So far, some encouraging news for stem cell clinical trial treating epilepsy

Neurona Therapeutics is testing a new therapy for a drug-resistant form of epilepsy and has just released some encouraging early findings. The first patient treated went from having more than 30 seizures a month to just four seizures over a three-month period.

This clinical trial, funded by the California Institute for Regenerative Medicine (CIRM), is targeting  mesial temporal lobe epilepsy (MTLE), one of the most common forms of epilepsy. Because the seizures caused by MTLE are frequent, they can be particularly debilitating and increase the risk of a decreased quality of life, depression, anxiety and memory impairment.

Neurona’s therapy, called NRTX-1001, consists of a specialized type of neuronal cell derived from embryonic stem cells.  Neuronal cells are messenger cells that transmit information between different areas of the brain, and between the brain and the rest of the nervous system.

NRTX-1001 is injected into the brain in the area affected by the seizures where it releases neurotransmitters or chemical messengers that will block the signals in the brain causing the epileptic seizures.

The first patient treated had a nine-year history of epilepsy and, despite being on anti-epileptic medications, was experiencing dozens of seizures a month. Since the therapy he has had only four seizures in three months. The therapy hasn’t produced any serious side effects.

In a news release Dr. Cory Nicholas, Neurona’s President and CEO, said while this is only one patient, it’s good news.

“The reduced number of seizures reported by the first person to receive NRTX-1001 is very encouraging, and we remain cautiously optimistic that this reduction in seizure frequency will continue and extend to others entering this cell therapy trial. NRTX-1001 administration has been well tolerated thus far in the clinic, which is in line with the extensive preclinical safety data collected by the Neurona team. With recent clearance from the Data Safety Monitoring Board we are excited to continue patient enrollment. We are very grateful to these first participants, and thank the clinical teams for the careful execution of this pioneering study.”

CIRM has been a big supporter of this work from the early Discovery stage work to this clinical trial. That’s because when we find something promising, we want to do everything we can to help it live up to its promise.

Funding a Clinical Trial for a Functional Cure for HIV

The use of antiretroviral drugs has turned HIV/AIDS from a fatal disease to one that can, in many cases in the US, be controlled. But these drugs are not a cure. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) voted to approve investing $6.85 million in a therapy that aims to cure the disease.

This is the 82nd clinical trial funded by CIRM.

There are approximately 38 million people worldwide living with HIV/AIDS. And each year there are an estimated 1.5 million new cases. The vast majority of those living with HIV do not have access to the life-saving antiretroviral medications that can keep the virus under control. People who do have access to the medications face long-term complications from them including heart disease, bone, liver and kidney problems, and changes in metabolism.

The antiretroviral medications are effective at reducing the viral load in people with HIV, but they don’t eliminate it. That’s because the virus that causes AIDS can integrate its DNA into long-living cells in the body and remain dormant. When people stop taking their medications the virus is able to rekindle and spread throughout the body.

Dr. William Kennedy and the team at Excision Bio Therapeutics have developed a therapeutic candidate called EBT-101. This is the first clinical study using the CRISPR-based platform for genome editing and excision of the latent form of HIV-1, the most common form of the virus that causes AIDS in the US and Europe. The goal is to eliminate or sufficiently reduce the hidden reservoirs of virus in the body to the point where the individual is effectively cured.

“To date only a handful of people have been cured of HIV/AIDS, so this proposal of using gene editing to eliminate the virus could be transformative,” says Dr. Maria Millan, President and CEO of CIRM. “In California alone there are almost 140,000 people living with HIV. HIV infection continues to disproportionately impact marginalized populations, many of whom are unable to access the medications that keep the virus under control. A functional cure for HIV would have an enormous impact on these communities, and others around the world.”

In a news release announcing they had dosed the first patient, Daniel Dornbusch, CEO of Excision, called it a landmark moment. “It is the first time a CRISPR-based therapy targeting an infectious disease has been administered to a patient and is expected to enable the first ever clinical assessment of a multiplexed, in vivo gene editing approach. We were able to reach this watershed moment thanks to years of innovative work by leading scientists and physicians, to whom we are immensely grateful. With this achievement, Excision has taken a major step forward in developing a one-time treatment that could transform the HIV pandemic by freeing affected people from life-long disease management and the stigma of disease.”

