World Sickle Cell Day: A View from the Front Line

June 19th is World Sickle Cell Day. Sickle cell disease is an inherited blood disorder that causes normally round red blood cells to take on an abnormal sickle shape, resulting in clogged arteries, severe pain, increased risk of stroke and reduced life expectancy. To mark the occasion we asked Nancy M. Rene to write a guest blog for us. Nancy is certainly qualified; she is the grandmother of a child with sickle cell disease, and the co-founder of Axis Advocacy, a non-profit advocating for those with sickle cell disease and their families.

Nancy ReneOn this World Sickle Cell Day, 2017, we can look back to the trailblazers in the fight against Sickle Cell Disease.  More than 40 years ago, the Black Panther Party established the People’s Free Medical Clinics in several cities across the country. One of the functions of these free clinics: to screen people for sickle cell disease and sickle cell trait. This life-saving screening began  in 1971.

Around that same time, President Richard Nixon allocated $10 million to begin the National Sickle Cell Anemia Control Act. This included counseling and screening, educational activities, and money for research.

In the early part of the twentieth century, most children with sickle cell died before their fifth birthday. With newborn screening available nationwide, the use of penicillin to prevent common infections, and the finding that hydroxyurea was useful in fighting the disease, life expectancy began to improve.

For much of the twentieth century, people with sickle cell disease felt that they were fighting the fight alone, knowledgeable doctors were scarce and insurance was often denied.

Making progress

As we moved into the twenty-first century, patients and families found they had some powerful allies. The National Institutes of Health (NIH), Centers for Disease Control and Prevention (CDC) and the Food and Drug Administration (FDA) joined the battle.  In 2016 the NIH held its tenth annual international conference on sickle cell disease that featured speakers from all over the world.  Participants were able to learn about best practices in Europe, Africa, India, and South America.

Sickle Cell centers at Howard University, the Foundation for Sickle Cell Disease Research, and other major universities across the country are pointing the way to the best that medicine has to offer.

Last year, the prestigious American Society of Hematology (ASH) launched an initiative to improve understanding and treatment of sickle cell disease.  Their four-point plan includes education, training, advocacy, and expanding its global reach.

Just last month, May 2017, the FDA looked at Endari, developed by Emmaus Medical in Torrance, California.  It is the first drug specifically developed for sickle cell disease to go through the FDA’s approval process. We should have a decision on whether or not the drug goes to market in July.

The progress that had been made up to the beginning of the twenty-first century was basically about alleviating the symptoms of the disease: the sickling, the organ damage and the pervasive anemia. But a cure was still elusive.

But in 2004, California’s Stem Cell Agency, CIRM, was created and it was as if the gates had opened.

Researchers had a new source of funding to enable  them to work on Sickle Cell Disease and many other chronic debilitating diseases at the cellular level. Scientists like Donald Kohn at UCLA, were able to research gene editing and find ways to use autologous bone marrow transplants to actually cure people with sickle cell. While some children with sickle cell have been cured with traditional bone marrow transplants, these transplants must come from a matched donor, and for most patients, a matched donor is simply not available. CIRM has provided the support needed so that researchers are closing in on the cure. They are able to share strategies with doctors and researchers throughout the world

And finally, support from the federal government came with the passage of the Affordable Care Act and adequate funding for the NIH, CDC, the Health Resources and Services Administration (HRSA), and FDA.

Going backwards

And yet, here we are, World Sickle Cell Day, 2017.

Will this be a case of one step forward two steps back?

Are we really going back to the time when people with Sickle Cell Disease could not get health insurance because sickle cell is a pre-existing condition, to the time when there was little money and no interest in research or professional training, to a time when patients and their families were fighting this fight alone?

For all of those with chronic disease, it’s as if we are living a very bad dream.

Time to wake up

For me, I want to wake up from that dream.  I want to look forward to a future where patients and families, where Joseph and Tiffany and Marissa and Ken and Marcus and all the others, will no longer have to worry about getting well-informed, professional treatment for their disease.

Where patients will no longer fear going to the Emergency Room

Where doctors and researchers have the funding they need to support them in their work toward the cure,

Where all children, those here in the United States along with those in Africa, India, and South America, will have access to treatments that can free them from pain and organ damage of sickle cell disease.

And where all people with this disease can be cured.

Stories that caught our eye: An antibody that could make stem cell research safer; scientists prepare for clinical trial for Parkinson’s disease; and the stem cell scientist running for Congress

Antibody to make stem cells safer:

There is an old Chinese proverb that states: ‘What seems like a blessing could be a curse’. In some ways that proverb could apply to stem cells. For example, pluripotent stem cells have the extraordinary ability to turn into many other kinds of cells, giving researchers a tool to repair damaged organs and tissues. But that same ability to turn into other kinds of cells means that a pluripotent stem cell could also turn into a cancerous one, endangering someone’s life.

