Saying thanks and farewell to a friend

Tom Howing

In this job you get to meet a lot of remarkable people, none more so than the patients who volunteer to take part in what are giant experiments. They are courageous pioneers, willing to be among the first people to ever try a new therapy, knowing that it may not help them and, potentially, might even harm them.

Tom Howing was one such person. I got to know Tom when we were putting together our 2017 Annual Report. Back in 2015 Tom was diagnosed with Stage 4 cancer that had spread throughout his body. He underwent surgery and chemotherapy. That worked for a while, but then the cancer returned. So, Tom had more surgery and chemotherapy. Again, it worked for a while but when the cancer returned again Tom was running out of options.

That’s when he learned about a clinical trial with a company called Forty Seven Inc. that was testing a new anti-cancer therapy that CIRM was supporting. Tom says he didn’t hesitate.

“When I was diagnosed with cancer I knew I had battle ahead of me. After the cancer came back again they recommended I try this CD47 clinical trial. I said absolutely, let’s give it a spin. I guess one is always a bit concerned whenever you put the adjective “experimental” in front of anything. But I’ve always been a very optimistic and positive person and have great trust and faith in my caregivers.”

Optimistic and positive are great ways to describe Tom. Happily, his optimism was rewarded. The therapy worked.

“Scans and blood tests came back showing that the cancer appears to be held in check. My energy level is fantastic. The treatment that I had is so much less aggressive than chemo, my quality of life is just outstanding.”

But after a year or so Tom had to drop out of the trial. He tried other therapies and they kept the cancer at bay. For a while. But it kept coming back. And eventually Tom ran out of options. And last week, he ran out of time.

Tom was a truly fine man. He was kind, caring, funny, gracious and always grateful for what he had. He talked often about his family and how the stem cell therapy helped him spend not just more time with them, but quality time.

He knew when he signed up for the therapy that there were no guarantees, but he wanted to try, saying that even if it didn’t help him that the researchers might learn something to help others down the line.

“The most important thing I would say is, I want people to know there is always hope and to stay positive.”

Tom ultimately lost his battle with cancer. But he never lost his spirit, his delight in his family and his desire to keep going as long as he could. In typical Tom fashion he preferred to put his concerns aside and cheer others along.

“To all those people who are putting in all the hours at the bench and microscope, it’s important for them to know that they are making a huge impact on the lives of real people and they should celebrate it and revel in it and take great pride in it.”

We consider ourselves fortunate to have known Tom and to have been with him on part of his journey. He touched our lives, as he touched the lives of so many others. Our thoughts and wishes go out to his family and friends. He will be remembered, because we never forget our friends.

A few years ago Tom came and talked to the CIRM Board. Here is the video of that event.

Hitting our Goals: Let’s start at the beginning shall we

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #3 was Discover.

When journalists write about science a lot of the attention is often focused on clinical trials. It’s not too surprising, that’s the stage where you see if treatments really work in people and not just in the lab. But long before you get to the clinical trial stage there’s a huge amount of work that has to be done. The starting point for that work is in the Discovery stage, if it works there it moves to the Translational stage, and only after that, assuming it’s still looking promising, does it start thinking about moving into the clinic.

The Discovery, or basic, stage of research is where ideas are tested to see if they have any promise and have the potential to lead to the development of a therapy or device that could ultimately help patients. In many ways the goal of Discovery research is to gain a better understanding of how, in our case, stem cells work, and how to harness that power to treat particular diseases or disorders.

Without a rigorous Discovery research program you can’t begin to create a pipeline of promising projects that you can advance towards patients. And of course having a strong Discovery program is not much use if you don’t have somewhere for those projects to advance to, namely Translational and ultimately clinical.

So, when we were laying out our Strategic Plan goals back in 2015 we wanted to create a pipeline for all three programs, moving the most promising ones forward. So we set an ambitious goal.

Introduce 50 new therapeutic or device candidates into development.

Now this doesn’t mean just fund 50 projects hoping to develop a new therapy or device. A lot of studies that are funded, particularly at the earliest stages, have a good idea that just doesn’t pan out. In fact one quite common definition of early research – in this case from Translational Medicine Communications – is “the earliest stage of research, conducted for the advancement of knowledge, often without any concern for its practical applications.

That’s not what we wanted. We aren’t in this to do research just for its own sake. We fund research because we want it to lead somewhere, we want it to have a practical application. We want to fund projects that actually ended up with something much more promising, a candidate that might actually work and was ready to move into the next level of research to test it further.

And we almost, almost made it to the 50-candidate goal. We got to 46 and almost certainly would have made it to 50 if we hadn’t run out of money. Even so, that’s pretty impressive. There are now 46 projects ready to move on, or are already moving on, to the next level of research.

