Getting faster, working smarter: how changing the way we work is paying big dividends

This blog is part of the Month of CIRM series

Speeding up the way you do things isn’t always a good idea. Just ask someone who got a ticket for going 65mph in a 30mph zone. But at CIRM we have found that doing things at an accelerated pace is paying off in a big way.

When CIRM started back in 2004 we were, in many ways, a unique organization. That meant we pretty much had to build everything from scratch, creating our own ways of asking for applications, reviewing those applications, funding them etc. Fast forward ten years and it was clear that, as good a job as we did in those early days, there was room for improvement in the way we operated.

So we made some changes. Big changes.

We adopted as our mantra the phrase “operational excellence.” It doesn’t exactly trip off the tongue but it does reflect what we were aiming for. The Business Dictionary defines operational excellence as:

 “A philosophy of the workplace where problem-solving, teamwork, and leadership results in the ongoing improvement in an organization.”

We didn’t want to just tinker with the way we worked, we wanted to reinvent every aspect of our operation. To do that we involved everyone in the operation. We held a series of meetings where everyone at CIRM, and I do mean everyone, was invited to join in and offer their ideas on how to improve our operation.

The end result was CIRM 2.0. At the time we described it as “a radical overhaul” of the way we worked. That might have been an understatement. We increased the speed, frequency and volume of the programs we offered, making it easier and more predictable for researchers to apply to us for funding, and faster for them to get that funding if they were approved.

For example, before 2.0 it took almost two years to go from applying for funding for a clinical trial to actually getting that funding. Today it takes around 120 days.

But it’s not just about speed. It’s also about working smarter. In the past if a researcher’s application for funding for a clinical trial failed it could be another 12 months before they got a chance to apply again. With many diseases 12 months could be a death sentence. So we changed the rules. Now if you have a project ready for a clinical trial you can apply any time. And instead of recommending or not recommending a project, basically voting it up or down, our independent panel of expert reviewers now give researchers with good but not great applications constructive feedback, enabling the researchers to make the changes needed to improve their project, and reapply for funding within 30 days.

This has not only increased the number of applications for clinical trials, it has also increased the quality of those applications.

We made similar changes in our Discovery and Translation programs. Increasing the frequency of each award, making it easier for researchers to know when the next round of funding was coming up. And we added incentives to encourage researchers to move successful projects on to the next level. We wanted to create a pipeline of the most promising projects steadily moving towards the clinic.

The motivation to do this comes from our patients. At CIRM we are in the time business. Many of the patients who are looking to stem cells to help them don’t have the luxury of time; they are rapidly running out of it. So we have a responsibility to do all we can to reduce the amount of time it takes to get the most promising therapies to them, without in any way compromising safety and jeopardizing their health.

By the end of 2016 those changes were very clearly paying dividends as we increased the frequency of reviews and the number of projects we reviewed but at the same time decreased the amount of time it took us to do all that.

Slide1

But we are not done yet. We have done a good job of improving the way we work. But there is always room to be even better, to go even faster and be more efficient.

We are not done accelerating. Not by a long shot.

Advertisements

Building California’s stem cell research community, from the ground up

For week three of the Month of CIRM, our topic is infrastructure. What is infrastructure? Read on for a big picture overview and then we’ll fill in the details over the course of the week.

When CIRM was created in 2001, our goal was to grow the stem cell research field in California. But to do that, we first had to build some actual buildings. Since then, our infrastructure programs have taken on many different forms, but all have been focused on a single mission – helping accelerate stem cell research to patients with unmet medical needs.
CIRM_Infrastucture-program-iconScreen Shot 2017-10-16 at 10.58.38 AM

In the early 2000’s, stem cell scientists faced a quandary. President George W. Bush had placed limits on how federal funds could be used for embryonic stem cell research. His policy allowed funding of research involving some existing embryonic stem cell lines, but banned research that developed or conducted research on new stem lines.