A*STAR

Researchers at the A*STAR Bioprocessing Technology Institute: Photo courtesy A*STAR

Now researchers at the Agency for Science, Technology and Research (A*STAR) in Singapore may have found a way to stop that happening.

When you change, or differentiate, stem cells into other kinds of cells there will always be some of the original material that didn’t make the transformation. Those cells could turn into tumors called teratomas. Scientists have long sought for a way to identify pluripotent cells that haven’t differentiated, without harming the ones that have.

The team at A*STAR injected mice with embryonic stem cells to generate antibodies. They then tested the ability of the different antibodies to destroy pluripotent stem cells. They found one, they called A1, that did just that; killing pluripotent cells but leaving other cells unharmed.

Further study showed that A1 worked by attaching itself to specific molecules that are only found on the surface of pluripotent cells.

In an article on Phys.Org Andre Choo, the leader of the team, says this gives them a tool to get rid of the undifferentiated cells that could potentially cause problems:

“That was quite exciting because it now gives us a view of the mechanism that is responsible for the cell-killing effect.”

Reviving hope for Parkinson’s patients:

In the 1980’s and 1990’s scientists transplanted fetal tissue into the brains of people with Parkinson’s disease. They hoped the cells in the tissue would replace the dopamine-producing cells destroyed by Parkinson’s, and stop the progression of the disease.

For some patients the transplants worked well. For some they produced unwanted side effects. But for most they had little discernible effect. The disappointing results pretty much brought the field to a halt for more than a decade.

But now researchers are getting ready to try again, and a news story on NPR explained why they think things could turn out differently this time.

tabar-viviane

Viviane Tabar, MD; Photo courtesy Memorial Sloan Kettering Cancer Center

Viviane Tabar, a stem cell researcher at Memorial Sloan Kettering Cancer Center in New York, says in the past the transplanted tissue contained a mixture of cells:

“What you were placing in the patient was just a soup of brain. It did not have only the dopamine neurons, which exist in the tissue, but also several different types of cells.”

This time Tabar and her husband, Lorenz Studer, are using only cells that have been turned into the kind of cell destroyed by the disease. She says that will, hopefully, make all the difference:

“So you are confident that everything you are putting in the patient’s brain will consist of  the right type of cell.”

Tabar and Studer are now ready to apply to the Food and Drug Administration (FDA) for permission to try their approach out in a clinical trial. They hope that could start as early as next year.

Hans runs for Congress:

Keirstead

Hans Keirstead: Photo courtesy Orange County Register

Hans Keirstead is a name familiar to many in the stem cell field. Now it could become familiar to a lot of people in the political arena too, because Keirstead has announced he’s planning to run for Congress.

Keirstead is considered by some to be a pioneer in stem cell research. A CIRM grant helped him develop a treatment for spinal cord injury.  That work is now in a clinical trial being run by Asterias. We reported on encouraging results from that trial earlier this week.

Over the years the companies he has founded – focused on ovarian, skin and brain cancer – have made him millions of dollars.

Now he says it’s time to turn his sights to a different stage, Congress. Keirstead has announced he is going to challenge 18-term Orange County Republican Dana Rohrabacher.

In an article in the Los Angeles Times, Keirstead says his science and business acumen will prove important assets in his bid for the seat:

“I’ve come to realize more acutely than ever before the deficits in Congress and how my profile can actually benefit Congress. I’d like to do what I’m doing but on a larger stage — and I think Congress provides that, provides a forum for doing the greater good.”

 

 

 

 

 

 

 

 

 

Throwback Thursday: Progress to a Cure for Diseases of Blindness

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of exciting stem cell stories about advances towards stem cell-based cures for serious diseases. This month we’re featuring stories about CIRM-funded clinical trials for blindness.

2017 has been an exciting year for two CIRM-funded clinical trials that are testing stem cell-based therapies for diseases of blindness. A company called Regenerative Patch Technologies (RPT) is transplanting a sheet of embryonic stem cell-derived retinal support cells into patients with the dry form of age-related macular degeneration, a disease that degrades the eye’s macula, the center of the retina that controls central vision. The other trial, sponsored by a company called jCyte, is using human retinal progenitor cells to treat retinitis pigmentosa, a rare genetic disease that destroys the light-sensing cells in the retina, causing tunnel vision and eventually blindness.