The Excision Bio Therapeutics team also scored high on their plan for Diversity, Equity and Inclusion. Reviewers praised them for adding on a partnering organization to provide commitments to serve underserved populations, and to engaging a community advisory board to help guide their patient recruitment.

CIRM has already invested almost $81 million in 20 projects targeting HIV/AIDS, including four clinical trials.

How stem cells helped Veronica fight retinitis pigmentosa and regain her vision

Veronica and Elliott

Growing up Veronica McDougall thought everyone saw the world the way she did; blurry, slightly out-of-focus and with tunnel vision.  As she got older her sight got worse and even the strongest prescription glasses didn’t help. When she was 15 her brother tried teaching her to drive. One night she got into the driver’s seat to practice and told him she couldn’t see anything. Everything was just black. After that she stopped driving.   

Veronica says high school was really hard for her, but she managed to graduate and go to community college. As her vision deteriorated, she found it was increasingly hard to read the course work and impossible to see the assignments on the blackboard. Veronica says she was lucky to have some really supportive teachers — including the now First Lady Jill Biden — but eventually she had to drop out.  

Getting a diagnosis

When she was 24, she went to see a specialist who told her she had retinitis pigmentosa, a rare degenerative condition that would eventually leave her legally blind. She says it felt like a death sentence. “All of my dreams of becoming a nurse, of getting married, of having children, of traveling – it all just shattered in that moment.” 

Veronica says she went from being a happy, positive person to an angry depressed one. She woke up each morning terrified, wondering, “Is this the day I go blind?” 

Then her mother learned about a CIRM-funded clinical trial with a company called jCyte. Veronica applied to be part of it, was accepted and was given an injection of stem cells in her left eye. She says over the course of a few weeks, her vision steadily improved. 

“About a month after treatment, I was riding in the car with my mom and suddenly, I realized I could see her out of the corner of my eye while looking straight ahead. That had never, ever happened to me before. Because, I had been losing my peripheral vision at a young age without realizing that until up to that point, I had never had that experience.” 

A second chance at life

She went back to college, threw herself into her studies, started hiking and being more active. She says it was as if she was reborn. But in her senior year, just as she was getting close to finishing her degree, her vision began to deteriorate again. Fortunately, she was able to take part in a second clinical trial, and this time her vision came back stronger than ever. 

“I’m so grateful to the researchers who gave me my sight back with the treatment they have worked their entire lives to develop. I am forever grateful for the two opportunities to even receive these two injections and to be a part of an amazing experience to see again. I feel so blessed! Thank you for giving me my life back.” 

And in getting her life back, Veronica had a chance to give life. When she was at college she met and starting dating Robert, the man who was to become her partner. They now have a little boy, Elliott.  

As for the future, Veronica hopes to get a second stem cell therapy to improve her vision even further. Veronica’s two treatments were in her left eye. She is hoping that the Food and Drug Administration will one day soon approve jCyte’s therapy, so that she can get the treatment in her right eye. Then, she says, she’ll be able to see the world as the rest of us can.  

CIRM has invested more than $150 million in programs targeting vision loss, including four clinical trials for retinitis pigmentosa

Stem Cell Agency Invests $46 Million in New Education Program

CIRM Bridges students 2022. The CIRM Board approved funding for a program to help even more students advance a career in science.

The governing Board of the California Institute for Regenerative Medicine (CIRM) has approved $46,076,430 to invest in its newest education pillar- the COMPASS (Creating Opportunities through Mentorship and Partnership Across Stem cell Science) training program.

Education is at the core of CIRM’s mission of accelerating world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and world. And funding these additional programs is an important step in ensuring that California has a well-trained stem cell workforce.

The objective of COMPASS is to prepare a diverse cadre of undergraduate students for careers in regenerative medicine through combining hands-on research opportunities with strategic and structured mentorship experiences.

