CIRM-supported study shows promise in fighting acute myeloid leukemia

Chemotherapy

Chemotherapy

For years chemotherapy has been a mainstay in the war against cancer. While it can be very effective it can also come with some nasty side effects. Since chemo works by killing rapidly growing cells, it not only hits the cancer cells, but can also hit other rapidly growing cells too, including those in our hair roots, which is why many people undergoing chemo lose their hair.

So, the key to a truly effective anti-cancer therapy is one that does as much damage as possible to the cancer cells, and as little as possible to all the healthy cells in the body. A therapy being developed by Cellerant Therapeutics seems to have found that sweet spot in a new therapy targeting acute myeloid leukemia (AML).

AML starts in the bone marrow and quickly moves into the blood, where it can spread to other parts of the body. It is the second most common form of leukemia and claims around 10,000 lives in the US every year. Chemotherapy is the main weapon used against AML but it can also cause nausea, hair loss and other complications and in most cases has limited effectiveness because, over time, the leukemia cells get used to it.

Cellerant 2013In a study published in the journal Blood Advances, Cellerant researchers explain the limitations of existing treatments.

“The current standard of care for acute myeloid leukemia (AML) is largely ineffective with very high relapse rates and low survival rates, mostly due to the inability to eliminate a rare population of leukemic stem cells (LSCs) that initiate tumor growth and are resistant to standard chemotherapy.”

Cellerant has developed a therapy called CLT030 which targets CLL1, a marker found on the surface of leukemia cells but not on normal blood stem cells. Preclinical studies in mice show CLT030 is able to zero in on this surface marker and attack the leukemia but do little damage to blood or other surrounding cells.

In a news release, Ram Mandalam, President and CEO of Cellerant, said this is encouraging news:

“AML remains a significant unmet medical need, and our therapy, CLT030, that can target leukemic stem cells precisely while minimally affecting normal hematopoietic stem cells could improve outcomes while avoiding much of the toxicities associated with conventional chemotherapy and other targeted therapeutics.”

Mandalam says they are now doing the late-stage preclinical testing to be able to apply to the Food and Drug Administration for permission to start a clinical trial. CIRM is funding this stage of the research.

 

ALS is in the spotlight in CIRM’s “Ask the Expert About ALS & Stem Cells” Facebook Live event

The Catch

San Francisco 49ers Dwight Clark makes his iconic “Catch” against the Dallas Cowboys

American Football great Dwight Clark was renowned for having the safest hands in the game when he played for the San Francisco 49ers. But in September 2015 he was diagnosed with ALS (also known as Lou Gehrig’s disease) after not being able to use those hands to open a package of sugar. Less than three years later he was dead.

Amyotrophic lateral sclerosis – ALS’ formal title – is a nasty disease that relentlessly destroys the nerve cells in the brain and spinal cord that control movement and breathing. It is always fatal. There are only two drugs approved for ALS and they don’t work for most people. There is no cure.

AskExpertsALSJUL2018

That’s why CIRM chose ALS to be the subject of its latest Facebook Live Ask the Expert event (click here for the event’s FaceBook Live page). There’s a real need for new approaches to help people battling this deadly condition. And CIRM is funding two clinical trials that hope to do just that.

This Ask the Expert event will feature Clive Svendsen, PhD, Director of Cedars-Sinai’s Board of Governors Regenerative Medicine Institute, and Robert Baloh, MD, PhD, Director of Neuromuscular Medicine at Cedars-Sinai. They’ll be joined by Ralph Kern, MD, Chief Operating Officer and Chief Medical Officer at  BrainStorm Cell Therapeutics. The panel will be completed by CIRM Senior Science Officer Lila Collins.

The four will discuss the clinical trials that CIRM is funding with Cedars-Sinai and BrainStorm, and look at other promising research taking place.