Of course, there’s no guarantee that these will ultimately end up as an FDA-approved therapy or device. But if you don’t set goals, you’ll never score. And now, thanks to the passage of Proposition 14, we have a chance to support those projects as they move forward.

Three UC’s Join Forces to Launch CRISPR Clinical Trial Targeting Sickle Cell Disease

Sickle shaped red blood cells

The University of California, San Francisco (UCSF), in collaboration with UC Berkeley (UCB) and UC Los Angeles (UCLA), have been given permission by the US Food and Drug Administration (FDA) to launch a first-in-human clinical trial using CRISPR technology as a gene-editing technique to cure Sickle Cell Disease.

This research has been funded by CIRM from the early stages and, in a co-funding partnership with theNational Heart, Lung, and Blood Institute under the Cure Sickle Cell initiatve, CIRM supported the work that allowed this program to gain FDA permission to proceed into clinical trials.    

Sickle Cell Disease is a blood disorder that affects around 100,000 people, mostly Black and Latinx people in the US. It is caused by a single genetic mutation that results in the production of “sickle” shaped red blood cells. Normal red blood cells are round and smooth and flow easily through blood vessels. But the sickle-shaped ones are rigid and brittle and clump together, clogging vessels and causing painful crisis episodes, recurrent hospitalization, multi-organ damage and mini-strokes.    

The three UC’s have combined their respective expertise to bring this program forward.

The CRISPR-Cas9 technology was developed by UC Berkeley’s Nobel laureate Jennifer Doudna, PhD. UCLA is a collaborating site, with expertise in genetic analysis and cell manufacturing and UCSF Benioff Children’s Hospital Oakland is the lead clinical center, leveraging its renowned expertise in cord blood and marrow transplantation and in gene therapy for sickle cell disease.

The approach involves retrieving blood stem cells from the patient and, using a technique involving electrical pulses, these cells are treated to correct the mutation using CRISPR technology. The corrected cells will then be transplanted back into the patient.

Dr. Mark Walters

In a news release, UCSF’s Dr. Mark Walters, the principal investigator of the project, says using this new gene-editing approach could be a game-changer. “This therapy has the potential to transform sickle cell disease care by producing an accessible, curative treatment that is safer than the current therapy of stem cell transplant from a healthy bone marrow donor. If this is successfully applied in young patients, it has the potential to prevent irreversible complications of the disease. Based on our experience with bone marrow transplants, we predict that correcting 20% of the genes should be sufficient to out-compete the native sickle cells and have a strong clinical benefit.”

Dr. Maria T. Millan, President & CEO of CIRM, said this collaborative approach can be a model for tackling other diseases. “When we entered into our partnership with the NHLBI we hoped that combining our resources and expertise could accelerate the development of cell and gene therapies for SCD. And now to see these three UC institutions collaborating on bringing this therapy to patients is truly exciting and highlights how working together we can achieve far more than just operating individually.”

The 4-year study will include six adults and three adolescents with severe sickle cell disease. It is planned to begin this summer in Oakland and Los Angeles.

The three UCs combined to produce a video to accompany news about the trial. Here it is:

Hitting our Goals: Scoring a half century

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #2 was Expand.

Scientist preparing a sample vial for automated analysis in the lab.

When CIRM first started there was an internal report that said if we managed to help get one project into a clinical trial before we ran out of money we would be doing well. At the time that seemed quite reasonable. The field was still very much in its infancy and most of the projects we were funding, particularly in the early days, were Discovery or basic research projects.

But as the field advanced we got a little bolder. By 2010 we were funding not just our first clinical trial, but the first clinical trial in the world using embryonic stem cells. This was the Geron trial targeting spinal cord injury. Sadly the excitement didn’t last very long. After treating just five patients Geron pulled the plug on the trial, deciding that targeting cancer was a better bet.

Happily, Geron returned all the money we had loaned them, plus interest, so we were able to use that to fund more research. Soon enough we had a number of other promising candidates heading towards a meeting with the US Food and Drug Administration (FDA) to try and get permission to start a clinical trial.

By 2014, ten years after we began, we actually had ten projects either running or getting ready to start a clinical trial. We thought that was really good. But at CIRM, really good is never good enough.

For our Strategic Plan in 2015 we decided to shoot for the moon and aim to get another 50 clinical trials over the next five years. At the time it seemed, to be honest, a bit bonkers. How on earth were we going to do that. But then our Therapeutics team went a hunting!

In the past we had the luxury of mostly just waiting for people with promising projects to approach us for funding. With an ambitious goal of getting 50 more clinical trials, we couldn’t afford to wait. The Therapeutics team scouted around for promising projects, inside and outside California, inside and outside the US, and pitched them on the benefits of applying for funding. Slowly the numbers started to rise.