“Education and infrastructure are two funding pillars critical for creating the next generation of researchers and conducting stem cell based clinical trials,” says Jonathan Thomas, Ph.D., J.D., Chair of the CIRM Board. “The importance of these programs was acknowledged in Proposition 14 and we expect that they will continue to be important components of CIRM’s programs and strategic direction in the years to come.”

Most undergraduate research training programs, including those targeting students from underserved communities, target individuals with predefined academic credentials as well as a stated commitment towards graduate school, medical school, or faculty positions in academia. COMPASS will support the development and implementation of novel strategies to recognize and foster untapped talent that can lead to new and valuable perspectives that are specific to the challenges of regenerative medicine, and that will create new paths to a spectrum of careers that are not always apparent to students in the academic, undergraduate environment.

COMPASS will complement but not compete with CIRM’s Bridges program, a subset of which serve a different, but equally important population of undergraduate trainees; similarly, the program is unlikely to compete for the same pools of students that would be most likely to receive support through the major NIH Training Programs such as MARC and RISE.

Here are the 16 successful applicants.

Application numberTitlePrincipal InvestigatorAmount
EDUC5-13840  The COMPASS Scholars Program – Developing Today’s Untapped Talent into Tomorrow’s STEM Cell Researchers    John Matsui, University of California, Berkeley    $2,908,950
EDUC5-13634  COMPASS Undergraduate Program  Alice F Tarantal, University of California, Davis    $2,909,950  
EDUC5-13637  Research Mentorship Program in Regenerative Medicine Careers for a Diverse Undergraduate Student Body    Brian J. Cummings, University of California, Irvine    $2,729,900
EDUC5-13665  CIRM COMPASS Training Program (N-COMPASS)  Cindy S Malone, The University Corporation at California State University, Northridge    $2,909,700  
EDUC5-13817  COMPASS: Accelerating Stem Cell Research by Educating and Empowering New Stem Cell Researchers  Tracy L Johnson, University of California, Los Angeles    $2,910,000  
EDUC5-13744  Training and mentorship program in stem cell biology and engineering: A COMPASS for the future  Dennis Clegg, University of California, Santa Barbara    $2,746,000  
EDUC5-13636  Research Training and Mentorship Program to Inspire Diverse Undergraduates toward Regenerative Medicine
Careers (RAMP)
  Huinan Hannah Liu, The Regents of the University of California on behalf of its Riverside Campus    $2,910,000  
EDUC5-13679  Inclusive Pathways for a Stem Cell Scholar (iPSCs) Undergraduate Training Program    Lily Chen, San Francisco State University    $2,894,500
EDUC5-13733  A COMPASS to guide the growth of a diverse regenerative medicine workforce that represents California and benefits
the world
  Kristen OHalloran Cardinal, Cal Poly Corporation, an Auxiliary of California Polytechnic State University, San Luis Obispo    $2,887,939  
EDUC5-13619  Increase Diversity, Equity, and Advancement in Cell Based Manufacturing Sciences (IDEA-CBMS)  Michael Fino, MiraCosta College    $2,894,500  
EDUC5-13667  COMPASS Program for Southern California Hispanic Serving Institution  Bianca Romina Mothé, California State University San Marcos Corporation    $2,877,200  
EDUC5-13653  Student Pluripotency: Realizing Untapped Undergraduate Potential in Regenerative Medicine  Daniel Nickerson, California State University, San Bernardino    $2,909,853  
EDUC5-13647  COMPASS: an inclusive Pipeline for Research and Other Stem cell-based Professions in Regenerative medicine
(iPROSPR)  
  Alison Miyamoto, CSU Fullerton Auxiliary Services Corporation    $2,883,440
EDUC5-13686  Training Undergraduates in Stem Cell Engineering and Biology (TUSCEB)    Kara E McCloskey, University of California, Merced    $2,909,999
EDUC5-13853  COMPASS: Guiding Undergraduates to Careers in Regenerative Medicine    Senta Georgia, University of Southern California    $2,899,999
EDUC5-13910  IDEA-CBMS – Increase Diversity, Equity, and Advancement in Cell Based Manufacturing Sciences    James Dekloe, Solano Community College    $2,894,500

The researcher who is following her bliss, and tackling diseases of aging at the same time

Dr. Jill Helms, and associate! Photo courtesy Stanford University

Jill Helms is not your average Stanford University faculty member. Yes, she is a professor in the Department of Surgery. Yes, she has published lots of scientific studies. Yes, she is a stem cell scientist (funded by CIRM). And yes, she is playing a leading role in Ankasa Regenerative Therapeutics, a company focused on tissue repair and regeneration. But she is so much more than all that.  