Ask the Experts About ALS and Stem Cells is an opportunity for everyone in the ALS community to hear about the very latest in stem cell research targeting this devastating disease,” Svendsen said. “There has recently been some progress in the search for new treatments, which has energized all of us looking for effective therapies—and one day, a cure.”

Because Facebook Live is an interactive event people will be able to post comments and ask questions of the experts.

Dr. Baloh says we are now at a crucial time in the search for new approaches to help people with ALS.

“Many researchers believe that stem cells and gene therapies hold great promise for finding effective treatments, and more trials are needed to explore that potential.”

Our Facebook Live event, “Ask the Experts About ALS and Stem Cells” is tomorrow – Tuesday, July 31st – from noon till 1pm PST. You can join us by logging on to Facebook and going to the FaceBook Live broadcast link at: https://bit.ly/2uYQ8wM

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events.

We want to hear from you, so you will be able to post questions in real-time for the experts to answer or, you can email them directly to us beforehand at info@cirm.ca.gov

If you miss the event, not to worry. A recording of the session will be available in our FaceBook videos page shortly after the broadcast ends.

We look forward to seeing you there.

 

Early CIRM support helps stem cell pioneer develop promising new therapy for cancer

Irv Weissman

Irv Weissman, Ph.D., Photo: courtesy Stanford University

When you get praise from someone who has been elected to the National Academy of Sciences and has been named California Scientist of the Year you know you must be doing something right.

That’s how we felt the other day when Irv Weissman, Director of the Stanford Institute of Stem Cell Biology and Regenerative Medicine, issued a statement about how important the support of CIRM was in advancing his research.

The context was the recent initial public offering (IPO) of Forty Seven Inc.. a company co-founded by Dr. Weissman. That IPO followed news that two Phase 2 clinical trials being run by Forty Seven Inc. were demonstrating promising results against hard-to-treat cancers.

Dr. Weissman says the therapies used a combination of two monoclonal antibodies, 5F9 from Forty Seven Inc. and Rituximab (an already FDA-approved treatment for cancer and rheumatoid arthritis) which:

“Led to about a 50% overall remission rate when used on patients who had relapsed, multi-site disease refractory to rituximab-plus-chemotherapy. Most of those patients have shown a complete remission, although it’s too early to tell if this is complete for life.”

5F9 attacks a molecule called CD47 that appears on the surface of cancer cells. Dr. Weissman calls CD47 a “don’t eat me signal” that protects the cancer against the body’s own immune system. By blocking the action of CD47, 5F9 strips away that “don’t eat me signal” leaving the cancer vulnerable to the patient’s immune system. We have blogged about this work here and here.

The news from these trials is encouraging. But what was gratifying about Dr. Weissman’s statement is his generosity in sharing credit for the work with CIRM.

Here is what he wrote:

“What is unusual about Forty Seven is that not only the discovery, but its entire preclinical development and testing of toxicity, etc. as well as filing two Investigational New Drug [IND] applications to the Food and Drug Administration (FDA) in the US and to the MHRA in the UK, as well as much of the Phase 1 trials were carried out by a Stanford team led by two of the discoverers, Ravi Majeti and Irving Weissman at Stanford, and not at a company.

The major support came from the California Institute of Regenerative Medicine [CIRM], funded by Proposition 71, as well as the Ludwig Cancer Research Foundation at the Ludwig Center for Cancer Stem Cell Research at Stanford. CIRM will share in downstream royalties coming to Stanford as part of the agreement for funding this development.

This part of the state initiative, Proposition 71, is highly innovative and allows the discoverers of a field to guide its early phases rather than licensing it to a biotech or a pharmaceutical company before the value and safety of the discovery are sufficiently mature to be known. Most therapies at early-stage biotechs are lost in what is called the ‘valley of death’, wherein funding is very difficult to raise; many times the failure can be attributed to losing the expertise of the discoverers of the field.”

Dr. Weissman also had praise for CIRM’s funding model which requires companies that produce successful, profitable therapies – thanks to CIRM support – to return a portion of those profits to California. Most other funding agencies don’t have those requirements.

