Stem Cell Agency Board Approves Funding for Rare Immune Disorder

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Taylor Lookofsky (center), a person with IPEX syndrome, with his father Brian and Dr. Rosa Bacchetta

IPEX syndrome is a rare condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. The syndrome mostly affects boys, is diagnosed in the first year of life and is often fatal. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) invested almost $12 million in a therapy being tested in a clinical trial to help these patients.

Children born with IPEX syndrome have abnormalities in the FOXP3 gene. This gene controls the production of a type of immune cell called a T Regulatory or Treg cell. Without a normal FOXP3 +Treg cells other immune cells attack the body leading to the development of IPEX syndrome, Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive.

Current treatments involve the use of steroids to suppress the immune system – which helps ease symptoms but doesn’t slow down the progression of the disease – or a bone marrow stem cell transplant.  However, a transplant requires a healthy, closely matched donor to reduce the risk of a potentially fatal transplant complication called graft vs host disease, in which the donated immune cells attack the recipient’s tissues.

Dr. Rosa Bacchetta and her team at Stanford University have developed a therapy using the patient’s own natural CD4 T cells that, in the lab, have been genetically modified to express the FoxP3 gene and converted into Treg cells. Those cells are then re-infused into the patient with a goal of determining if this approach is both safe and beneficial. Because the cells come from the patients there will be fewer concerns about the need for immunosuppressive treatment to stop the body rejecting the cells. It will also help avoid the problems of finding a healthy donor and graft vs host disease.

Dr. Bacchetta has received approval from the Food and Drug Administration (FDA) to test this approach in a Phase 1 clinical trial for patients suffering with IPEX syndrome.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives,” says Dr. Maria T. Millan, the President and CEO of CIRM. “Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders resulting from dysfunctional regulatory T cells.”

In addition to a strong scientific recommendation to fund the project the review team also praised it for the applicants’ commitment to the principles of Diversity, Equity and Inclusion in their proposal. The project proposes a wide catchment area, with a strong focus on enrolling people who are low-income, uninsured or members of traditionally overlooked racial and ethnic minority communities.

CIRM-Funded Study Helping Babies Battle a Deadly Immune Disorder Gets Boost from FDA

Hataalii Begay, age 4, first child treated with UCSF gene therapy for Artemis-SCID

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

When Hataalii Begay was born in a remote part of the Navajo nation he was diagnosed with a rare, usually fatal condition. Today, thanks to a therapy developed at UCSF and funded by CIRM, he’s a normal healthy four year old boy running around in cowboy boots.

That stem cell therapy could now help save the lives of other children born with this deadly immune disorder because it has been granted fast-track review status by the US Food and Drug Administration (FDA).

The California Institute for Regenerative Medicine (CIRM) has invested $12 million to test this therapy in a clinical trial at UC San Francisco.

The disorder is Artemis-SCID, a form of severe combined immunodeficiency disease. Children born with this condition have no functioning immune system so even a simple infection can prove life-threatening or fatal.

Currently, the only approved treatment for Artemis-SCID is a bone-marrow transplant, but many children are unable to find a healthy matched donor for that procedure. Even when they do find a donor they often need regular injections of immunoglobulin to boost their immune system.

In this clinical trial, UCSF Doctors Mort Cowan and Jennifer Puck are using the patient’s own blood stem cells, taken from their bone marrow. In the lab, the cells are modified to correct the genetic mutation that causes Artemis-SCID and then re-infused back into the patients. The goal is that over the course of several months these cells will create a new blood supply, one that is free of Artemis-SCID, and that will in turn help repair the child’s immune system.

So far the team has treated ten newly-diagnosed infants and three older children who failed transplants. Dr. Cowan says early data from the trial is encouraging. “With gene therapy, we are seeing these babies getting older. They have normal T-cell immunity and are getting immunized and vaccinated. You wouldn’t know they had any sort of condition if you met them; it’s very heartening.”

Because of that encouraging data, the FDA is granting this approach Regenerative Medicine Advanced Therapy (RMAT) designation. RMAT is a fast-track designation that can help speed up the development, review and potential approval of treatments for serious or life-threatening diseases.

“This is great news for the team at UCSF and in particular for the children and families affected by Artemis-SCID,” says Dr. Maria T. Millan, the President and CEO of CIRM. “The RMAT designation means that innovative forms of cell and gene therapies like this one may be able to accelerate their route to full approval by the FDA and be available to all the patients who need it.”

