meet a lot of remarkable people, none more so than the patients who volunteer to take part in what are giant experiments. They are courageous pioneers, willing to be among the first people to ever try a new therapy, knowing that it may not help them and, potentially, might even harm them.

Tom Howing was one such person. I got to know Tom when we were putting together our 2017 Annual Report. Back in 2015 Tom was diagnosed with Stage 4 cancer that had spread throughout his body. He underwent surgery and chemotherapy. That worked for a while, but then the cancer returned. So, Tom had more surgery and chemotherapy. Again, it worked for a while but when the cancer returned again Tom was running out of options.

That’s when he learned about a clinical trial with a company called Forty Seven Inc. that was testing a new anti-cancer therapy that CIRM was supporting. Tom says he didn’t hesitate.

“When I was diagnosed with cancer I knew I had battle ahead of me. After the cancer came back again they recommended I try this CD47 clinical trial. I said absolutely, let’s give it a spin. I guess one is always a bit concerned whenever you put the adjective “experimental” in front of anything. But I’ve always been a very optimistic and positive person and have great trust and faith in my caregivers.”

Optimistic and positive are great ways to describe Tom. Happily, his optimism was rewarded. The therapy worked.

“Scans and blood tests came back showing that the cancer appears to be held in check. My energy level is fantastic. The treatment that I had is so much less aggressive than chemo, my quality of life is just outstanding.”

But after a year or so Tom had to drop out of the trial. He tried other therapies and they kept the cancer at bay. For a while. But it kept coming back. And eventually Tom ran out of options. And last week, he ran out of time.

Tom was a truly fine man. He was kind, caring, funny, gracious and always grateful for what he had. He talked often about his family and how the stem cell therapy helped him spend not just more time with them, but quality time.

He knew when he signed up for the therapy that there were no guarantees, but he wanted to try, saying that even if it didn’t help him that the researchers might learn something to help others down the line.

“The most important thing I would say is, I want people to know there is always hope and to stay positive.”

Tom ultimately lost his battle with cancer. But he never lost his spirit, his delight in his family and his desire to keep going as long as he could. In typical Tom fashion he preferred to put his concerns aside and cheer others along.

“To all those people who are putting in all the hours at the bench and microscope, it’s important for them to know that they are making a huge impact on the lives of real people and they should celebrate it and revel in it and take great pride in it.”

We consider ourselves fortunate to have known Tom and to have been with him on part of his journey. He touched our lives, as he touched the lives of so many others. Our thoughts and wishes go out to his family and friends. He will be remembered, because we never forget our friends.

A few years ago Tom came and talked to the CIRM Board. Here is the video of that event.

Hitting our Goals: Let’s start at the beginning shall we

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #3 was Discover.

When journalists write about science a lot of the attention is often focused on clinical trials. It’s not too surprising, that’s the stage where you see if treatments really work in people and not just in the lab. But long before you get to the clinical trial stage there’s a huge amount of work that has to be done. The starting point for that work is in the Discovery stage, if it works there it moves to the Translational stage, and only after that, assuming it’s still looking promising, does it start thinking about moving into the clinic.

The Discovery, or basic, stage of research is where ideas are tested to see if they have any promise and have the potential to lead to the development of a therapy or device that could ultimately help patients. In many ways the goal of Discovery research is to gain a better understanding of how, in our case, stem cells work, and how to harness that power to treat particular diseases or disorders.

Without a rigorous Discovery research program you can’t begin to create a pipeline of promising projects that you can advance towards patients. And of course having a strong Discovery program is not much use if you don’t have somewhere for those projects to advance to, namely Translational and ultimately clinical.

So, when we were laying out our Strategic Plan goals back in 2015 we wanted to create a pipeline for all three programs, moving the most promising ones forward. So we set an ambitious goal.

Introduce 50 new therapeutic or device candidates into development.

Now this doesn’t mean just fund 50 projects hoping to develop a new therapy or device. A lot of studies that are funded, particularly at the earliest stages, have a good idea that just doesn’t pan out. In fact one quite common definition of early research – in this case from Translational Medicine Communications – is “the earliest stage of research, conducted for the advancement of knowledge, often without any concern for its practical applications.

That’s not what we wanted. We aren’t in this to do research just for its own sake. We fund research because we want it to lead somewhere, we want it to have a practical application. We want to fund projects that actually ended up with something much more promising, a candidate that might actually work and was ready to move into the next level of research to test it further.

And we almost, almost made it to the 50-candidate goal. We got to 46 and almost certainly would have made it to 50 if we hadn’t run out of money. Even so, that’s pretty impressive. There are now 46 projects ready to move on, or are already moving on, to the next level of research.

Of course, there’s no guarantee that these will ultimately end up as an FDA-approved therapy or device. But if you don’t set goals, you’ll never score. And now, thanks to the passage of Proposition 14, we have a chance to support those projects as they move forward.

Three UC’s Join Forces to Launch CRISPR Clinical Trial Targeting Sickle Cell Disease

Sickle shaped red blood cells

The University of California, San Francisco (UCSF), in collaboration with UC Berkeley (UCB) and UC Los Angeles (UCLA), have been given permission by the US Food and Drug Administration (FDA) to launch a first-in-human clinical trial using CRISPR technology as a gene-editing technique to cure Sickle Cell Disease.