“US federal funds, from agencies such as the National Institutes of Health (NIH) similarly support discovery but cannot fund more than a few projects to, and through, early phase clinical trials. And, under the Bayh-Dole Act, the universities keep all of the equity and royalties derived from licensing discoveries. In that model no money flows back to the agency (or the public), and nearly a decade of level or less than level funding (at the national level) has severely reduced academic research. So this experiment of funding (the NIH or the CIRM model) is now entering into the phase that the public will find out which model is best for bringing new discoveries and new companies to the US and its research and clinical trials community.”

We have been funding Dr. Weissman’s work since 2006. In fact, he was one of the first recipients of CIRM funding.  It’s starting to look like a very good investment indeed.

 

CIRM-funded medical research and development company does $150M deal to improve care for dialysis patients

Fresenius & Humacyte

Nearly half a million Americans with kidney disease are on dialysis, so it’s not surprising the CIRM Board had no hesitation, back in July 2016, in funding a program to make it easier and safer to get that life-saving therapy.

That’s why it’s gratifying to now hear that Humacyte, the company behind this new dialysis device, has just signed a $150 million deal with Fresenius Medical Care, to make their product more widely available.

The CIRM Board gave Humacyte $10 million for a Phase 3 clinical trial to test a bioengineered vein needed by people undergoing hemodialysis, the most common form of dialysis.

Humacyte HAV

The vein – called a human acellular vessel or HAV – is implanted in the arm and used to carry the patient’s blood to and from an artificial kidney that removes waste from the blood. Current synthetic versions of this device have many problems, including clotting, infections and rejection. In tests, Humacyte’s HAV has fewer complications. In addition, over time the patient’s own stem cells start to populate the bioengineered vein, in effect making it part of the patient’s own body.

Fresenius Medical Care is investing $150 million in Humacyte, with a plan to use the device in its dialysis clinics worldwide. As an indication of how highly they value the device, the deal grants Fresenius a 19% ownership stake in the company.

In an interview with FierceBiotech, Jeff Lawson, Humacyte’s Chief Medical Officer, said if all goes well the company plans to file for Food and Drug Administration (FDA) approval in 2019 and hopes it will be widely available in 2020.

In addition to being used for kidney disease the device is also being tested for peripheral artery disease, vascular trauma and other cardiovascular indications. Lawson says testing the device first in kidney disease will provide a solid proving ground for it.

“It’s a very safe place to develop new vascular technologies under clinical study. From a regulatory safety standpoint, this is the first area we could enter safely and work with the FDA to get approval for a complete new technology.”

This is another example of what we call CIRM’s “value proposition”; the fact that we don’t just provide funding, we also provide support on many other levels and that has a whole range of benefits. When our Grants Working Group – the independent panel of experts who review our scientific applications – and the CIRM Board approves a project it’s like giving it the CIRM Good Housekeeping Seal of Approval. That doesn’t just help that particular project, it can help attract further investment in the company behind it, enabling it to expand operations and create jobs and ultimately, we hope, help advance the field as a whole.

Those benefits are substantial. To date we have been able to use our funding to leverage around $2 billion in additional dollars in terms of outside companies investing in companies like Humacyte, or researchers using data from research we funded to get additional funding from agencies like the National Institutes of Health.

So, when a company like Humacyte is the object of such a lucrative agreement it’s not just a compliment to the quality of the work they do, it’s also a reflection of our ability to pick great projects.

Can stem cells help people recovering from a stroke? You asked, and the experts answered

FacebookLive_AskExperts_Stroke_IMG_1656

We recently held our first ever Facebook Live event. It was focused on the use of stem cells and recovery from a stroke and featured three great guests: Dr. Gary Steinberg, chief of Neurosurgery at Stanford, Sonia Coontz, a patient of Dr. Steinberg’s, and CIRM’s own Science Officer Dr. Lila Collins.