CIRM Board gives thumbs up to training and treatment programs

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

CIRM Bridges student discusses her poster presentation

At CIRM, the bread and butter of what we do is funding research and hopefully advancing therapies to patients. But the jam, that’s our education programs. Helping train the next generation of stem cell and gene therapy scientists is really inspiring. Watching these young students – and some are just high school juniors – come in and grasp the science and quickly become fluent in talking about it and creating their own experiments shows the future is in good hands.

Right now we fund several programs, such as our SPARK and Bridges internships, but they can’t cover everything, so last week the CIRM Board approved a new training program called COMPASS (Creating Opportunities through Mentorship and Partnership Across Stem Cell Science). The program will fill a critical need for skilled research practitioners who understand and contribute at all levels in the translation of science to medicine, from bench to bedside.

The objective of the COMPASS Training Program is to prepare a diverse group of undergraduate students for careers in regenerative medicine through the creation of novel recruitment and support mechanisms that identify and foster untapped talent within populations that are historically under-represented in the biomedical sciences. It will combine hands-on research with mentorship experiences to enhance transition of students to successful careers. A parallel objective is to foster greater awareness and appreciation of diversity, equity and inclusion in trainees, mentors, and other program participants

The CIRM Board approved investing $58.22 million for up to 20 applications for a five-year duration.

“This new program highlights our growing commitment to creating a diverse workforce, one that taps into communities that have been historically under-represented in the biomedical sciences,” says Dr. Maria T. Millan, President and CEO of CIRM. “The COVID19 pandemic made it clear that the benefits of scientific discovery are not always accessible to communities that most need them. CIRM is committed to tackling these challenges by creating a diverse and dedicated workforce that can meet the technical demands of taking novel treatment ideas and making them a reality.”

The Board also approved a new $80 million concept plan to expand the CIRM Alpha Stem Cell Clinic Network. The Network clinics are all in top California medical centers that have the experience and the expertise to deliver high-quality FDA-authorized stem cell clinical trials to patients.

There are currently five Alpha Clinics – UC San Diego; UCLA/UC Irvine; City of Hope; UCSF; UC Davis – and since 2015 they have hosted more than 105 clinical trials, enrolled more than 750 patients in these trials, and generated more than $95 million in industry contracts. 

Each award will provide up to $8 million in funding over a five-year period. The clinics will have to include:

  • A demonstrated ability to offer stem cell and gene therapies to patients as part of a clinical trial.
  • Programs to help support the career development of doctors, nurses, researchers or other medical professionals essential for regenerative medicine clinical trials.
  • A commitment to data sharing and meeting CIRM’s requirements addressing issues of diversity, equity and inclusion and meeting the needs of California’s diverse patient population.

Two Early-Stage Research Programs Targeting Cartilage Damage Get Funding from Stem Cell Agency

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Darryl D’Lima: Scripps Health

Every year millions of Americans suffer damage to their cartilage, either in their knee or other joints, that can eventually lead to osteoarthritis, pain and immobility. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two projects targeting repair of damaged cartilage.

The projects were among 17 approved by CIRM as part of the DISC2 Quest Discovery Program. The program promotes the discovery of promising new stem cell-based and gene therapy technologies that could be translated to enable broad use and ultimately, improve patient care.

Dr. Darryl D’Lima and his team at Scripps Health were awarded $1,620,645 to find a way to repair a torn meniscus. Every year around 750,000 Americans experience a tear in their meniscus, the cartilage cushion that prevents the bones in the knee grinding against each other. These injuries accelerate the early development of osteoarthritis, for which there is no effective treatment other than total joint replacement, which is a major operation. There are significant socioeconomic benefits to preventing disabling osteoarthritis. The reductions in healthcare costs are also likely to be significant.

The team will use stem cells to produce meniscal cells in the lab. Those are then seeded onto a scaffold made from collagen fibers to create tissue that resembles the knee meniscus. The goal is to show that, when placed in the knee joint, this can help regenerate and repair the damaged tissue.

This research is based on an earlier project that CIRM funded. It highlights our commitment to helping good science progress, hopefully from the bench to the bedside where it can help patients.

Dr. Kevin Stone: Photo courtesy Stone Research Foundation

Dr. Kevin Stone and his team at The Stone Research Foundation for Sports Medicine and Arthritis were awarded $1,316,215 to develop an approach to treat and repair damaged cartilage using a patient’s own stem cells.