Many researchers felt the existing lines were not the best quality and could only use them in a limited capacity. But because they were dependent on the government to fund their work, had no alternative but to comply. Scientists who chose to use non-approved lines were unable to use their federally funded labs for stem cell work.

The creation of CIRM changed that. In 2008, CIRM launched its Major Facilities Grant Program. The program had two major goals:

1) To accommodate the growing numbers of stem cell researchers coming in California as a result of CIRM’s grants and funding.

2) To provide new research space that didn’t have to comply with the federal restrictions on stem cell research.

Over the next few years, the program invested $271million to help build 12 new research facilities around California from Sacramento to San Diego. The institutions used CIRM’s funding to leverage and attract an additional $543 million in funds from private donors and institutions to construct and furnish the buildings.

These world-class laboratories gave scientists the research space they needed to work with any kind of stem cell they wanted and develop new potential therapies. It also enabled the institutions to bring together under one roof, all the stem cell researchers, who previously had been scattered across each campus.

One other important benefit was the work these buildings provided for thousands of construction workers at a time of record unemployment in the industry. Here’s a video about the 12 facilities we helped build:

But building physical facilities was just our first foray into developing infrastructure. We were far from finished.

In the early days of stem cell research, many scientists used cells from different sources, created using different methods. This meant it was often hard to compare results from one study to another. So, in 2013 CIRM created an iPSC Repository, a kind of high tech stem cell bank. The repository collected tissue samples from people who have different diseases, turned those samples into high quality stem cell lines – the kind known as induced pluripotent stem cells (iPSC) – and then made those samples available to researchers around the world. This not only gave researchers a powerful resource to use in developing a deeper understanding of different diseases, but because the scientists were all using the same cell lines that meant their findings could be compared to each other.

That same year we also launched a plan to create a new, statewide network of clinics that specialize in using stem cells to treat patients. The goal of the Alpha Stem Cell Clinics Network is to support and accelerate clinical trials for programs funded by the agency, academic researchers or industry. We felt that because stem cell therapies are a completely new way of treating diseases and disorders, we needed a completely new way of delivering treatments in a safe and effective manner.

The network began with three clinics – UC San Diego, UCLA/UC Irvine, and City of Hope – but at our last Board meeting was expanded to five with the addition of UC Davis and UCSF Benioff Children’s Hospital Oakland. This network will help the clinics streamline challenging processes such as enrolling patients, managing regulatory procedures and sharing data and will speed the testing and distribution of experimental stem cell therapies. We will be posting a more detailed blog about how our Alpha Clinics are pushing innovative stem cell treatments tomorrow.

As the field advanced we knew that we had to find a new way to help researchers move their research out of the lab and into clinical trials where they could be tested in people. Many researchers were really good at the science, but had little experience in navigating the complex procedures needed to get the green light from the US Food and Drug Administration (FDA) to test their work in a clinical trial.

So, our Agency created the Translating (TC) and Accelerating Centers (AC). The idea was that the TC would help researchers do all the preclinical testing necessary to apply for permission from the FDA to start a clinical trial. Then the AC would help the researchers set up the trial and actually run it.

In the end, one company, Quintiles IMS, won both awards so we combined the two entities into one, The Stem Cell Center, a kind of one-stop-shopping home to help researchers move the most promising treatments into people.

That’s not the whole story of course – I didn’t even mention the Genomics Initiative – but it’s hard to cram 13 years of history into a short blog. And we’re not done yet. We are always looking for new ways to improve what we do and how we do it. We are a work in progress, and we are determined to make as much progress as possible in the years to come.

Stem Cell Awareness Day: Past, Present, Future

In 2008, the then California Governor Arnold Schwarzenegger  declared Sept. 25 to be Stem Cell Awareness Day. In the proclamation he said, ”The discoveries being made today in our Golden State will have a great impact on many around the world for generations to come.”

Picture1

Bob Klein (Left), Arnold Schwarzenegger (Middle), Don Reed (Right) in 2008.

In the years since, we have moved steadily towards turning those words into reality and using Stem Cell Awareness Day, now celebrated on the second Wednesday in October, as a symbol of the progress being made, not just in California but around the world.