We had an amazing response from people during the event and in the days since then with some 6,750 people watching the video and almost 1,000 people reacting by posting a comment or sharing it with friends. It was one of the most successful things we have ever done on Facebook so it’s not surprising that we plan on doing many more Facebook Live ‘Ask the Expert’ events in the future. We will post more details of that as we finalize them.

We tried to cover as many topics as possible during the hour but there were simply too many questions for us to get to all of them. So here is a recap of the key issues we covered, and a few we didn’t have a chance to answer.

Let’s start with Dr. Steinberg’s explanation of the research that led to his current clinical trial:

Dr. Steinberg: “I got interested in this about 18 years ago when I took human cells and transplanted them into rodent models of stroke. What we found was that when we transplanted those cells into the stroke region, the core of the stroke, they didn’t survive very well but when we moved them a few millimeters away from the stroke they not only survived but they migrated to the stroke.

The reason they migrate is that the stem cells have receptors on them that interact with chemicals given off by the stroke environment and that’s why they migrate to the stroke site. And when they get to the site they can turn into different kinds of cells. Very importantly we found these mice and rats that had behavioral problems – walking, moving – as a result of the stroke, we found we could improve their neurological outcomes with the stem cells.

With the help of CIRM, which has been very generous, we were fortunate enough to receive about $24 million in funding over the last 8 years, from 2010, to move this therapy into the clinic to understand the basic mechanisms of the recovery and to start clinical trials

One of the surprising things was that our initial notion was that the cells we transplanted into the brains would initially turn into the cells in the brain affected by the stroke and reconstitute those circuits. We were shocked to find that that was not what was happening, that only a few of the transplanted cells turned into neurons. The way they were recovering function was by secreting very powerful growth factors and molecules and proteins that enhanced native recovery or the ability of the normal brain to recover itself. Some of these processes included outgrowth of neurons, new connections, new synapses, not from the stem cells but from the native cells already in the brain.

This is not cell replacement but enhancing native recovery and, in a simple sense, what the cells are doing, we believe, is to change the adult brain, which has a hard time recovering from a stroke, into an infant brain and infants recover very well after a stroke.”

All this work was focused on ischemic strokes, where a blockage cuts off blood flow to the brain. But people like Cheryl Ward wanted to know: “Will this work for hemorrhagic stroke?” That’s where a blood vessel in the brain leaks or ruptures.

Dr. Steinberg: “I suspect we will be generalizing this therapy into hemorrhagic patients very, very soon and there’s no reason why it shouldn’t work there. The reason we didn’t start there is that 85% of strokes are ischemic and only 15% are hemorrhagic so it’s a smaller population but a very, very important population because when patients have a hemorrhage from a stroke they are often more seriously disabled than from ischemic.”

Dr. Lila Collins: “I would like to highlight one trial for hemorrhagic stroke with the Mayo Clinic and that’s using mesenchymal stem cells (normally found in bone marrow or blood). It’s an early stage, Phase 1 safety study in patients with recent cerebral hemorrhage.  They are looking at improvements in neurological function and patients have to be treated within 72 hours after the stroke.”

Dr. Steinberg explained that because it’s more difficult to enroll patients within 72 hours of a stroke that we may end up offering a combination of therapies spread out over months or even years.

Dr. Steinberg: “It may be that and we may figure this out in the next 5 to 10 years, that you might want to treat patients acutely (right away) with an intravenous therapy in the first 72 hours and then you might want to come in again sub-acutely within a few months, injecting the cells into the brain near the stroke, and then maybe come in chronically a few years later if there are still problems and place the cells directly in the brain. So, lots of ways to think about how to use this in the future.”

James Russell suffered a stroke in 2014 and wrote:

“My left side was affected. My vision was also impacted. Are any stroke patients being given stem cells seeing possible improvement in visual neglect?”