 

Both trials are in the early stages, testing the safety of their respective stem cell therapies. But the teams are hopeful that these treatments will stop the progression of or even restore some form of vision in patients. In the past few months, both RPT and jCyte have shared exciting news about the progress of these trials which are detailed below.

Macular Degeneration Trial Gets a New Investor

In April, RPT announced that they have a new funding partner to further develop their stem cell therapy for age-related macular degeneration (AMD). They are partnering with Japan’s Santen Pharmaceutical Company, which specializes in developing ophthalmology or eye therapies.

AMD is the leading cause of blindness in elderly people and is projected to affect almost 200 million people worldwide by 2020. There is no cure or treatment that can restore vision in AMD patients, but stem cell transplants offer a potential therapeutic option.

RPT believes that their newfound partnership with Santen will accelerate the development of their stem cell therapy and ultimately fulfill an unmet medical need. RPT’s co-founder, Dr. Dennis Clegg, commented in a CIRM news release, “the ability to partner with a global leader in ophthalmology like Santen is very exciting. Such a strong partnership will greatly accelerate RPT’s ability to develop our product safely and effectively.”

This promising relationship highlights CIRM’s efforts to partner our clinical programs with outside investors to boost their chance of success. It also shows confidence in the future success of RPT’s stem cell-based therapy for AMD.

Retinitis Pigmentosa Trial Advances to Phase 2 and Receives RMAT Status

In May, the US Food and Drug Administration (FDA) approved jCyte’s RP trial for Regenerative Medicine Advanced Therapy (RMAT) status, which could pave the way for accelerated approval of this stem cell therapy for patients with RP.

RMAT is a new status established under the 21st Century Cures Act – a law enacted by Congress in December of 2016 to address the need for a more efficient regulatory approval process for stem cell therapies that can treat serious or life-threatening diseases. Trial sponsors of RMAT designated therapies can meet with the FDA earlier in the trial process and are eligible for priority review and accelerated approval.

jCyte’s RMAT status is well deserved. Their Phase 1 trial was successful, proving the treatment was safe and well-tolerated in patients. More importantly, some of the patients revealed that their sight has improved following their stem cell transplant. We’ve shared the inspiring stories of two patients, Rosie Barrero and Kristin Macdonald, previously on the Stem Cellar.

Rosie Barrero

Kristin MacDonald

Both Rosie and Kristin were enrolled in the Phase 1 trial and received an injection of retinal progenitor cells in a single eye. Rosie said that she went from complete darkness to being able to see shapes, colors, and the faces of her family and friends. Kristin was the first patient treated in jCyte’s trial, and she said she is now more sensitive to light and can see shapes well enough to put on her own makeup.

Encouraged by these positive results, jCyte launched its Phase 2 trial in April with funding from CIRM. They will test the same stem cell therapy in a larger group of 70 patients and monitor their progress over the next year.

Progress to a Cure for Blindness

We know very well that scientific progress takes time, and unfortunately we don’t know when there will be a cure for blindness. However, with the advances that these two CIRM-funded trials have made in the past year, our confidence that these stem cell treatments will one day benefit patients with RP and AMD is growing.

I’ll leave you with an inspiring video of Rosie Barrero about her experience with RP and how participating in jCytes trial has changed her life. Her story is an important reminder of why CIRM exists and why supporting stem cell research in particular, and research in general, is vital for the future health of patients.


Related Links:

ViaCyte Advances Cell Replacement Therapy for High Risk Type 1 Diabetes

San Diego regenerative medicine company ViaCyte announced this week that the Food and Drug Administration (FDA) approved their Investigational New Drug (IND) Application for PEC-Direct, a cell-based therapy to treat patients at risk for severe complications caused by type 1 diabetes. In the US, IND approval is the final regulatory step required before a therapy can be tested in clinical trials.

PEC-Direct is a combination therapy consisting of cells encapsulated in a device that aims to replace the insulin-producing islet cells of the pancreas destroyed in patients with type 1 diabetes. The device contains human stem cell-derived pancreatic progenitor cells that develop into insulin-secreting cells when the device is placed under the patient’s skin. Ports on the surface of the device allow blood vessels from the host to directly contact the cells within, allowing for engraftment of the transplanted cells and for their maturation into islet cells.  These cells can sense and regulate blood glucose levels by secreting the hormones found in islets, including insulin.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted cells.

Because PEC-Direct allows for “direct vascularization”, in effect connecting the device to the blood system, patients will need to take immunosuppressive drugs to prevent rejection of the donor cells. ViaCyte is therefore testing this therapy in patients who are at risk for serious complications associated with type 1 diabetes like severe hypoglycemia where a patient’s blood sugar is so low they need immediate medical assistance.