Yesterday, for example, at a public event at UC Davis in Sacramento, Dr. Jan Nolta told an audience of patients, patient advocates, researchers and stem cell supporters that “we are part of a new era in medicine, one where it will one day be routine for prescriptions to be written for stem cell treatments for many different diseases.”

Those sentiments were echoed by Jonathan Thomas, Chair of the CIRM Board, who said:

“This is a time of truly extraodinary medical science.  We are lucky because, in our lifetime, we are going to see many of the biggest maladies plaguing people cured, in part because of developments in regenerative medicine. Every week you read about extraordinary developments in medicine and often those are here in California.”

In the early years Stem Cell Awareness Day was very much a creation of CIRM. We worked closely with our partners in academia and industry to host or stage events around the state. In 2009 for example, more than 40 CIRM grantees went to high schools in California, talking about stem cell research to more than 3,000 students. We also coordinated with researchers in Canada and Australia to create a global community of supporters.

We even hosted a poetry competition. No, really, we did. So, clearly not every idea we had back then was a winner.

These days CIRM doesn’t play as prominent a role in organizing these events for a very simple reason. We don’t have to. They have become such a popular part of the scientific calendar that individual institutions and schools organize their own events, without any pushing or prodding from us (though we are always happy to help when asked).

At UC Irvine this afternoon there is an Open House where you can take a self-guided tour of the facility, meet some of the scientists and watch lab demonstrations.

This weekend the UC  Berkeley’s Student Society of Stem Cell Research (SSSCR) is hosting its 5th annual Stem Cell Conference: Culturing a Stem Cell Community. This conference aims to bring together different aspects of stem cell research, from science to advocacy, to demonstrate the growth and success of the field. You can RSVP on Eventbrite (tickets cost a small fee of $7 or $12 including lunch to support the cost of the SSSCR conference)

The Gladstone Institutes in San Francisco just posted two new videos to its YouTube site:

In the early days of CIRM, Stem Cell Awareness Day was a valuable way for us to talk directly to the people of California – the ones who created CIRM. We felt it was important to let them know how their money was being spend and about the progress being made in stem cell research. And in the early years that progress was slower than all of us would have liked. Today, it’s a very different situation with CIRM now having funded 40 projects in clinical trials (and a goal of funding dozens more in the coming years) and with advances being made every day. We still reach out to our supporters and the patient advocate community but now we do it year round through our blog, social media and public events like the one yesterday at UC Davis.

While we are not as “hands on” as we were in the past we are still more than happy to provide tools for groups or organizations who want to hold their own stem cell awareness event – and it doesn’t have to be on October 11th, it can be any day of the year. Visit our Education Portal, Patient Resources page and video archive for various teaching tools.

Stem Cell Stories that Caught Our Eye: New law to protect consumers; using skin to monitor blood sugar; and a win for the good guys

Hernendez

State Senator Ed Hernandez

New law targets stem cell clinics that offer therapies not approved by the FDA

For some time now CIRM and others around California have been warning consumers about the risks involved in going to clinics that offer stem cell therapies that have not been tested in a clinical trial or approved by the U.S. Food and Drug Administration (FDA) for use in patients.

Now a new California law, authored by State Senator Ed Hernandez (D-West Covina) attempts to address that issue. It will require medical clinics whose stem cell treatments are not FDA approved, to post notices and provide handouts to patients warning them about the potential risk.

In a news release Sen. Hernandez said he hopes the new law, SB 512, will protect consumers from early-stage, unproven experimental therapies:

“There are currently over 100 medical offices in California providing non-FDA approved stem cell treatments. Patients spend thousands of dollars on these treatments, but are totally unaware of potential risks and dangerous side effects.”

Sen. Hernandez’s staffer Bao-Ngoc Nguyen crafted the bill, with help from CIRM Board Vice Chair Sen. Art Torres, Geoff Lomax and UC Davis researcher Paul Knoepfler, to ensure it targeted only clinics offering non-FDA approved therapies and not those offering FDA-sanctioned clinical trials.