This research has been funded by CIRM from the early stages and, in a co-funding partnership with theNational Heart, Lung, and Blood Institute under the Cure Sickle Cell initiatve, CIRM supported the work that allowed this program to gain FDA permission to proceed into clinical trials.    

Sickle Cell Disease is a blood disorder that affects around 100,000 people, mostly Black and Latinx people in the US. It is caused by a single genetic mutation that results in the production of “sickle” shaped red blood cells. Normal red blood cells are round and smooth and flow easily through blood vessels. But the sickle-shaped ones are rigid and brittle and clump together, clogging vessels and causing painful crisis episodes, recurrent hospitalization, multi-organ damage and mini-strokes.    

The three UC’s have combined their respective expertise to bring this program forward.

The CRISPR-Cas9 technology was developed by UC Berkeley’s Nobel laureate Jennifer Doudna, PhD. UCLA is a collaborating site, with expertise in genetic analysis and cell manufacturing and UCSF Benioff Children’s Hospital Oakland is the lead clinical center, leveraging its renowned expertise in cord blood and marrow transplantation and in gene therapy for sickle cell disease.

The approach involves retrieving blood stem cells from the patient and, using a technique involving electrical pulses, these cells are treated to correct the mutation using CRISPR technology. The corrected cells will then be transplanted back into the patient.

Dr. Mark Walters

In a news release, UCSF’s Dr. Mark Walters, the principal investigator of the project, says using this new gene-editing approach could be a game-changer. “This therapy has the potential to transform sickle cell disease care by producing an accessible, curative treatment that is safer than the current therapy of stem cell transplant from a healthy bone marrow donor. If this is successfully applied in young patients, it has the potential to prevent irreversible complications of the disease. Based on our experience with bone marrow transplants, we predict that correcting 20% of the genes should be sufficient to out-compete the native sickle cells and have a strong clinical benefit.”

Dr. Maria T. Millan, President & CEO of CIRM, said this collaborative approach can be a model for tackling other diseases. “When we entered into our partnership with the NHLBI we hoped that combining our resources and expertise could accelerate the development of cell and gene therapies for SCD. And now to see these three UC institutions collaborating on bringing this therapy to patients is truly exciting and highlights how working together we can achieve far more than just operating individually.”

The 4-year study will include six adults and three adolescents with severe sickle cell disease. It is planned to begin this summer in Oakland and Los Angeles.

The three UCs combined to produce a video to accompany news about the trial. Here it is:

Hitting our Goals: Scoring a half century

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #2 was Expand.

Scientist preparing a sample vial for automated analysis in the lab.

When CIRM first started there was an internal report that said if we managed to help get one project into a clinical trial before we ran out of money we would be doing well. At the time that seemed quite reasonable. The field was still very much in its infancy and most of the projects we were funding, particularly in the early days, were Discovery or basic research projects.

But as the field advanced we got a little bolder. By 2010 we were funding not just our first clinical trial, but the first clinical trial in the world using embryonic stem cells. This was the Geron trial targeting spinal cord injury. Sadly the excitement didn’t last very long. After treating just five patients Geron pulled the plug on the trial, deciding that targeting cancer was a better bet.

Happily, Geron returned all the money we had loaned them, plus interest, so we were able to use that to fund more research. Soon enough we had a number of other promising candidates heading towards a meeting with the US Food and Drug Administration (FDA) to try and get permission to start a clinical trial.

By 2014, ten years after we began, we actually had ten projects either running or getting ready to start a clinical trial. We thought that was really good. But at CIRM, really good is never good enough.

For our Strategic Plan in 2015 we decided to shoot for the moon and aim to get another 50 clinical trials over the next five years. At the time it seemed, to be honest, a bit bonkers. How on earth were we going to do that. But then our Therapeutics team went a hunting!

In the past we had the luxury of mostly just waiting for people with promising projects to approach us for funding. With an ambitious goal of getting 50 more clinical trials, we couldn’t afford to wait. The Therapeutics team scouted around for promising projects, inside and outside California, inside and outside the US, and pitched them on the benefits of applying for funding. Slowly the numbers started to rise.

By the end of 2016 we had 12 new trials. In 2017 we were really cruising along, adding 16 more trials. 2018 there was another 14 and that was also the year we passed the 50 clinical trials total since CIRM was created. We celebrated at a Board meeting with a balloon and a cake (we’re a state agency, our budget doesn’t extend to confetti). Initially the inscription on the cake read ‘Congratulations: 50 Clinical Trails’. Happily, we were able to fix it before anyone noticed. But even with the spelling error, it would still have tasted just fine.

Patient advocate Rich Lajara with the Big Balloon celebration for funding 50 clinical trials

By the time we got to mid-2020 we were stuck on 47 and with time, and money, running out it looked like we might miss the goal. But then our team put in one last effort and with weeks to spare we funded four more clinical trials for a total of 51 (68 since we started in 2004).

So, the moral is dream big but work hard. Now let’s see what we can dream up for our next Strategic Plan.