They are using a paste combining the patient’s own articular tissue as well as Mesenchymal Stem Cells (MSC) from their bone marrow. This mixture is combined with an adhesive hydrogel to form a graft that is designed to support cartilage growth and can also stick to surfaces without the need for glue. This paste will be used to augment the use of a microfracture technique, where micro-drilling of the bone underneath the cartilage tear brings MSCs and other cells to the fracture site. The hope is this two-pronged approach will produce an effective and functional stem cell-based cartilage repair procedure.

If effective this could produce a minimally invasive, low cost, one-step solution to help people with cartilage injuries and arthritis.

The full list of DISC2 grantees is:

ApplicationTitlePrincipal Investigator and InstitutionAmount
DISC2-13212Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy  Ansuman Satpathy – Stanford University    $ 1,420,200  
DISC2-13051Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering  Julia Carnevale – UC San Francisco  $ 1,463,368  
DISC2-13020Injectable, autologous iPSC-based therapy for spinal cord injury  Sarah Heilshorn – Stanford University    $789,000
DISC2-13009New noncoding RNA chemical entity for heart failure with preserved ejection fraction.  Eduardo Marban – Cedars-Sinai Medical Center  $1,397,412  
DISC2-13232Modulation of oral epithelium stem cells by RSpo1 for the prevention and treatment of oral mucositis  Jeffrey Linhardt – Intact Therapeutics Inc.  $942,050  
DISC2-13077Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)  Mathew Blurton-Jones – UC Irvine    $1,199,922  
DISC2-13201Matrix Assisted Cell Transplantation of Promyogenic Fibroadipogenic Progenitor (FAP) Stem Cells  Brian Feeley – UC San Francisco  $1,179,478  
DISC2-13063Improving the efficacy and tolerability of clinically validated remyelination-inducing molecules using developable combinations of approved drugs  Luke Lairson – Scripps Research Inst.  $1,554,126  
DISC2-13213Extending Immune-Evasive Human Islet-Like Organoids (HILOs) Survival and Function as a Cure for T1D  Ronald Evans – The Salk Institute for Biological Studies    $1,523,285  
DISC2-13136Meniscal Repair and Regeneration  Darryl D’Lima – Scripps Health      $1,620,645  
DISC2-13072Providing a cure for sphingosine phosphate lyase insufficiency syndrome (SPLIS) through adeno-associated viral mediated SGPL1 gene therapy  Julie Saba – UC San Francisco  $1,463,400  
DISC2-13205iPSC-derived smooth muscle cell progenitor conditioned medium for treatment of pelvic organ prolapse  Bertha Chen – Stanford University  $1,420,200  
DISC2-13102RNA-directed therapy for Huntington’s disease  Gene Wei-Ming Yeo  – UC San Diego  $1,408,923  
DISC2-13131A Novel Therapy for Articular Cartilage Autologous Cellular Repair by Paste Grafting  Kevin Stone – The Stone Research Foundation for Sports Medicine and Arthritis    $1,316,215  
DISC2-13013Optimization of a gene therapy for inherited erythromelalgia in iPSC-derived neurons  Ana Moreno – Navega Therapeutics    $1,157,313  
DISC2-13221Development of a novel stem-cell based carrier for intravenous delivery of oncolytic viruses  Edward Filardo – Cytonus Therapeutics, Inc.    $899,342  
DISC2-13163iPSC Extracellular Vesicles for Diabetes Therapy  Song Li – UC Los Angeles  $1,354,928  

Making stem cell and gene therapies available and affordable for all California patients

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Developing a new therapy: Photo courtesy UCLA

There is no benefit in helping create a miraculous new therapy that can cure people and save lives if no one except the super-rich can afford it. That’s why the California Institute for Regenerative Medicine (CIRM) has made creating a roadmap to help make new treatments both available and affordable for all Californians a central pillar of its new 5-year Strategic Plan.

New treatments based on novel new technologies often seem to come with a gob-smacking price tag. When Kymriah, a CAR-T cell cancer therapy, was approved it cost $475,000 for one treatment course. When the FDA approved Zolgensma to treat spinal muscular atrophy, a genetic disorder that causes muscle wasting and weakness, the cost was $2.1 million for one dose.

Part of the pricing is due to high manufacturing cost and the specialized resources needed to deliver the treatments. The treatments themselves are showing that they can be one-and-done options for patients, meaning just one treatment may be all they need to be cured. But even with all that innovation and promise the high price may impact access to patients in need.

At CIRM we believe that if California taxpayer money has helped researchers develop a new therapy, Californians should be able to get that therapy. To try and ensure they can we have created the Accessibility and Affordability Working Group (AAWG). The groups mission is to find a way to overcome the hurdles that stand between a patient and the treatment they need.