Severe hypoglycemia can occur because people with diabetes must inject insulin to control elevated blood sugar, but the injections can exceed the patients’ needs. The resulting low blood sugar can lead to dizziness, irregular heartbeat, and unconsciousness, even death. In some cases, sufferers are not aware of their hypoglycemia symptoms, putting them at increased risk of these life-threatening complications.

ViaCyte’s President and CEO, Dr. Paul Laikind, explained in a news release,

Paul Laikind

“While insulin therapy transformed type 1 diabetes from a death sentence to a chronic illness, it is far from a cure. Type 1 diabetes patients continue to deal with the daily impact of the disease and remain at risk for often severe long-term complications.  This is especially true for the patients with high-risk type 1 diabetes, who face challenges such as hypoglycemia unawareness and life-threatening severe hypoglycemic episodes.  These patients have a particularly urgent unmet medical need and could benefit greatly from cell replacement therapy.”

Approximately 140,000 people in the US and Canada suffer from this form of high-risk diabetes. These patients qualify for islet transplants from donated cadaver tissue. But because donor islets are in limited supply, ViaCyte Clinical Advisor, Dr. James Shapiro at the University of Alberta, believes PEC-Direct will address this issue by providing an unlimited supply of cells.

“Islet transplants from scarce organ donors have offered great promise for those with unstable, high-risk type 1 diabetes, but the procedure has many limitations.  With an unlimited supply of new islets that the stem cell-derived therapy promises, we have real potential to benefit far more patients with islet cell replacement.”

The company’s preclinical research on PEC-Direct, leading up to the FDA’s IND approval, was funded by a CIRM late stage preclinical grant. ViaCyte now plans to launch a clinical trial this year that will evaluate the safety and efficacy of PEC-Direct in the US and Canada. They will enroll approximately 40 patients at multiple clinical trial centers including the University of Alberta in Edmonton, the University of Minnesota, and UC San Diego. The trial will test whether the device is safe and whether the transplanted cells can produce enough insulin to relieve patients of insulin injections and hypoglycemic events.

ViaCyte has another product called PEC-Encap, a different implantable device that contains the same cells but protects these cells from the patient’s immune system. The device is being tested in a CIRM-funded Phase 1/2a trial, and ViaCyte is currently collaborating with W. L. Gore & Associates to improve the design of PEC-Encap to improve consistency of engraftment in patients.

Texas tries to go it alone in offering unproven stem cell therapies to patients

Texas Capitol. (Shutterstock)

One of the most hotly debated topics in stem cell research is whether patients should be able to have easier access to unproven therapies using their own stem cells, at their own risk, and their own cost. It’s a debate that is dividing patients and physicians, researchers and lawmakers.

In California, a bill working its way through the state legislature wants to have warning signs posted in clinics offering unproven stem cell therapies, letting patients know they are potentially putting themselves at risk.

Texas is taking a very different approach. A series of bills under consideration would make it easier for clinics to offer unproven treatments; make it easier for patients with chronic illnesses to use the “right to try” law to take part in early-stage clinical trials (in the past, it was only patients with a terminal illness who could do that); and allow these clinics to charge patients for these unproven stem cell therapies.

Not surprisingly, the Texas bills are attracting some widely divergent views. Many stem cell researchers and some patient advocates are opposed to them, saying they prey on the needs of vulnerable people, offering them treatments – often costing thousands, even tens of thousands of dollars – that have little or no chance of success.

In an article on STATnews, Sean Morrison, a stem cell researcher at the University of Texas Southwestern Medical Center, in Dallas, said the Texas bills would be bad for patients:

“When patients get desperate, they have a capacity to suspend disbelief. When offered the opportunity of a therapy they believe in, even without data and if the chances of benefit are low, they’ll fight for access to that therapy. The problem is there are fraudulent stem cell clinics that have sprung up to exploit that.”

Patients like Jennifer Ziegler disagree with that completely. Ziegler has multiple sclerosis and has undergone three separate stem cell treatments – two in the US and one in Panama – to help treat her condition. She is also a founding member of Patients For Stem Cells (PFSC):

Jennifer Ziegler

“PFSC does not believe our cells are drugs. We consider the lack of access to adult stem cells an overreach by the federal government into our medical freedoms. My cells are not mass produced, and they do not cross state lines. An adult stem cell treatment is a medical procedure, between me, a fully educated patient, and my fully competent doctor.”