For example the bill would not affect CIRM’s Alpha Stem Cell Clinic Network because all the therapies offered there have been given the green light by the FDA to work with patients.

Blood_Glucose_Testing 

Using your own skin as a blood glucose monitor

One of the many things that people with diabetes hate is the constant need to monitor their blood sugar level. Usually that involves a finger prick to get a drop of blood. It’s simple but not much fun. Attempts to develop non-invasive monitors have been tried but with limited success.

Now researchers at the University of Chicago have come up with another alternative, using the person’s own skin to measure their blood glucose level.

Xiaoyang Wu and his team accomplished this feat in mice by first creating new skin from stem cells. Then, using the gene-editing tool CRISPR, they added in a protein that sticks to sugar molecules and another protein that acts as a fluorescent marker. The hope was that the when the protein sticks to sugar in the blood it would change shape and emit fluorescence which could indicate if blood glucose levels were too high, too low, or just right.

The team then grafted the skin cells back onto the mouse. When those mice were left hungry for a while then given a big dose of sugar, the skin “sensors” reacted within 30 seconds.

The researchers say they are now exploring ways that their findings, published on the website bioRxiv, could be duplicated in people.

While they are doing that, we are supporting ViaCytes attempt to develop a device that doesn’t just monitor blood sugar levels but also delivers insulin when needed. You can read about our recent award to ViaCyte here.

Deepak

Dr. Deepak Srivastava

Stem Cell Champion, CIRM grantee, and all-round-nice guy named President of Gladstone Institutes

I don’t think it would shock anyone to know that there are a few prima donnas in the world of stem cell research. Happily, Dr. Deepak Srivastava is not one of them, which makes it such a delight to hear that he has been appointed as the next President of the Gladstone Institutes in San Francisco.

Deepak is a gifted scientist – which is why we have funded his work – a terrific communicator and a really lovely fella; straight forward and down to earth.

In a news release announcing his appointment – his term starts January 1 next year – Deepak said he is honored to succeed the current President, Sandy Williams:

“I joined Gladstone in 2005 because of its unique ability to leverage diverse basic science approaches through teams of scientists focused on achieving scientific breakthroughs for mankind’s most devastating diseases. I look forward to continue shaping this innovative approach to overcome human disease.”

We wish him great success in his new role.

 

 

 

A month of CIRM: Gauging our progress to plan for our future

Every once in a while, it’s a good idea to take a step back and look at what you’ve done, what you’ve achieved. It’s not about identifying the things that have gone well and patting yourself on the back for them; it’s more a matter of assessing where you started, what your goals were, where you succeeded, where you fell short, and where you want to go in the future.

So during the month of October, we are going to be taking a look back at what CIRM has done in the years since we were created by the people of California in 2004. We want to take stock of what we have done and how that has helped shape the agency we are today, and the agency we hope to be in the future.

Each week we will highlight a different area, starting with a look at the projects we are funding in clinical trials – how after our first ten years we had seventeen projects in clinical trials, and today that number is 35 and counting. We’ll also provide updates on our infrastructure programs like the Alpha Stem Cell Clinics Network and the Stem Cell Center – programs that play a critical role in accelerating the development and delivery of high quality stem cell treatments to patients with unmet medical needs.

Over the course of the next few weeks, we’ll show how the way we work has changed and evolved as the field of stem cell research progressed, and how we have tried to be more responsive both to the needs of researchers and patients.

We’ll also be taking a look at the people who have helped play a key role in shaping us, from the scientists who do the work to the patient advocates who are relentless champions of stem cell research. We’ll even profile some of the unsung heroes here at CIRM.

But even as we look back we’re going to use that to frame our future, to see where we are going. We have some big goals for the next few years – as laid out in our Strategic Plan – and we are working hard to get there. By reflecting on the past, using the experienced gained and lessons learned, we hope to have a much clearer view of what we need to do in the years ahead.