Dr. Steinberg: “We don’t know the answer to that yet, it’s quite possible. It’s true these vision circuits are not dead and could be resurrected. We have not targeted visual pathways in our work, we have targeted motor functions, but I would also be optimistic that we could target patients who have vision problems from stroke. It’s a very important area.

A number of people wondered if stem cells can help people recovering from a stroke can they also help people with other neurological conditions.

Hanifa Gaphoor asked “What about Parkinson’s disease?” and Ginnievive Patch wondered “Do you feel hopeful for neurological illnesses like Huntington’s disease and ALS? Dr. Steinberg was cautiously optimistic.

Dr. Steinberg: “We’ve extended this kind of treatment not just for ischemic stroke but into traumatic brain injury (TBI) and we just completed a trial for patients with chronic TBI or who have suffered a trauma to the brain. Many other indications may be possible. In fact, now that we know these circuits are not dead or irreversibly injured, we believe we could even extend this to neurodegenerative diseases like ALS, Parkinson’s, maybe even to Alzheimer’s disease in the future. So, lots of hope but we don’t want to oversell this, and we want to make sure this is done in a rigorous fashion.”

Several people had questions about using their own adipose, or fat stem cells, in therapies being offered at clinics around the US and in other countries. Cheri Hicks asked: “I’m curious if adipose stem cell being used at clinics at various places is helpful or beneficial?”

Dr. Steinberg: “I get emails or calls from patients every week saying should I go to Russia, India or Mexico and get stem cell transplants which are done not as part of a rigorous trial and I discourage patients from getting stem cells that are not being given in a controlled fashion. For one thing, patients have been getting hurt by these treatments in these clinics; they have developed tumors and infections and other problems. In many cases we don’t even know what the cells are, there’s not published information and the patients pay cash for this, of course.”

At CIRM we also worry about people going to clinics, in the US and in other countries, where they are getting therapies that have not been approved by the US Food and Drug Administration (FDA) or other appropriate regulatory bodies. That’s why we have created this page on our website to help people who want a stem cell therapy but don’t know what to look for in a clinical trial or what questions to ask to make sure it’s a legitimate trial, one that’s been given the go-ahead by the FDA.

Bret Ryan asked: “What becomes of the implanted cells?”

Dr. Steinberg: We found after transplanting the cells, one week after the transplant, we see a new abnormality in the premotor cortex, the area of the brain that controls motor function. We saw a new abnormality there or a new signal that disappears after a month and never comes back. But the size of that temporary abnormality after one week correlates very closely with the degree of recovery after six months, one year and two years.

One of the interesting things is that it doesn’t seem to be necessary for the cells to survive long term to have beneficial effects. The cells we used in the SanBio trial don’t survive more than a month and yet they seem to aid recovery function in our pilot studies which is sustained for years.”

And of course, many people, such as Karen Smart, wanted to know how they could get the therapy. Right now, the clinical trial is fully enrolled but Stanford is putting together a waiting list for future trials. If you are interested and would like more information, please email: stemcellstudy@stanford.edu.

Sonia Coontz, the patient who was also a key part of the Facebook Live event, has an amazing story to tell. She was left devastated, physically and emotionally, after having a stroke. But then she heard about Dr. Steinberg’s clinical trial and it changed her life. Here’s her story.

We were thrilled to receive all of your comments and questions during our first Facebook Live event. It’s this kind of dialogue between scientists, patients and the public that will be critical for the continued support of our mission to accelerate stem cell treatments to patients with unmet medical needs.

Due to the response, we plan to regularly schedule these “Ask the Expert” events. What disease area would you like us to focus on next time? Leave us a comment or email info@cirm.ca.gov

 

CIRM funded study results in the first ever in utero stem cell transplant to treat alpha thalassemia

Mackenzie

Dr. Tippi MacKenzie (left) of UCSF Benioff Children’s Hospital San Francisco, visits with newborn Elianna and parents Nichelle Obar and Chris Constantino. Photo by Noah Berger

Imagine being able to cure a genetic disorder before a baby is even born. Thanks to a CIRM funded study, what would have been a mere dream a couple of years ago has become a reality.