She is a brilliant public speaker, a fashionista, and has ridden her horse to work (well, Stanford is referred to as The Farm, so why not!) and she lives on a farm of her own called “Follow Your Bliss.” The name comes from philosopher Joseph Campbell who wrote, “If you follow your bliss, you put yourself on a kind of path that has been there all the while, waiting for you. And the life you ought to be living is the one you are living.”  

Dr. Helms says that pretty much sums up her life. She says she feels enormously blessed.  

Well, we felt enormously blessed when she agreed to sit down with us and chat about her work, her life and her love of fashion for the California Institute for Regenerative Medicine podcast, Talking ‘Bout (re)Generation.  

We hope you enjoy the latest episode! 

A grandmother’s legacy, a stem cell scientist

Emily Smith, CIRM Bridges student

The California Institute for Regenerative (CIRM) has a number of education programs geared towards training the next generation of stem cell and gene therapy researchers. Each student comes to the program with their own motivation, their own reasons for wanting to be a scientist. This is Emily Smith’s story.


Surrounded by the cold white walls of a hospital room, my family suddenly found themselves on the other side of medicine. Void of any answers or cures, this new reality was full of doubt. As we witnessed assurance dwindle into a look of angst, the doctor’s lips stiffened as he faltered to say the words that would change my grandmother’s life forever. The spinal cancer they had gone in to extract was a misdiagnosed nothing. Instead, the exploration of his scalpel left her paralyzed from the chest down.

Seemingly simple day-to-day moments of my life became the building blocks of my passion for science today. Early realizations of the hurdles laced throughout my grandmother’s life. Vivid memories of my mother’s weary smile as she read articles on the newest advancements in stem cell research. Collectively, what these fragments of time nurtured was hope. I grew to have a dream that something different awaited us in the future. With purpose, I dove into the world of research as an undergraduate.

Today, I am a CIRM Bridges to Stem Cell Research Intern at the Sanford Consortium for Regenerative Medicine. I received my acceptance into the program about a month after my grandmother’s passing. She never saw a cure, let alone an effective treatment.

My position allows me to understand why stem cell research takes time. The road from the bench to the clinic is a painstakingly deliberate one. And although we seek reason and order from the world of science, what we often find is how imperfect it all can be. At its root, I found that research is truly a human endeavor. That is why, as scientists, we must grapple with our lack of knowledge and failures with humility.

CIRM’s programs that train tomorrow’s scientists, such as Bridges, are important because they do more than simply transfer over skills from one generation to the next. Over the next year, I get the valuable experience of working with scientists who share a common dream. They understand the urgency of their research, value the quality of their findings, and put patient needs first. This mentorship ensures that a sense of responsibility is carried on throughout this field.

I applied to this program because stem cell research gave my family the gift of hope. Now, on the other side of the wait, I wish to serve patients and families like my own. I am incredibly grateful to be a part of the Bridges program and I will devote the full extent of my knowledge towards the advancement of this field.

How CIRM contributed to City of Hope study helping man with HIV into long-term remission

The news that a stem cell transplant at City of Hope helped a man with HIV go into long-term remission made banner headlines around the world. As it should. It’s a huge achievement, particularly as the 66-year-old man had been living with HIV since 1988.

What wasn’t reported was that work supported by the California Institute for Regenerative Medicine played a role in making that happen.

The Stem Cell Transplant

First the news. In addition to living with HIV the man was diagnosed with acute leukemia. Doctors at City of Hope found a donor who was not only a perfect match to help battle the patient’s leukemia, but the donor also had a rare genetic mutation that meant they were resistant to most strains of HIV.

In transplanting blood stem cells from the donor to the patient they were able to send both his leukemia and HIV into remission. The patient stopped taking all his antiretroviral medications 17 months ago and today has no detectable levels of HIV.