Like any good driver we are focused on what is in front of us; but every once in a while, it’s not a bad idea to take a look in the rearview mirror and see what’s behind you, where you have come from.

During October we’re taking a quick look in our rear view mirror. (photo source)

How a funny-looking creature could unlock the secrets of limb regeneration

The axolotl, also known as the Mexican salamander

In the world of funny-looking creatures, the Axolotl would have to rank in the top ten alongside such notables as the naked mole rat and the blob fish (the official mascot for the Ugly Animal Preservation Society). But the Axolotl does have one attribute that makes it attractive to more than just another Axolotl. That’s because this Mexican salamander has the ability to regenerate entire limbs.

Now, even as you read this, many stem cell researchers are hard at work trying to figure out ways to regenerate damaged or diseased tissues and organs in humans. That’s why the Axolotl is so intriguing. If we can understand how they are able to repair their own damaged limbs, maybe we can use that knowledge to help people repair or even replace a lost finger, hand or arm.

It’s a fascinating idea and one that is explored in this video from STAT, an online publication produced by the Boston Globe, that explores science and health.

It’s only four minutes long and is definitely worth watching. It shows that there is beauty in even the strangest creatures, if only you know what to look for.

A trip to the OR started CIRM’s latest Board member on a career in science

The CIRM Board is pretty big, 29 members, all of whom have very different backgrounds and experiences. That’s one of its strengths, the diversity of members and the sheer range of expertise they bring to this work.

David Martin

Our newest member, Dr. David Martin, is the Chair and CEO of AvidBiotics Corp., a biotech company in South San Francisco. He has a very impressive resume including leadership roles at Genentech, DuPont Merck and Chiron. You can read more about that in our news release.

But we wanted to go beyond the obvious reasons why he was appointed by California State Treasurer John Chiang (who celebrated Dr. Martin’s “very distinguished career in both academics and the biotech industry”) and find a little bit more about him as a person.

We began by asking him how he got interested in science:

“When I was in junior high school, my father, a pediatrician, managed for me to witness at close-hand several surgical procedures in the O.R. When I was in high school my biology teachers were disasters, but I really enjoyed math and physics so I went to an engineering school.  After a year I rejected carrying a 14-inch slide rule on my belt like the other geeks and switched my major to biology. The biology lab excited me, and I changed my courses to prepare for medical school.  There I took off a year for a research training program and a real research lab experience.  I was hooked.”

What have been some of the biggest influences in your career?

Jim Wyngaarden’s research training program (supported by the National Science Foundation – as a precursor to the National Institute of Health’s  Medical Scientist Training Program) and working in Jim’s lab at Duke.  I then had nearly a decade of direct exposure to Gordon Tomkins, first when I was as a post-doc at NIH and then as a faculty member at UCSF.  Third was my many years exposure to Bob Swanson at Genentech.  Each was a remarkable and quite unique mentor.”

You have been a part of some of the biggest players in drug research and development – Genentech, DuPont Merck, Chiron – what are the biggest advances you have seen over the years?

“The discovery, early development, and nearly explosive expansion of recombinant DNA technologies and of their broad applications in the life sciences. Today one can already see on the near horizon a similar, very rapid expansion of stem cell applications to regenerative medicine, and it will not be limited to regenerative medicine.”

Dr. Martin says he feels privileged and enthused to be joining the CIRM Board and hopes his experience will be valuable to the agency:

“Fortuitously, I’ve been in the right place at the right time more than once as a physician-scientist—in both academe and industry; hopefully those experiences and perspectives may be of benefit to CIRM.”

Like many people fortunate enough to live in the San Francisco Bay Area he likes to get out of the lab/office as much as possible to enjoy all that the region has to offer:

“I enjoy bicycling, hiking and fly fishing—when I can find the time.”

We are delighted to welcome Dr. Martin to the CIRM team.