The issue is further complicated because the US Food and Drug Administration (FDA) – which has regulatory authority over stem cell treatments – considers the kinds of therapies these clinics offer to be a technical violation of the law. So even if Texas passes these three bills, they could still be in violation of federal law. However, a recent study in Cell Stem Cell showed that there are some 570 clinics around the US offering these unproven therapies, and to date the FDA has shown little inclination to enforce the law and shut those clinics down.

UC Davis stem cell researcher – and CIRM grantee – Paul Knoepfler is one of the co-authors of the study detailing how many clinics there are in the US. On his blog – The Niche – he recently expressed grave concerns about the Texas bills:

Paul Knoepfler

“The Texas Legislature is considering three risky bills that would give free rein to stem cell clinics to profit big time off of patients by selling unproven and unapproved “stem cell treatments” that have little if any science behind them. I call one of these bills “Right to Profit” for clinics, which if these became law could get millions from vulnerable patients and potentially block patient rights.”

Ziegler counters that patients have the right to try and save their own lives, saying if the Texas bills pass: “chronically ill, no option patients in the US, will have the opportunity to seek treatment without having to leave the country.”

It’s a debate we are all too familiar with at CIRM. Every day we get emails and phone calls from people asking for help in finding a treatment, for them or a loved one, suffering from a life-threatening or life-altering disease or disorder. It’s incredibly difficult having to tell them there is nothing that would help them currently being tested in a clinical trial.

Inevitably they ask about treatments they have seen online, offered by clinics using the patient’s own stem cells to treat them. At that point, it is no longer an academic debate about proven or unproven therapies, it has become personal; one person asking another for help, to find something, anything, to save their life.

Barring a dramatic change of policy at the FDA. these clinics are not going to go away. Nor will the need of patients who have run out of options and are willing to try anything to ease their pain or delay death. We need to find another way, one that brings these clinics into the fold and makes the treatments they offer part of the clinical trial process.

There are no easy answers, no simple solutions. But standing on either side of the divide, saying those on the other side are either “heartless” or “foolish” serves no one, helps no one. We need to figure out another way.

Positively good news from Asterias for CIRM-funded stem cell clinical trial for spinal cord injury

AsteriasWhenever I give a talk on stem cells one of the questions I invariably get asked is “how do you know the cells are going where you want them to and doing what you want them to?”

The answer is pretty simple: you look. That’s what Asterias Biotherapeutics did in their clinical trial to treat people with spinal cord injuries. They used magnetic resonance imaging (MRI) scans to see what was happening at the injury site; and what they saw was very encouraging.

Asterias is transplanting what they call AST-OPC1 cells into patients who have suffered recent injuries that have left them paralyzed from the neck down.  AST-OPC1 are oligodendrocyte progenitor cells, which develop into cells that support and protect nerve cells in the central nervous system, the area damaged in spinal cord injury. It’s hoped the treatment will restore connections at the injury site, allowing patients to regain some movement and feeling.

Taking a closer look

Early results suggest the therapy is doing just that, and now follow-up studies, using MRIs, are adding weight to those findings.

The MRIs – taken six months after treatment – show that the five patients given a dose of 10 million AST-OPC1 cells had no evidence of lesion cavities in their spines. That’s important because often, after a spinal cord injury, the injury site expands and forms a cavity, caused by the death of nerve and support cells in the spine, that results in permanent loss of movement and function below the site, and additional neurological damage to the patient.

Another group of patients, treated in an earlier phase of the clinical trial, showed no signs of lesion cavities 12 months after their treatment.

Positively encouraging

In a news release, Dr. Edward Wirth, the Chief Medical Officer at Asterias, says this is very positive:

“These new follow-up results based on MRI scans are very encouraging, and strongly suggest that AST-OPC1 cells have engrafted in these patients post-implantation and have the potential to prevent lesion cavity formation, possibly reducing long-term spinal cord tissue deterioration after spinal cord injury.”

Because the safety data is also encouraging Asterias is now doubling the dose of cells that will be transplanted into patients to 20 million, in a separate arm of the trial. They are hopeful this dose will be even more effective in helping restore movement and function in patients.

We can’t wait to see what they find.

Stem cell stories that caught our eye: update on Capricor’s heart attack trial; lithium on the brain; and how stem cells do math

Capricor ALLSTARToday our partners Capricor Therapeutics announced that its stem cell therapy for patients who have experienced a large heart attack is unlikely to meet one of its key goals, namely reducing the scar size in the heart 12 months after treatment.

The news came after analyzing results from patients at the halfway point of the trial, six months after their treatment in the Phase 2 ALLSTAR clinical trial which CIRM was funding. They found that there was no significant difference in the reduction in scarring on the heart for patients treated with donor heart-derived stem cells, compared to patients given a placebo.