By the end of 2016 we had 12 new trials. In 2017 we were really cruising along, adding 16 more trials. 2018 there was another 14 and that was also the year we passed the 50 clinical trials total since CIRM was created. We celebrated at a Board meeting with a balloon and a cake (we’re a state agency, our budget doesn’t extend to confetti). Initially the inscription on the cake read ‘Congratulations: 50 Clinical Trails’. Happily, we were able to fix it before anyone noticed. But even with the spelling error, it would still have tasted just fine.

Patient advocate Rich Lajara with the Big Balloon celebration for funding 50 clinical trials

By the time we got to mid-2020 we were stuck on 47 and with time, and money, running out it looked like we might miss the goal. But then our team put in one last effort and with weeks to spare we funded four more clinical trials for a total of 51 (68 since we started in 2004).

So, the moral is dream big but work hard. Now let’s see what we can dream up for our next Strategic Plan.

Hitting our goals: regulatory reform

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. We are going to start with Regulatory Reform.

The political landscape in 2015 was dramatically different than it is today. Compared to more conventional drugs and therapies stem cells were considered a new, and very different, approach to treating diseases and disorders. At the time the US Food and Drug Administration (FDA) was taking a very cautious approach to approving any stem cell therapies for a clinical trial.

A survey of CIRM stakeholders found that 70% said the FDA was “the biggest impediment for the development of stem cell treatments.” One therapy, touted by the FDA as a success story, had such a high clinical development hurdle placed on it that by the time it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially. As one stakeholder said: “Is perfect becoming the enemy of better?”

So, we set ourselves a goal of establishing a new regulatory paradigm, working with Congress, academia, industry, and patients, to bring about real change at the FDA and to find ways to win faster approval for promising stem cell therapies, without in any way endangering patients.

It seemed rather ambitious at the time, but achieving that goal happened much faster than any of us anticipated. With a sustained campaign by CIRM and other industry leaders, working with the patient advocacy groups, the FDA, Congress, and President Obama, the 21st Century Cures Act was signed into law on December 13, 2016.

President Obama signs the 21st Century Cures Act.
Photo courtesy of NBC News

The law did something quite radical; it made the perspectives of patients an integral part of the FDA’s decision-making and approval process in the development of drugs, biological products and devices. And it sped up the review process by:

In a way the FDA took its foot off the brake but didn’t hit the accelerator, so the process moved faster, but in a safe, manageable way.

Fast forward to today and eight projects that CIRM funds have been granted RMAT designation. We have become allies with the FDA in helping advance the field. We have created a unique partnership with the National Heart, Lung and Blood Institute (NHLBI) to support the Cure Sickle Cell initiative and accelerate the development of cell and gene therapies for sickle cell disease.

The landscape has changed since we set a goal of regulatory reform. We still have work to do. But now we are all working together to achieve the change we all believe is both needed and possible.

A word from our Chair, several in fact

In 2005, the New Oxford American Dictionary named “podcast” its word of the year. At the time a podcast was something many had heard of but not that many actually tuned in to. My how times have changed. Now there are some two million podcasts to chose from, at least according to the New York Times, and who am I to question them.

Yesterday, in the same New York Times, TV writer Margaret Lyons, wrote about how the pandemic helped turn her from TV to podcasts: “Much in the way I grew to prefer an old-fashioned phone call to a video chat, podcasts, not television, became my go-to medium in quarantine. With their shorter lead times and intimate production values, they felt more immediate and more relevant than ever before.”

I mention this because an old colleague of ours at CIRM, Neil Littman, has just launched his own podcast and the first guest on it was Jonathan Thomas, Chair of the CIRM Board. Their conversation ranged from CIRM’s past to the future of the regenerative field as a whole, with a few interesting diversions along the way. It’s fun listening. And as Margaret Lyons said it might be more immediate and more relevant than ever before.

Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

U.C. San Diego Scientist Larry Goldstein Joins Stem Cell Agency’s Board

Larry Goldstein, PhD.

Larry Goldstein PhD, has many titles, one of which sums up his career perfectly, “Distinguished Professor”. Dr. Goldstein has distinguished himself on many fronts, making him an ideal addition to the governing Board of the California Institute for Regenerative Medicine (CIRM).

Dr. Goldstein – everyone calls him Larry – is a Cell Biologist, Geneticist and Neuroscientist. He worked with many colleagues to launch the UC San Diego Stem Cell program, the Sanford Consortium for Regenerative Medicine and the Sanford Stem Cell Clinical Center. He has received the Public Service Award from the American Society for Cell Biology and has had a Public Policy Fellowship named for him by the International Society for Stem Cell Research. He is a member of the American Academy of Arts and Sciences and last year was named a member of the prestigious National Academy of Sciences.

“I look forward to working with the ICOC and CIRM staff to ensure that the best and most promising stem cell research and medicine is fostered and funded,” Larry said.

For more than 25 years Larry’s work has targeted the brain and, in particular, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) better known as Lou Gehrig’s disease.