Drs. Tippi MacKenzie and Juan Gonzalez Velez of the University of California San Francisco (UCSF) have successfully treated alpha thalassemia in Elianna Constantino, using stem cells from her mother’s bone marrow. Alpha thalassemia is part of a group of blood disorders that impairs the body’s ability to produce hemoglobin, the molecule that is responsible for transporting oxygen throughout the body on red blood cells. Present in approximately 5% of the population, alpha thalassemia is particularly prevalent among individuals of Asian heritage. Treatment options for this disease are severely limited, generally requiring multiple rounds of blood transfusions or a bone marrow transplant which requires immunosuppressive therapy. Normally, fetuses die in the womb or the pregnancy is aborted because of the poor prognosis.

The revolutionary treatment pioneered at UCSF involved isolating blood stem cells (cells that are capable of turning into all blood cell types) from the mother’s bone marrow and injecting these cells into Elianna’s bloodstream via the umbilical vein. The doctors were able to observe the development of healthy blood cells in the baby’s blood stream, allowing for efficient oxygen transport throughout the baby’s body. Because the cells were transplanted at the fetal stage, a time when the immune system is not fully developed, there was low risk of rejection and the transplant occurred without aggressive immunosuppressive therapy.

The baby was born healthy earlier this year and has been allowed to return home. While it is still too early to tell how effective this treatment will be in the long term, it is very encouraging that both the mother and baby have endured the treatment thus far.

In a press release, Dr. MacKenzie states:

“Her healthy birth suggests that fetal therapy is a viable option to offer to families with this diagnosis.”

The in utero stem cell transplant was performed as part of a clinical trial conducted at the UCSF Benioff Children’s Hospitals in San Francisco and Oakland. The trial is currently enrolling 10 pregnant women to test the safety and effectiveness of this treatment over a wider population.

If successful, this type of treatment is particularly exciting because it could be expanded to other types of hereditary blood disorders such as sickle cell anemia and hemophilia.

 

 

 

Can stem cells help people recover from a stroke? Join us for a Facebook Live event this Thursday, May 31 for the answers

AskExpertsMAY2018[1]

Stroke is one of the leading causes of death in the US and the leading cause of serious, long-term disability. But could stem cell therapies change that and help people who’ve had a brain attack?  Could stem cells help repair the damage caused by a stroke and restore a person’s ability to speak normally, to be able to walk without a limp or regain strength in their hands and arms?

To find out the answers to these and other questions joins us for “Ask the Expert”, a special Facebook Live event this Thursday, May 31, from noon till 1pm PDT

 The event will feature Dr. Gary Steinberg, the Chair of Neurosurgery at Stanford University. Dr. Steinberg is currently running a CIRM-funded clinical trial targeting stroke.

We will also be joined by CIRM Senior Science Officer Lila Collins, PhD who can talk about the broad range of other projects using stem cells to help people recover from a stroke.

We are also delighted to welcome Sonia Coontz, who suffered a devastating stroke several years ago and made a remarkable recovery after getting a stem cell therapy.

To join us for the event, all you have to do is go to our Facebook page on Thursday at noon (PDT) and you should see a video playing, which you can watch on mobile or desktop. Click the video to enter viewing mode.

Also, make sure to “like” our page before the event to receive a notification that we’ve gone live.

And we want to hear from you, so you will be able to post questions for the experts to answer or, you can email them directly to us at info@cirm.ca.gov

We look forward to seeing you there.

 

Boosting immune system cells could offer a new approach to treating Lou Gehrig’s disease

ALS

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is one of those conditions that a lot of people know about but don’t know a lot about. If they are fortunate it will stay that way. ALS is a nasty neurodegenerative disease that attacks motor neurons, the cells in the brain and spinal cord that control muscle movement. As the disease progresses the individual loses their ability to walk, talk, eat, move and eventually to breathe. There are no effective treatments and no cure. But now research out of Texas is offering at least a glimmer of hope.