The AAWG will work with politicians and policy makers, researchers and regulators, insurance companies and patient advocate organizations to gather the data and information needed to make these therapies available and affordable. Dr. Le Ondra Clark Harvey, a CIRM Board member and mental health advocate, says the barriers we have to confront are not just financial, they are racial and ethnic too. 

We have already created a unique model for delivering stem cell therapies to patients through our Alpha Stem Cell Clinic Network. We are now setting out to build on that with our commitment to creating Community Care Centers of Excellence. But having world-class clinics capable of delivering life-saving therapies is not enough. We also need to make sure that Californians who need these treatments can get them regardless of who they are or their ability to pay.

To learn more read out new Strategic Plan.

Overcoming obstacles and advancing treatments to patients

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

UC Davis GMP Manufacturing facility: Photo courtesy UC Davis

When you are trying to do something that has never been done before, there are bound to be challenges to meet and obstacles to overcome. At the California Institute for Regenerative Medicine (CIRM) we are used to coming up with great ideas and hearing people ask “Well, how are you going to do that?”

Our new 5-year Strategic Plan is how. It’s the roadmap that will help guide us as we work to overcome critical bottlenecks in bringing regenerative medicine therapies to people in need.

Providing more than money

People often think of CIRM as a funding agency, providing the money needed to do research. That’s true, but it’s only part of the story. With every project we fund, we also offer a lot of support. That’s particularly true at the clinical stage, where therapies are being tested in people. Projects we fund in clinical trials don’t just get money, they also have access to:

  • Alpha Stem Cells Clinic Network – This is a group of specialized medical centers that have the experience and expertise to deliver new stem cell and gene therapies.
  • The CIRM Cell and Gene Therapy Center – This helps with developing projects, overcoming manufacturing problems, and offers guidance on working with the US Food and Drug Administration (FDA) to get permission to run clinical trials.
  • CIRM Clinical Advisory Panels (CAPs) – These are teams put together to help advise researchers on a clinical trial and to overcome problems. A crucial element of a CAP is a patient advocate who can help design a trial around the needs of the patients, to help with patient recruitment and retention.

Partnering with key stakeholders

Now, we want to build on this funding model to create new ways to support researchers in bringing their work to patients. This includes earlier engagement with regulators like the FDA to ensure that projects match their requirements. It includes meetings with insurers and other healthcare stakeholders, to make sure that if a treatment is approved, that people can get access to it and afford it.

In the past, some in the regenerative medicine field thought of the FDA as an obstacle to approval of their work. But as David Martin, a CIRM Board member and industry veteran says, the FDA is really a key ally.

“Turning a promising drug candidate into an approved therapy requires overcoming many bottlenecks… CIRM’s most effective and committed partner in accelerating this is the FDA.”

Removing barriers to manufacturing

Another key area highlighted in our Strategic Plan is overcoming manufacturing obstacles. Because these therapies are “living medicines” they are complex and costly to produce. There is often a shortage of skilled technicians to do the jobs that are needed, and the existing facilities may not be able to meet the demand for mass production once the FDA gives permission to start a clinical trial. 

To address all these issues CIRM wants to create a California Manufacturing Network that combines academic innovation and industry expertise to address critical manufacturing bottlenecks. It will also coordinate training programs to help build a diverse and expertly trained manufacturing workforce.

CIRM will work with academic institutions that already have their own manufacturing facilities (such as UC Davis) to help develop improved ways of producing therapies in sufficient quantities for research and clinical trials. The Manufacturing Network will also involve industry partners who can develop facilities capable of the large-scale production of therapies that will be needed when products are approved by the FDA for wider use.

CIRM, in collaboration with this network, will also help develop education and hands-on training programs for cell and gene therapy manufacturing at California community colleges and universities. By providing internships and certification programs we will help create a talented, diverse workforce that is equipped to meet the growing demands of the industry.

You can read more about these goals in our 2022-27 Strategic Plan.

Sharing ideas and data to advance regenerative medicine

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

If Kindergarten kids can learn to share why can’t scientists?

When I was a kid, we were always told to share our toys. It was a good way of teaching children the importance of playing nice with the other kids and avoiding conflicts.

Those same virtues apply to science. Sharing data, knowledge and ideas doesn’t just create a sense of community. It also helps increase the odds that scientists can build on the knowledge gained by others to advance their own work, and the field as a whole.