Obviously this is disappointing news for everyone involved, but we know that not all clinical trials are going to be successful. CIRM supported this research because it clearly addressed an unmet medical need and because an earlier Phase 1 study had showed promise in helping prevent decline in heart function after a heart attack.

Yet even with this failure to repeat that promise in this trial,  we learned valuable lessons.

In a news release, Dr. Tim Henry, Director of the Division of Interventional Technologies in the Heart Institute at Cedars-Sinai Medical Center and a Co-Principal Investigator on the trial said:

“We are encouraged to see reductions in left ventricular volume measures in the CAP-1002 treated patients, an important indicator of reverse remodeling of the heart. These findings support the biological activity of CAP-1002.”

Capricor still has a clinical trial using CAP-1002 to treat boys and young men developing heart failure due to Duchenne Muscular Dystrophy (DMD).

Lithium gives up its mood stabilizing secrets

As far back as the late 1800s, doctors have recognized that lithium can help people with mood disorders. For decades, this inexpensive drug has been an effective first line of treatment for bipolar disorder, a condition that causes extreme mood swings. And yet, scientists have never had a good handle on how it works. That is, until this week.

evan snyder

Evan Snyder

Reporting in the Proceedings of the National Academy of Sciences (PNAS), a research team at Sanford Burnham Prebys Medical Discovery Institute have identified the molecular basis of the lithium’s benefit to bipolar patients.  Team lead Dr. Evan Snyder explained in a press release why his group’s discovery is so important for patients:

“Lithium has been used to treat bipolar disorder for generations, but up until now our lack of knowledge about why the therapy does or does not work for a particular patient led to unnecessary dosing and delayed finding an effective treatment. Further, its side effects are intolerable for many patients, limiting its use and creating an urgent need for more targeted drugs with minimal risks.”

The study, funded in part by CIRM, attempted to understand lithium’s beneficial effects by comparing cells from patient who respond to those who don’t (only about a third of patients are responders). Induced pluripotent stem cells (iPSCs) were generated from both groups of patients and then the cells were specialized into nerve cells that play a role in bipolar disorder. The team took an unbiased approach by looking for differences in proteins between the two sets of cells.

The team zeroed in on a protein called CRMP2 that was much less functional in the cells from the lithium-responsive patients. When lithium was added to these cells the disruption in CRMP2’s activity was fixed. Now that the team has identified the molecular location of lithium’s effects, they can now search for new drugs that do the same thing more effectively and with fewer side effects.

The stem cell: a biological calculator?

math

Can stem cells do math?

Stem cells are pretty amazing critters but can they do math? The answer appears to be yes according to a fascinating study published this week in PNAS Proceedings of the National Academy of Sciences.

Stem cells, like all cells, process information from the outside through different receptors that stick out from the cells’ outer membranes like a satellite TV dish. Protein growth factors bind those receptors which trigger a domino effect of protein activity inside the cell, called cell signaling, that transfers the initial receptor signal from one protein to another. Ultimately that cascade leads to the accumulation of specific proteins in the nucleus where they either turn on or off specific genes.

Intuition would tell you that the amount of gene activity in response to the cell signaling should correspond to the amount of protein that gets into the nucleus. And that’s been the prevailing view of scientists. But the current study by a Caltech research team debunks this idea. Using real-time video microscopy filming, the team captured cell signaling in individual cells; in this case they used an immature muscle cell called a myoblast.

goentoro20170508

Behavior of cells over time after they have received a Tgf-beta signal. The brightness of the nuclei (circled in red) indicates how much Smad protein is present. This brightness varies from cell to cell, but the ratio of brightness after the signal to before the signal is about the same. Image: Goentoro lab, CalTech.

To their surprise the same amount of growth factor given to different myoblasts cells led to the accumulation of very different amounts of a protein called Smad3 in the cells’ nuclei, as much as a 40-fold difference across the cells. But after some number crunching, they discovered that dividing the amount of Smad3 after growth factor stimulation by the Smad3 amount before growth stimulation was similar in all the cells.

As team lead Dr. Lea Goentoro mentions in a press release, this result has some very important implications for studying human disease:

“Prior to this work, researchers trying to characterize the properties of a tumor might take a slice from it and measure the total amount of Smad in cells. Our results show that to understand these cells one must instead measure the change in Smad over time.”

jCyte gets FDA go-ahead for Fast Track review process of Retinitis Pigmentosa stem cell therapy

21 century cures

When the US Congress approved, and President Obama signed into law, the 21st Century Cures Act last year there was guarded optimism that this would help create a more efficient and streamlined, but no less safe, approval process for the most promising stem cell therapies.