In 2012 his team was the first to create stem cell models for two different forms of Alzheimer’s, the hereditary and the sporadic forms. This gave researchers a new way of studying the disease, helping them better understand what causes it and looking at new ways of treating it.

He was appointed to the CIRM Board by Pradeep Khosla, the Chancellor of U.C. San Diego saying he is “gratified you are assuming this important role.”

Jonathan Thomas, JD, PhD., Chair of the CIRM Board, welcome the appointment saying “I have known Larry for many years and have nothing but the highest regard for him as a scientist, a leader, and a great champion of stem cell research. He is also an innovative thinker and that will be invaluable to us as we move into a second chapter in the life of CIRM.”

Larry was born in Buffalo, New York and grew up in Thousand Oaks, California. He graduated from UC San Diego with a degree in Biology in 1976 and from the University of Washington with a Ph. D. in Genetics in 1980. He joined the faculty in Cell and Developmental Biology at Harvard University in 1984 where he was promoted to Full Professor with tenure in 1990. He returned to UC San Diego and the Howard Hughes Medical Institute in 1993. After 45 years pursuing cutting edge lab-based research Larry is now transitioning to an administrative and executive role at UC San Diego where he will serve as the Senior Advisor for Stem Cell Research and Policy to the Vice Chancellor of Health Sciences.

He replaces David Brenner who is standing down after completing two terms on the Board.

UCSF Nursing Professor Joins CIRM Board

Elena Flowers, PhD, RN, newest member of the CIRM Board: Photo courtesy UCSF

Elena Flowers, PhD, RN, an associate professor of physiological nursing at the University of California, San Francisco (UCSF) is joining the Board of the California Institute for Regenerative Medicine (CIRM), the state’s Stem Cell Agency.

Dr. Flowers was appointed to the Board by State Controller Betty T. Yee who said: “Ms. Flowers’ experience and express commitment to equitable health outcomes for California’s diverse communities will bring a valued perspective to the work ahead.”

Dr. Flowers is a member of the UCSF Institute for Human Genetics and the International Society of Nurses in Genetics. As a researcher her work focuses on genomics involving precision medicine and risk factors for cardiovascular health and type 2 diabetes. She is also a teacher and has lectured internationally on issues such as topics from racial disparities in Type 2 Diabetes to the implications of genomic technologies for the nursing workforce.

CIRM Board Chair, Jonathan Thomas, PhD, JD, welcomed the appointment: “Dr. Flowers brings a wealth of experience and expertise to our Board and, as a nurse, she will bring a different perspective to the work we do and help us in trying to better address the needs of underserved communities.” 

“I am honored to have the opportunity to serve the citizens of California in this capacity,” says Dr. Flowers. “CIRM has ambitious goals, seeking to improve upon common limitations of public research agencies by its commitment to delivering meaningful findings and ultimately treatments for patients as rapidly as possible. I’m particularly committed to improving inclusion and access to these treatments across the entire diverse California population.”

Dr. Flowers got her undergraduate degree at UC Davis and then served as a research assistant at Zuckerberg San Francisco General Hospital. She then went on to get her MS and Doctor of Philosophy degrees at the UCSF School of Nursing.

In her spare time she has no spare time because she is the mother of two young daughters.

Surviving with Joy

Dr. Tippi MacKenzie (left) of UCSF Benioff Children’s Hospital San Francisco, visits with newborn Elianna and parents Nichelle Obar and Chris Constantino. Photo by Noah Berger

Alpha thalassemia major is, by any stretch of the imagination, a dreadful, heart breaker of a disease. It’s caused by four missing or mutated genes and it almost always leads to a fetus dying before delivery or shortly after birth. Treatments are limited and in the past many parents were told that all they can do is prepare for the worst.

Now, however, there is new hope with new approaches, including one supported by CIRM, helping keep these children alive and giving them a chance at a normal life.

Thalassemias are a group of blood disorders that affect the way the body makes hemoglobin, which helps in carrying oxygen throughout the body. In alpha thalassemia major it’s the lack of alpha globin, a key part of hemoglobin, that causes the problem. Current treatment requires in blood transfusions to the fetus while it is still in the womb, and monthly blood transfusions for life after delivery, or a bone marrow transplant if a suitable donor is identified.

A clinical trial run by University of California San Francisco’s Dr. Tippi MacKenzie – funded by CIRM – is using a slightly different approach. The team takes stem cells from the mother’s bone marrow and then infuses them into the fetus. If accepted by the baby’s bone marrow, these stem cells can then mature into healthy blood cells. The hope is that one day this method will enable children to be born with a healthy blood supply and not need regular transfusions.

Treating these babies, saving their lives, is the focus of a short film from UCSF called “Surviving with Joy”. It’s a testament to the power of medicine, and the courage and resilience of parents who never stopped looking for a way to help their child.

Tissues are optional but advised.