Protein that turns normal cells into cancer stem cells offers target to fight colon cancer

colon-cancer

Colon cancer: Photo courtesy WebMD

Colon cancer is a global killer. Each year more than one million people worldwide are diagnosed with it; more than half a million die from it. If diagnosed early enough the standard treatment involves surgery, chemotherapy, radiation or targeted drug therapy to destroy the tumors. In many cases this may work. But in some cases, while this approach helps put people in remission, eventually the cancer returns, spreads throughout the body, and ultimately proves fatal.

Now researchers may have identified a protein that causes normal cells to become cancerous, and turn into cancer stem cells (CSCs). This discovery could help provide a new target for anti-cancer therapies.

Cancer stem cells are devilishly tricky. While most cancer cells are killed by chemotherapy or other therapies, cancer stem cells are able to lie dormant and hide, then emerge later to grow and spread, causing the person to relapse and the cancer to return.

In a study published in Nature Research’s Scientific Reports, researchers at SU Health New Orleans School of Medicine and Stanley S. Scott Cancer Center identified a protein, called SATB2, that appears to act as an “on/off” switch for specific genes inside a cancer cell.

In normal, healthy colorectal tissue SATB2 is not active, but in colorectal cancer it is highly active, found in around 85 percent of tumors. So, working with mice, the researchers inserted extra copies of the SATB2 gene, which produced more SATB2 protein in normal colorectal tissue. They found that this produced profound changes in the cell, leading to uncontrolled cell growth. In effect it turned a normal cell into a cancer stem cell.

As the researchers state in their paper:

“These data suggest that SATB2 can transform normal colon epithelial cells to CSCs/progenitor-like cells which play significant roles in cancer initiation, promotion and metastasis.”

When the researchers took colorectal cancer cells and inhibited SATB2 they found that this not only suppressed the growth of the cancer and it’s ability to spread, it also prevented those cancer cells from becoming cancer stem cells.

In a news release about the study Dr. Rakesh Srivastava,  the senior author on the paper, said the findings are important:

“Since the SATB2 protein is highly expressed in the colorectal cell lines and tissues, it can be an attractive target for therapy, diagnosis and prognosis.”

Because SATB2 is found in other cancers too, such as breast cancer, these findings may hold significance for more than just colorectal cancer.

The next step is to repeat the study in mice that have been genetically modified to better reflect the way colon cancer shows up in people. The team hope this will not only confirm their findings, but also give them a deeper understanding of the role that SATB2 plays in cancer formation and spread.

Hearts and brains are center stage at CIRM Patient Advocate event

Describing the work of a government agency is not the most exciting of topics. Books on the subject would probably be found in the “Self-help for Insomniacs” section of a good bookstore (there are still some around). But at CIRM we are fortunate. When we talk about what we do, we don’t talk about the mechanics of our work, we talk about our mission: accelerating stem cell therapies to people with unmet medical needs.

Yesterday at the Gladstone Institutes in San Francisco we did just that, talking about the progress being made in stem cell research to an audience of friends, supporters and patient advocates. We had a lot to talk about, including the 35 clinical trials we have funded so far, and our goals and hopes for the future.

We were lucky to have Dr. Deepak Srivastava and Dr. Steve Finkbeiner from Gladstone join us to talk about their work. Some people are good scientists, some are good communicators. Deepak and Steve are great scientists and equally great communicators.

Deepak Srivastava highlighted ongoing stem cell research at the Gladstone
(Photo: Todd Dubnicoff/CIRM)

Deepak is the Director of the Roddenberry Stem Cell Center at Gladstone (and yes, it’s named after Gene Roddenberry of Star Trek fame) and an expert on heart disease. He talked about how advances in research have enabled us to turn heart scar tissue cells into new heart muscle cells, creating the potential to use a person’s own cells to help them recover from a heart attack.

“If you have a heart attack, your heart turns that muscle into scar tissue which affects the heart’s ability to pump blood around the body. We identified a combination of factors that support cells that are already in your heart and we have found a way of converting those scar cells into muscle. This could help repair the heart enough so you may not need a transplant, but you can lead a much more normal life.”