Dr. Stanley Appel, a neurologist at the Houston Methodist Neurological Institute noticed that many of the ALS patients he was treating had low levels of regulatory T cells, also known as Tregs. Tregs play a key role in our immune system, suppressing the action of molecules that cause inflammation and also helping prevent autoimmune disease.

In an article on Health News Digest Appel said:

Stanley Appel

Dr. Stanley Appel: Photo courtesy Australasian MND Symposium

“We found that many of our ALS patients not only had low levels of Tregs, but also that their Tregs were not functioning properly. We believed that improving the number and function of Tregs in these patients would affect how their disease progressed.”

And so that’s what he and his team did. They worked with M.D. Anderson Cancer Center’s Stem Cell Transplantation and Cellular Therapy program on a first-in-human clinical trial. They took blood from three people with different stages of ALS, separated the red and white blood cells, and returned the red blood cells to the patient. They then separated the Tregs from the white blood cells, increased their number in the lab, and then reinfused them into the patients, in a series of eight injections over the course of several months.

Their study, which appears in the journal Neurology,® Neuroimmunology & Neuroinflammation, found that the therapy appears to be safe without any serious side effects.

Jason Thonhoff, the lead author of the study, says the therapy also appeared to help slow the progression of the disease a little.

“A person has approximately 150 million Tregs circulating in their blood at any given time. Each dose of Tregs given to the patients in this study resulted in about a 30 to 40 percent increase over normal levels. Slowing of disease progression was observed during each round of four Treg infusions.”

Once the infusions stopped the disease progression resumed so clearly this is not a cure, but it does at least suggest that keeping Tregs at a healthy, high-functioning level may help slow down ALS.

CIRM is funding two clinical trials targeting ALS. One is a Phase 1 clinical trial with Clive Svendsen’s team at Cedars-Sinai Medical Center, the other is a Phase 3 project with Brainstorm Cell Therapeutics.

Stem Cell Roundup: Protein shows promise in treating deadliest form of breast cancer: mosquito spit primes our body for disease

Triple negative breast cancerTriple negative breast cancer is more aggressive and difficult to treat than other forms of the disease and, as a result, is more likely to spread throughout the body and to recur after treatment. Now a team at the University of Southern California have identified a protein that could help change that.

The research, published in the journal Nature Communications, showed that a protein called TAK1 allows cancer cells from the tumor to migrate to the lungs and then form new tumors which can spread throughout the body. There is already an FDA-approved drug called OXO that has been shown to block TAK1, but this does not survive in the blood so it’s hard to deliver to the lungs.

The USC team found a way of using nanoparticles, essentially a tiny delivery system, to take OXO and carry it to the lungs to attack the cancer cells and stop them spreading.

triple_negative_breast_cancer_particle_graphic-768x651In a news release Min Yu, the principal investigator on the team, said that although this has only been tested in mice the results are encouraging:

“For patients with triple-negative breast cancer, systemic chemotherapies are largely ineffective and highly toxic. So, nanoparticles are a promising approach for delivering more targeted treatments, such as OXO, to stop the deadly process of metastasis.”

Mosquito spit and your immune system

Mosquito

Mosquito bite: Photo courtesy National Academy of Sciences

Anyone who has ever been bitten by a mosquito knows that it can be itchy and irritable for hours afterwards. But now scientists say the impact of that bite can last for much longer, days in fact, and even help prime your body for disease.

The scientists say that every time a mosquito bites you they inject saliva into the bite to keep the blood flowing freely. But that saliva also has an impact on your immune system, leaving it more vulnerable to diseases like malaria.

OK, so that’s fascinating, and really quite disgusting, but what does it have to do with stem cells? Well, researchers at the National Institute of Health’s (NIH) Malaria and Vector Research Laboratory in Phnom Penh, Cambodia engrafted human stem cells into mice to study the problem.