In a news release  City of Hope hematologist Ahmed Aribi, M.D., said the patient didn’t experience any serious complications after the procedure.

“This patient had a high risk for relapsing from AML [acute myeloid leukemia], making his remission even more remarkable and highlighting how City of Hope provides excellent care treating complicated cases of AML and other blood cancers.”

It’s a remarkable achievement and is only the fifth time that a patient with both HIV and leukemia has been put into remission after a transplant from an HIV-resistant donor.

CIRM’s Contribution

So, what does that have to do with CIRM? Well, CIRM’s Alpha Clinics Network helped City of Hope get this case approved by an Institutional Review Board (IRB) and also helped in collecting and shipping the donor blood. In addition, part of the Alpha Clinics team at University of California San Diego helped with the reservoir analysis of blood and gut biopsies to check for any remaining signs of HIV.

It’s a reminder that this kind of achievement is a team effort and CIRM is very good at creating and supporting teams. The Alpha Clinics Network is a perfect example. We created it because there was a need for a network of world-class medical facilities with the experience and expertise to deliver a whole new kind of therapy. The Network has been remarkably successful in doing that with more than 200 clinical trials, taking care of more than 1,000 patients, and treating more than 40 different diseases.

This year our Board approved expanding the number of these clinics to better serve the people of California.

While the role of the Alpha Clinics Network in helping this one patient may seem relatively small, it was also an important one. And we are certainly not stopping here. We have invested more than $79 million in 19 different projects targeting HIV/AIDS, include four clinical trials.

We are in this for the long term and results like the man who had HIV and is now in remission are a sign we are heading in the right direction.

Stem Cell Agency funds clinical trial targeting scarred urethras

A urethral stricture is scarring of the tube that carries urine out of the body. If left untreated it can be intensely painful and lead to kidney stones and infections. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) is investing more than $3.8 million in a Phase 1 clinical trial to create a stem cell-based therapy for the condition.

This is the 81st clinical trial that CIRM has funded.

When a scar, or stricture, forms along the urethra it impedes the flow of urine and causes other complications. James Yoo, M.D., Ph.D., and his team at Wake Forest University Health Sciences will use epithelial and smooth muscle cells, taken from the patient’s bladder, and layer them on to a synthetic tubular scaffold. The tube will then be surgically implanted inside the urethra.

The goal is for the progenitor cells to support self-renewal of the tissue and for the entire structure to become integrated into the surrounding tissue and become indistinguishable from it, restoring normal urinary function. Dr. Yoo and his team believe their approach has the potential to be effective for at least a decade.

“While not immediately life-threatening, urethral strictures lead to multiple health complications that impair quality of life and predispose to kidney dysfunction,” says Dr. Maria T. Millan, President and CEO of CIRM. “Developing an effective and durable treatment would significantly impact lives and has the potential to decrease the cumulative healthcare costs of treating recurrent kidney stones, infections and downstream kidney complications, especially of long-segment urethral strictures.”

First patient dosed in clinical trial for a drug-resistant form of epilepsy

Tablet BM47753. Neo-Babylonian Period. Courtesy of the British Museum, London.

Epilepsy seems to have been a problem for people for as long as people have been around. The first recorded mention of it is on a 4000-year-old Akkadian tablet found in Mesopotamia (modern day Iraq). The tablet includes a description of a person with “his neck turning left, hands and feet are tense, and his eyes wide open, and from his mouth froth is flowing without him having any consciousness.”

Despite that long history, effective treatments for epilepsy were a long time coming. It wasn’t till the middle of the 19th century that physicians started using bromides to help people with the condition, but they also came with some nasty side effects, including depression, weakness, fatigue, lethargy, and coma.

Fast forward 150 years or so and we are now, hopefully, entering a new era. This week, Neurona Therapeutics announced they had dosed the first patient in their first-in-human clinical trial formesial temporal lobe epilepsy (MTLE), the most common form of focal epilepsy in adults. The trial specifically targets people who have a drug-resistant form of MTLE.