He said this research is now advancing to the point where they hope it could be ready for testing in people in the not too distant future and joked that his father, who has had a heart attack, volunteered to be the second person to try it. “Not the first but definitely the second.”

Steve, who is the Director of the Taube/Koret Center for Neurodegenerative Disease Research, specializes in problems in the brain; everything from Alzheimer’s and Parkinson’s to schizophrenia and ALS (also known as Lou Gehrig’s disease.

He talked about his uncle, who has end stage Parkinson’s disease, and how he sees first-hand how devastating this neurodegenerative disease is, and how that personal connection helps motivate him to work ever harder.

He talked about how so many therapies that look promising in mice fail when they are tested in people:

“A huge motivation for me has been to try and figure out a more reliable way to test these potential therapies and to move discoveries from the lab and into clinical trials in patients.”

Steve is using ordinary skin cells or tissue samples, taken from people with Parkinson’s and Alzheimer’s and other neurological conditions, and using the iPSC technique developed by Shinya Yamanaka (who is a researcher at Gladstone and also Director of CIRA in Japan) turns them into the kinds of cells found in the brain. These cells then enable him to study how these different diseases affect the brain, and come up with ways that might stop their progress.

Steve Finkbeiner is using human stem cells to model brain diseases
(Photo: Todd Dubnicoff/CIRM)

He uses a robotic microscope – developed at Gladstone – that allows his team to study these cells and test different potential therapies 24 hours a day, seven days a week. This round-the-clock approach will hopefully help speed up his ability to find something that help patients.

The CIRM speakers – Dr. Maria Millan, our interim President and CEO – and Sen. Art Torres (ret.) the Vice Chair of our Board and a patient advocate for colorectal cancer – talked about the progress we are making in helping push stem cell research forward.

Dr. Millan focused on our clinical trial work and how our goal is to create a pipeline of promising projects from the work being done by researchers like Deepak and Steve, and move those out of the lab and into clinical trials in people as quickly as possible.

Sen. Art Torres (Ret.)
(Photo: Todd Dubnicoff/CIRM)

Sen. Torres focused on the role of the patient advocate at CIRM and how they help shape and influence everything we do, from the Board’s deciding what projects to support and fund, to our creating Clinical Advisory Panels which involve a patient advocate helping guide clinical trial teams.

The event is one of a series that we hold around the state every year, reporting back to our friends and supporters on the progress being made. We feel, as a state agency, that we owe it to the people of California to let them know how their money is being spent.

We are holding two more of these events in the near future, one at UC Davis in Sacramento on October 10th, and one at Cedars-Sinai Medical Center in Los Angeles on October 30th.

From trauma to treatment: a Patient Advocate’s journey from helping her son battle a deadly disease to helping others do the same

Everett SCID 1

For every clinical trial CIRM funds we create a Clinical Advisory Panel or CAP. The purpose of the CAP is to make recommendations and provide guidance and advice to both CIRM and the Project Team running the trial. It’s part of our commitment to doing everything we can to help make the trial a success and get therapies to the people who need them most, the patients.

Each CAP consists of three to five members, including a Patient Advocate, an external scientific expert, and a CIRM Science Officer.

Having a Patient Advocate on a CAP fills a critical need for insight from the patient’s perspective, helping shape the trial, making sure that it is being carried out in a way that has the patient at the center. A trial designed around the patient, and with the needs of the patient in mind, is much more likely to be successful in recruiting and retaining the patients it needs to see if the therapy works.

One of the clinical trials we are currently funding is focused on severe combined immunodeficiency disease, or SCID. It’s also known as “bubble baby” disease because children with SCID are born without a functioning immune system, so even a simple virus or infection can prove fatal. In the past some of these children were kept inside sterile plastic bubbles to protect them, hence the name “bubble baby.”

Everett SCID family

Anne Klein is the Patient Advocate on the CAP for the CIRM-funded SCID trial at UCSF and St. Jude Children’s Research Hospital. Her son Everett was born with SCID and participated in this clinical trial. We asked Anne to talk about her experience as the mother of a child with SCID, and being part of the research that could help cure children like Everett.