They found that mice with the human stem cells developed more severe symptoms of dengue fever if they were bitten by a mosquito than if they were just injected with dengue fever.

In an article in Popular Science Jessica Manning, an infectious disease expert at the NIH, said previously we had no idea that mosquito spit had such a big impact on us:

“The virus present in that mosquito’s saliva, it’s like a Trojan horse. Your body is distracted by the saliva [and] having an allergic reaction when really it should be having an antiviral reaction and fighting against the virus. Your body is unwittingly helping the virus establish infection because your immune system is sending in new waves of cells that this virus is able to infect.”

The good news is that if we can develop a vaccine against the saliva we may be able to protect people against malaria, dengue fever, Zika and other mosquito-borne diseases.

CIRM applauds FDA crackdown on stem cell clinics that “peddle unapproved treatments.”

FDA

CIRM is commending the US Food and Drug Administration (FDA) for its action against two stem cell clinics offering unapproved therapies.

On Wednesday, the FDA filed two complaints in federal court seeking a permanent injunction against California Stem Cell Treatment Center Inc. and US Stem Cell Clinic LLC. of Sunrise, Florida. The FDA says the clinics are marketing stem cell products without FDA approval and are not complying with current good manufacturing practice requirements.

“We strongly support the FDA’s strong stance to seek judicial action to stop these  clinics from marketing unproven therapies that pose a threat to the safety of patients” says Maria T. Millan, M.D., CIRM’s President and CEO. “We agree with FDA Commissioner Dr. Scott Gottlieb’s statement that these ‘bad actors leverage the scientific promise of this field to peddle unapproved treatments that put patients’ health at risk.’”

In his statement yesterday, Dr. Gottlieb denounced the clinics saying they are exploiting patients and causing some of them “serious and permanent harm.”

“In the two cases filed today, the clinics and their leadership have continued to disregard the law and more importantly, patient safety. We cannot allow unproven products that exploit the hope of patients and their loved ones. We support sound, scientific research and regulation of cell-based regenerative medicine, and the FDA has advanced a comprehensive policy framework to promote the approval of regenerative medicine products. But at the same time, the FDA will continue to take enforcement actions against clinics that abuse the trust of patients and endanger their health.”

At CIRM, we believe it is critically important for participants in stem cell treatments to be fully informed about the nature of the therapy they are receiving, including whether it is approved by the FDA. Last year we partnered with California State Senator Ed Hernandez to pass Senate Bill No. 512, which required all clinics offering unproven stem cell therapies to post notices warning patients they were getting a therapy that was not approved by the FDA.

The Stem Cell Agency has taken several other actions to protect people seeking legitimate stem cell therapies.

  • All the clinical trials we consider for funding must already have an active Investigational New Drug (IND) status with the FDA and go through a rigorous scientific review by leading experts.
  • All CIRM-funded trials must adhere to strict regulatory standards and safety monitoring.
  • We have created the CIRM Alpha Stem Cell Clinics, a network of six top California medical centers that specialize in delivering patient-centered stem cell clinical trials that meet the highest standards of care and research.
  • CIRM provides access to information on all the clinical trials it supports.

“Through its funding mechanism, active partnership and infrastructure programs, CIRM has shepherded 48 FDA regulated, scientifically sound, rigorously reviewed promising stem cell and regenerative medicine projects into clinical trials,” says Dr. Millan. “Some of these treatment protocols have already started to show preliminary signs of benefit for debilitating and life-threatening disorders. We are committed to doing all we can, in partnership with patients, the research community and with the FDA, to develop transformative treatments for patients with unmet medical needs while adhering to the highest standards to protect the health and safety of patients and the public.”

To help people make informed decisions we have created an infographic and video that detail the information people need to know, and the questions they should ask, before they agree to participate in a clinical trial or get a stem cell therapy.