Neurona has developed a therapy called NRTX-1001, consisting of a specialized type of neuronal or brain cell derived from embryonic stem cells.  These cells are injected into the brain in the area affected by the seizures where they release a neurotransmitter or chemical messenger that will block the signals in the brain causing the epileptic seizures. Pre-clinical testing suggests a single dose of NRTX-1001 may have a long-lasting ability to suppress seizures.

A new approach is very much needed because current therapies for drug-resistant epilepsy are only partially effective and have serious drawbacks. One treatment that can significantly reduce seizure frequency is the removal of the affected part of the brain, however this can cause serious, irreversible damage, such as impacting memory, mood and vision.

CIRM has a vested interest in seeing this therapy succeed. We have invested more than $14 million over four different awards, in helping this research progress from a basic or Discovery level through to the current clinical trial.

In a news release, two key figures in administering the first dose to a patient said this was an important step forward. 

Harish Babu, M.D., Ph.D., assistant professor of neurosurgery at SUNY Upstate Medical University said: “Neurona’s regenerative cell therapy approach has the potential to provide a single-administration, non-destructive alternative for the treatment of drug-resistant focal epilepsy. Currently, people with mesial temporal lobe epilepsy who are not responsive to anti-seizure medications have few options, such as an invasive surgery that removes or destroys the affected brain tissue.”

Robert Beach, M.D., Ph.D. professor of neurology at SUNY Upstate Medical University added: “The objective of NRTX-1001 is to add cells that have the potential to repair the circuits that are damaged in epilepsy and thus reduce seizure activity.”

There is a huge unmet medical need for an effective, long-term therapy. Right now, it’s estimated that three million Americans have epilepsy, and 25 to 35 percent live with ongoing seizures despite dozens of approved drugs on the market.

If this therapy works it might mean that 4,000 year old tablet will become a medical footnote, rather than a reminder that we still have work to do.

Stem Cell Agency Board Invests in 19 Discovery Research Programs Targeting Cancers, Heart Disease and Other Disorders

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Judy Shizuru, Stanford University

While stem cell and gene therapy research has advanced dramatically in recent years, there are still many unknowns and many questions remaining about how best to use these approaches in developing therapies. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) today approved investing almost $25 million in 19 projects in early stage or Discovery research.

The awards are from CIRM’s DISC2 Quest program, which supports  the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

“Every therapy that helps save lives or change lives begins with a researcher asking a simple question, “What if?”, says Dr. Maria T. Millan, the President and CEO of CIRM. “Our Quest awards reflect the need to keep supporting early stage research, to gain a deeper understanding of stem cells work and how we can best tap into that potential to advance the field.”

Dr. Judy Shizuru at Stanford University was awarded $1.34 million to develop a safer, less-toxic form of bone marrow or hematopoietic stem cell transplant (HCT). HCT is the only proven cure for many forms of blood disorders that affect people of all ages, sexes, and races worldwide. However, current methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

Dr. Shizuru proposes developing an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells. This would make stem cell transplant safer and more effective for the treatment of many life-threatening blood disorders, and more accessible for people in rural or remote parts of the country.

Lili Yang UCLA Broad Stem Cell Research Center: Photo courtesy Reed Hutchinson PhotoGraphics

Dr. Lili Yang at UCLA was awarded $1.4 million to develop an off-the-shelf cell therapy for ovarian cancer, which causes more deaths than any other cancer of the female reproductive system.

Dr. Yang is using immune system cells, called invariant natural killer T cells (iNKT) to attack cancer cells. However, these iNKT cells are only found in small numbers in the blood so current approaches involve taking those cells from the patient and, in the lab, modifying them to increase their numbers and strength before transplanting them back into the patient. This is both time consuming and expensive, and the patient’s own iNKT cells may have been damaged by the cancer, reducing the likelihood of success.

In this new study Dr. Yang will use healthy donor cord blood cells and, through genetic engineering, turn them into the specific form of iNKT cell therapy targeting ovarian cancer. This DISC2 award will support the development of these cells and do the necessary testing and studies to advance it to the translational stage.

Timothy Hoey and Tenaya Therapeutics Inc. have been awarded $1.2 million to test a gene therapy approach to replace heart cells damaged by a heart attack.