That’s why advancing world class science through data sharing is one of the big goals in CIRM’s new Strategic Plan. There’s a very practical reason why this is needed. Although most scientists today fully appreciate and acknowledge the importance of data sharing, many still resist the idea. This is partly for competitive reasons: the researchers want to publish their findings first and take the credit.

But being first isn’t just about ego. It is also crucial in getting promotions, being invited to prestigious meetings, winning awards, and in some cases, getting the attention of biopharma. So, there are built-in incentives to avoiding data sharing.

That’s unfortunate because scientific progress is often dependent on collaboration and building upon the work of other researchers.

CIRM’s goal is to break down those barriers and make it easier to share data. We will do that by building what are called “knowledge networks.” These networks will streamline data sharing from CIRM-funded projects and combine that with research data from other organizations, publishers and California academic institutions. We want to create incentives for scientists to share their data, rather than keep it private.

We are going to start by creating a knowledge network for research targeting the brain and spinal cord. We hope this will have an impact on studying everything from stroke and Alzheimer’s to Parkinson’s and psychiatric disorders. The network will eventually cover all aspects of research—from the most basic science to clinical trials—because knowledge gained in one area can help influence research done in another.

To kick start this network, CIRM will partner with other funding agencies, disease foundations and research institutions to enable scientists to have access to this data such that data from one platform can be used to analyze data from another platform. This will amplify the power of data analysis and allow researchers to build upon the work of others rather than repeat already existing research.

As one of our Board members, Dr. Keith Yamamoto said in our Strategic Plan, “Making such data sharing and analysis across CIRM projects operational and widely accessible would leverage CIRM investments, serving the biomedical research enterprise broadly.”

It’s good for science, but ultimately and more importantly, it’s good for all of us because it will speed up the development of new approaches and new therapies for a wide range of diseases and disorders.

Visit this page to learn more about CIRM’s new 5-year Strategic Plan and stay tuned as we share updates on our 5-year goals here on The Stem Cellar.

Stem Cell Agency Board Approves Roadmap for Next Five Years

Dr. Maria Millan, CIRM’s President & CEO

It’s hard to get somewhere if you don’t know where you are going. Without a map you can’t plan a route to your destination. That’s why the CIRM Board approved a new Strategic Plan laying out a roadmap for the Stem Cell Agency for the next five years.

The plan builds on the achievements of Proposition 71, the voter approved ballot initiative that created the Agency in 2004, including:

  • Supporting 76 clinical trials.
  • Helping cure more than 40 children born with a rare, fatal immune disorder.
  • Creating the Alpha Clinics Network that specializes in the delivery of stem cell therapies to patients.
  • Training over 3000 students and scholars to become the future workforce of regenerative medicine.
  • Stimulating California’s economy with $10.7 Billion in additional sales revenue and the creation of 56,000 new jobs (between 2004-2018)

The passage of Proposition 14 in 2020 has positioned CIRM to continue to accelerate research from discovery to clinical; to drive innovative, real-world solutions resulting in transformative treatments for patients; and to ensure the affordability and accessibility of those treatments to a diverse community of patients in an equitable manner, including those often overlooked or underrepresented in the past.

“We achieved a lot in the last 15 years and this provides a solid foundation for our strategy to bring us to the new era of CIRM and to deliver the full potential of regenerative medicine, says Dr. Maria T. Millan, the President and CEO of CIRM. “This plan lays out a roadmap for us to overcome the challenges in developing transformative therapies and making them accessible and affordable in an equitable fashion to a diverse California. The plan will guide us in that work through the development of novel scientific endeavors, effective healthcare delivery models, and expanded education and training programs.”

The Strategic Plan is organized into three main themes:

  • Advance World Class Science – Foster a culture of collaborative science by creating knowledge networks and shared research tools and technologies that encourage and facilitate data and resource sharing.
  • Deliver Real World Solutions – Accelerate approval of therapies by optimizing our support models for CIRM-funded clinical trials with attention to including underserved communities; build the California Manufacturing Network to overcome manufacturing hurdles; and expand the Alpha Clinics network and create the Community Care Centers of Excellence to deliver therapies to a diverse patient population often in underserved communities.
  • Provide Opportunity for All – Build a racially, ethnically and experientially diverse and highly skilled workforce to support the growing regenerative medicine economy in California; deliver a roadmap for access and affordability of regenerative medicine for all California patients.

Reflecting these goals, CIRM’s new mission statement is: Accelerating world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and world.