Even so many people took a wait and see approach, wanting a sign that the Food and Drug Administration (FDA) would follow the recommendations of the Act rather than just pay lip service to it.

This week we saw encouraging signs that the FDA is serious when it granted Regenerative Medicine Advanced Therapy (RMAT) status to the CIRM-funded jCyte clinical trial for a rare form of blindness. This is a big deal because RMAT seeks to accelerate approval for stem cell therapies that demonstrate they can help patients with unmet medical needs.

klassen

jCyte co-founder Dr. Henry Klassen

jCyte’s work is targeting retinitis pigmentosa (RP), a genetic disease that slowly destroys the cells in the retina, the part of the eye that converts light into electrical signals which the brain then interprets as vision. At first people with RP lose their night and peripheral vision, then the cells that help us see faces and distinguish colors are damaged. RP usually strikes people in their teens and, by the time they are 40, many people are legally blind.

jCyte’s jCell therapy uses what are called retinal progenitor cells, injected into the eye, which then release protective factors to help repair and rescue diseased retinal cells. The hope is this will stop the disease’s progression and even restore some vision to people with RP.

Dr. Henry Klassen, jCyte’s co-founder and a professor at UC Irvine, was understandably delighted by the designation. In a news release, he said:

“This is uplifting news for patients with RP. At this point, there are no therapies that can help them avoid blindness. We look forward to working with the FDA to speed up the clinical development of jCell.”

FDA

On the FDA’s blog – yes they do have one – it says researchers:

“May obtain the RMAT designation for their drug product if the drug is intended to treat serious or life-threatening diseases or conditions and if there is preliminary clinical evidence indicating that the drug has the potential to address unmet medical needs for that disease or condition. Sponsors of RMAT-designated products are eligible for increased and earlier interactions with the FDA, similar to those interactions available to sponsors of breakthrough-designated therapies. In addition, they may be eligible for priority review and accelerated approval.”

Paul Bresge

jCyte CEO Paul Bresge

jCyte is one of the first to get this designation, a clear testimony to the quality of the work done by Dr. Klassen and his team. jCyte CEO Paul Bresge says it may help speed up their ability to get this treatment to patients.

 

“We are gratified by the FDA’s interest in the therapeutic potential of jCell and greatly appreciate their decision to provide extra support. We are seeing a lot of momentum with this therapy. Because it is well-tolerated and easy to administer, progress has been rapid. I feel a growing sense of excitement among patients and clinicians. We look forward to getting this critical therapy over the finish line as quickly as possible.”

Regular readers of this blog will already be familiar with the story of Rosie Barrero, one of the first group of people with RP who got the jCell therapy. Rosie says it has helped restore some vision to the point where she is now able to read notes she wrote ten years ago, distinguish colors and, best of all, see the faces of her children.

RMAT is no guarantee the therapy will be successful. But if the treatment continues to show promise, and is safe, it could mean faster access to a potentially life-changing therapy, one that could ultimately rescue many people from a lifetime of living in the dark.

 

 

Capricor reports positive results on CIRM-funded stem cell trial for Duchenne Muscular Dystrophy

Capricor Therapeutics, a Los Angeles-based company, published an update about its CIRM-funded clinical trial for patients with Duchenne muscular dystrophy (DMD), a devastating degenerative muscle disease that significantly reduces life expectancy.

The company reported positive results from their Phase I/II HOPE trial that’s testing the safety of their cardiosphere stem cell-based therapy called CAP-1002. The trial had 25 patients, 13 of which received the cells and 12 who received normal treatment. No serious adverse effects were observed suggesting that the treatment is “generally safe” thus far.

Patients given a single dose of CAP-1002 showed improvements “in certain measures of cardiac and upper limb function” after six months. They also experienced a reduction of cardiac scar tissue and a thickening of the heart’s left ventricle wall, which is typically thinned in DMD patients.

Capricor shared more details on their six-month trial results in a webcast this week, and you can read about them in this blog by Rare Disease Report.

Leading cause of death for DMD patients

DMD is a severe form of muscular dystrophy caused by a recessive genetic mutation in the dystrophin gene on the X chromosome. Consequently, men are much more likely to get the disease than women. Symptoms of DMD start with muscle weakness as early as four years of age, which then leads to deterioration of both skeletal and heart muscle. Heart disease is the leading cause of death in DMD patients – a fact that Capricor hopes to change with its clinical trial.

Capricor’s CEO, Dr. Linda Marbán, commented in a press release that the trial’s results support the findings of other researchers.