“When Everett was born his disease was detected through a newborn screening test. We found out he had SCID on a Wednesday, and by  Thursday we were at UCSF (University of California, San Francisco). It was very sudden and quite traumatic for the family, especially Alden (her older son). I was abruptly taken from Alden, who was just two and a half years old at the time, for two months. My husband, Brian Schmitt, had to immediately drop many responsibilities required to effectively run his small business. We weren’t prepared. It was really hard.”

(Everett had his first blood stem cell transplant when he was 7 weeks old – his mother Anne was the donor. It helped partially restore his immune system but it also resulted in some rare, severe complications as a result of his mother’s donor cells attacking his body. So when, three years later, the opportunity to get a stem cell therapy came along Anne and her husband, Brian, decided to say yes. After some initial problems following the transplant, Everett seems to be doing well and his immune system is the strongest it has ever been.)

“It’s been four years, a lot of ups and downs and a lot of trauma. But it feels like we have turned a corner. Everett can go outside now and play, and we’re hanging out more socially because we no longer have to be so concerned about him being exposed to germs or viruses.

His doctor has approved him to go to daycare, which is amazing. So, Everett is emerging into the “normal” world for the first time. It’s nerve wracking for us, but it’s also a relief.”

Everett SCID in hospital

How Anne came to be on the CAP

“Dr. Cowan from UCSF and Dr. Malech from the NIH (National Institutes of Health) reached out to me and asked me about it a few months ago. I immediately wanted to be part of the group because, obviously, it is something I am passionate about. Knowing families with SCID and what they go through, and what we went through, I will do everything I can to help make this treatment more available to as many people as need it.

I can provide insight on what it’s like to have SCID, from the patient perspective; the traumas you go through. I can help the doctors and researchers understand how the medical community can be perceived by SCID families, how appreciative we are of the medical staff and the amazing things they do for us.

I am connected to other families, both within and outside of the US, affected by this disease so I can help get the word out about this treatment and answer questions for families who want to know. It’s incredibly therapeutic to be part of this wider community, to be able to help others who have been diagnosed more recently.”

The CAP Team

“They were incredibly nice and when I did speak they were very supportive and seemed genuinely interested in getting feedback from me. I felt very comfortable. I felt they were appreciative of the patient perspective.

I think when you are a research scientist in the lab, it’s easy to miss the perspective of someone who is actually experiencing the disease you are trying to fix.

At the NIH, where Everett had his therapy, the stem cell lab people work so hard to process the gene corrected cells and get them to the patient in time. I looked through the window into the hall when Everett was getting his therapy and the lab staff were outside, in their lab coats, watching him getting his new cells infused. They wanted to see the recipient of the life-saving treatment that they prepared.

It is amazing to see the process that the doctors go through to get treatments approved. I like being on the CAP and learning about the science behind it and I think if this is successful in treating others, then that would be the best reward.”

The future:

“We still have to fly back to the NIH, in Bethesda, MD, every three months for checkups. We’ll be doing this for 15 years, until Everett is 18. It will be less frequent as Everett gets older but this kind of treatment is so new that it’s still important to do this kind of follow-up. In between those trips we go to UCSF every month, and Kaiser every 1-3 weeks, sometimes more.

I think the idea of being “cured”, when you have been through this, is a difficult thing to think about. It’s not a word I use lightly as it’s a very weighted term. We have been given the “all clear” before, only to be dealt setbacks later. Once he’s in school and has successfully conquered some normal childhood illnesses, both Brian and I will be able to relax more.

One of Everett’s many doctors once shared with me that, in the past, he sometimes had to tell parents of very sick children with SCID that there was nothing else they could do to help them. So now to have a potential treatment like this, he was so excited about a stem cell therapy showing such promise.

One thing we think about Everett and Alden, is that they are both so young and have been through so much already. I’m hoping that they can forget all this and have a chance to grow up and lead a normal life.”