Heart disease is the leading cause of death in the U.S. with the highest incidence among African Americans. It’s caused by damage or death of functional heart muscle cells, usually due to heart attack. Because these heart muscle cells are unable to regenerate the damage is permanent. Dr. Hoey’s team is developing a gene therapy that can be injected into patients and turn their cardiac fibroblasts, cells that can contribute to scar tissue, into functioning heart muscle cells, replacing those damaged by the heart attack.

The full list of DISC2 Quest awards is:

APPLICATION NUMBERTITLE OF PROGRAMPRINCIPAL INVESTIGATORAMOUNT
  DISC2-13400  Targeted Immunotherapy-Based Blood Stem Cell Transplantation    Judy Shizuru, Stanford Universtiy  $1,341,910    
  DISC2-13505  Combating Ovarian Cancer Using Stem Cell-Engineered Off-The-Shelf CAR-iNKT Cells    Lili Yang, UCLA  $1,404,000
  DISC2-13515  A treatment for Rett syndrome using glial-restricted
neural progenitor cells  
  Alysson Muotri, UC San Diego  $1,402,240    
  DISC2-13454  Targeting pancreatic cancer stem cells with DDR1 antibodies.    Michael Karin, UC San Diego  $1,425,600  
  DISC2-13483  Enabling non-genetic activity-driven maturation of iPSC-derived neurons    Alex Savtchenko, Nanotools Bioscience  $675,000
  DISC2-13405  Hematopoietic Stem Cell Gene Therapy for Alpha
Thalassemia  
  Don Kohn, UCLA    $1,323,007  
    DISC2-13507  CAR T cells targeting abnormal N-glycans for the
treatment of refractory/metastatic solid cancers  
  Michael Demetriou, UC Irvine  $1,414,800  
  DISC2-13463  Drug Development of Inhibitors of Inflammation Using
Human iPSC-Derived Microglia (hiMG)  
  Stuart Lipton, Scripps Research Inst.  $1,658,123  
  DISC2-13390  Cardiac Reprogramming Gene Therapy for Post-Myocardial Infarction Heart Failure    Timothy Hoey, Tenaya Therapeutics  $1,215,000  
  DISC2-13417  AAV-dCas9 Epigenetic Editing for CDKL5 Deficiency Disorder    Kyle Fink, UC Davis  $1,429,378  
  DISC2-13415  Defining the Optimal Gene Therapy Approach of
Human Hematopoietic Stem Cells for the Treatment of
Dedicator of Cytokinesis 8 (DOCK8) Deficiency  
  Caroline Kuo, UCLA  $1,386,232  
  DISC2-13498  Bioengineering human stem cell-derived beta cell
organoids to monitor cell health in real time and improve therapeutic outcomes in patients  
  Katy Digovich, Minutia, Inc.  $1,198,550  
  DISC2-13469  Novel antisense therapy to treat genetic forms of
neurodevelopmental disease.  
  Joseph Gleeson, UC San Diego  $1,180,654  
  DISC2-13428  Therapeutics to overcome the differentiation roadblock in Myelodysplastic Syndrome (MDS)    Michael Bollong, Scripps Research Inst.  $1,244,160  
  DISC2-13456  Novel methods to eliminate cancer stem cells    Dinesh Rao, UCLA  $1,384,347  
  DISC2-13441  A new precision medicine based iPSC-derived model to study personalized intestinal fibrosis treatments in
pediatric patients with Crohn’s diseas  
  Robert Barrett Cedars-Sinai  $776,340
  DISC2-13512  Modified RNA-Based Gene Therapy for Cardiac
Regeneration Through Cardiomyocyte Proliferation
  Deepak Srivastava, Gladstone Institutes  $1,565,784
  DISC2-13510  An hematopoietic stem-cell-based approach to treat HIV employing CAR-T cells and anti-HIV broadly
neutralizing antibodies  
  Brian Lawson, The Scintillon Institute  $1,143,600  
  DISC2-13475  Developing gene therapy for dominant optic atrophy using human pluripotent stem cell-derived retinal organoid disease model    Xian-Jie Yang, UCLA  $1,345,691