“We realize that these are ambitious goals but they are achievable,” says Dr. Millan, “If CIRM is going to continue to be a global leader in the field of regenerative medicine, and to live up to the faith shown in us by the people of California, we believe we have to aim high. We have a terrific team, a clear vision and a determination to fulfill our mission. And that’s what we intend to do.”

Now-Defunct For-Profit Stem Cell Clinic Ordered to Pay $5.1 Million for Scamming Patients Through False Advertising

This blog is also available as an AUDIO CAST

Photo of New York Attorney General Letitia James courtesy Wikimedia commons

A now-defunct New York City for-profit stem cell clinic — Park Avenue Stem Cell — was order by court to pay $5.1 million in potential consumer restitution, penalties, and costs for fraudulently and illegally advertising their stem cell procedures. The judgment resolves a 2019 lawsuit by New York State Attorney General Letitia James which claimed the defendants’ scammed patients out of thousands of dollars each for unproven and potentially harmful medical treatments involving stem cells. 

According to the lawsuit, the clinic falsely advertised on their website, social media, television, and foreign language newspapers that they could treat a variety of serious medical conditions — including erectile dysfunction and Parkinson’s disease — using patients’ own stem cells. Consumers paid the clinic nearly $4,000 per procedure, with some consumers paying more than $20,000 for multiple procedures. Most of the procedures involved adipose stem cells, which are derived from a patient’s own fat tissues.   

The court says the defendants misrepresented that their procedures were approved by the U.S. Food and Drug Administration (FDA), that their patients were participating in an established research study, and that their procedures had been endorsed by several scientific and medical organizations.   

As a state agency, CIRM’s duty is to educate the public about the concerns over “stem cell tourism” and the growing number of predatory clinics that advertise unproven stem cell therapies at great cost to the patient.  

In addition to hosting public forums on stem cell tourism concerns and resources for patients seeking stem cell treatments, CIRM partnered with California State Senator Ed Hernandez (D-West Covina) to create a new law that attempts to address the issue. The bill, SB 512, was passed in 2017 and now requires medical clinics whose stem cell treatments are not FDA approved to post notices and provide handouts to patients warning them about the potential risk.  

Read more about this lawsuit at the New York Attorney general’s website. 

Producing insulin for people who can’t

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

ViaCyte’s implantable stem cell pouch

One of the huge advantages of a stem cell agency like CIRM (not that there is anything out there quite like us, but anyway) is our ability to support projects as they progress from a great idea to a therapy actually being tested in people.

Exhibit A on that front came via a news release from ViaCyte, a company that is developing a new approach to helping people with severe Type 1 Diabetes (T1D).

Unlike type 2 diabetes, which is largely diet & lifestyle related and develops over time, T1D is an autoimmune condition where the person’s immune system attacks and destroys the insulin-producing cells in the pancreas. Without those cells and insulin the body is not able to regulate blood sugar levels and that can lead to damage to the heart, kidneys, eyes and nerves. In severe cases it can be fatal.

ViaCyte (which has been supported with more than $72 million from CIRM) has developed a pouch that can be implanted under the skin in the back. This pouch contains stem cells that over a period of a few months turn into insulin-producing pancreatic islet cells, the kind destroyed by T1D. The goal is for these cells to monitor blood flow and when they detect blood sugar or glucose levels are high, can secrete insulin to restore them to a safe level.

They tested this approach in 15 patients in a Phase 1 clinical trial in Canada. Their findings, published in the journals Cell Stem Cell and Cell Reports Medicine, show that six months after implantation, the cells had turned into insulin-producing islet cells. They also showed a rise in C-peptide levels after patients ate a meal. C-peptides are a sign your body is producing insulin so the rise in that number was a good indication the implanted cells were boosting insulin production.

As Dr. James Shapiro, the Chair of Canada Research and one of the lead authors of the study says, that’s no small achievement: “The data from these papers represent a significant scientific advance. It is the first reported evidence that differentiated stem cells implanted in patients can generate meal-regulated insulin secretion, offering real hope for the incredible potential of this treatment.”

And that wasn’t all. The researchers say that patients spent 13 percent more time in the target range for blood sugar levels than before the treatment, and some were even able to reduce the amount of insulin they injected.

Now this is only a Phase 1 clinical trial so the goal was to test the safety of the pouch, called PEC-Direct (VC-02), to see if the body would tolerate it being implanted and to see if it is effective. The beauty of this method is that the device is implanted under the skin so it can be removed easily if any problems emerge. So far none have.

Ultimately the hope is that this approach will help patients with T1D better regulate their blood sugar levels, improve their health outcomes, and one day even achieve independence from the burden of daily insulin injections.