“These initial positive clinical results build upon a large body of preclinical data which illustrate CAP-1002’s potential to broadly improve the condition of those afflicted by DMD, as they show that cardiosphere-derived cells exert salutary effects on cardiac and skeletal muscle.”

Also quoted in the press release was Pat Furlong, DMD patient advocate and CEO of Parent Project Muscular Dystrophy.

Pat Furlong

“I’m excited to see these data, especially given the advanced nature of the patients in the HOPE trial. It is also gratifying to see the field of cell therapy making progress after more than two decades in development. It is our hope that CAP-1002 will have broad potential to improve the lives of patients with Duchenne muscular dystrophy.”

Pat recently spoke at the 2nd Annual CIRM Alpha Stem Cell Clinics meeting about her heartbreaking experience of losing two sons to DMD, both at a very young age. You can watch her speech below. We also featured her story and her inspiring efforts to promote DMD awareness in our 2016 Annual Report.

What to HOPE for next?

The trial is a year-long study and Capricor will report 12-month results at the end of 2017. In the meantime, Dr. Marbán and her team have plans to talk with the US Food and Drug Administration (FDA) about the regulatory options for getting CAP-1002 approved and on the market for DMD patients. She explained,

Linda Marban, CEO of Capricor Therapeutics

“We have submitted an FDA meeting request to discuss these results as well as next steps in our development of CAP-1002 for Duchenne muscular dystrophy, which includes our plan to begin a clinical trial of intravenously-administered CAP-1002 in the latter half of this year. We believe the interim HOPE results may enable us to pursue one of the FDA’s Expedited Programs for Serious Conditions, and we will apply for either or both of the Breakthrough Therapy and Regenerative Medicine Advanced Therapy (RMAT) designations for CAP-1002.”


Related Links:

jCyte starts second phase of stem cell clinical trial targeting vision loss

retinitis pigmentosas_1

How retinitis pigmentosa destroys vision

Studies show that Americans fear losing their vision more than any other sense, such as hearing or speech, and almost as much as they fear cancer, Alzheimer’s and HIV/AIDS. That’s not too surprising. Our eyes are our connection to the world around us. Sever that connection, and the world is a very different place.

For people with retinitis pigmentosa (RP), the leading cause of inherited blindness in the world, that connection is slowly destroyed over many years. The disease eats away at the cells in the eye that sense light, so the world of people with RP steadily becomes darker and darker, until the light goes out completely. It often strikes people in their teens, and many are blind by the time they are 40.

There are no treatments. No cures. At least not yet. But now there is a glimmer of hope as a new clinical trial using stem cells – and funded by CIRM – gets underway.

klassenWe have talked about this project before. It’s run by UC Irvine’s Dr. Henry Klassen and his team at jCyte. In the first phase of their clinical trial they tested their treatment on a small group of patients with RP, to try and ensure that their approach was safe. It was. But it was a lot more than that. For people like Rosie Barrero, the treatment seems to have helped restore some of their vision. You can hear Rosie talk about that in our recent video.

Now the same treatment that helped Rosie, is going to be tested in a much larger group of people, as jCyte starts recruiting 70 patients for this new study.

In a news release announcing the start of the Phase 2 trial, Henry Klassen said this was an exciting moment:

“We are encouraged by the therapy’s excellent safety track record in early trials and hope to build on those results. Right now, there are no effective treatments for retinitis pigmentosa. People must find ways to adapt to their vision loss. With CIRM’s support, we hope to change that.”

The treatment involves using retinal progenitor cells, the kind destroyed by the disease. These are injected into the back of the eye where they release factors which the researchers hope will help rescue some of the diseased cells and regenerate some replacement ones.

Paul Bresge, CEO of jCyte, says one of the lovely things about this approach, is its simplicity:

“Because no surgery is required, the therapy can be easily administered. The entire procedure takes minutes.”

Not everyone will get the retinal progenitor cells, at least not to begin with. One group of patients will get an injection of the cells into their worst-sighted eye. The other group will get a sham injection with no cells. This will allow researchers to compare the two groups and determine if any improvements in vision are due to the treatment or a placebo effect.

The good news is that after one year of follow-up, the group that got the sham injection will also be able to get an injection of the real cells, so that if the therapy is effective they too may be able to benefit from it.

Rosie BarreroWhen we talked to Rosie Barrero about the impact the treatment had on her, she said it was like watching the world slowly come into focus after years of not being able to see anything.

“My dream was to see my kids. I always saw them with my heart, but now I can see them with my eyes. Seeing their faces, it’s truly a miracle.”

We are hoping this Phase 2 clinical trial gives others a chance to experience similar miracles.


Related Articles: