California’s Stem Cell Agency Accelerates Treatments to Patients

The following article is an Op Ed that appeared in today’s print version of the San Francisco Chronicle

SanFranChronicle_Web

Biotechnology was born in California in the 1970s based on the discovery out of one of its universities and California is responsible for an industry that has impacted the lives of billions of people worldwide. In 2004, the voters of California approved Proposition 71, creating the California Institute for Regenerative Medicine and setting the state on the path to becoming a global leader in stem cell research. Today the therapies resulting from the institute’s work are not just changing lives, they are already saving lives.

Lives like Evie Vaccaro, who is alive today because of a treatment CIRM is funding. Vaccaro was born with SCID, also known as “bubble baby disease,” an immune disorder that often kills babies in their first two years. Vaccaro and dozens of other babies were given stem cell treatments thanks to the institute. All are showing improvement; some are now several years past treatment and considered cured.

An accident left Jake Javier from Danville paralyzed from the chest down on the eve of his high school graduation. Javier was treated in a CIRM-funded clinical trial. Today he has regained the use of his arms and hands, is driving a car and is a sophomore at Cal Poly San Luis Obispo. Five other patients treated at the same time as Javier have all experienced improvements meaning that instead of needing round-the-clock care, they can lead independent lives.

A study by the Tufts Center for the Study of Drug Development estimated it takes at least 10 years and $2.6 billion to develop one successful drug. In 14 years, and with just $3 billion, CIRM has funded 1,000 different projects, enrolled 900 patients, and supported 49 different clinical trials targeting diseases such as cancer, kidney failure and leukemia. Four of these programs have received an expedited designation by the U.S. Food and Drug Administration, meaning they could get faster approval to help more patients

We have created a network of world class medical clinics that have expertise in delivering treatments to patients. The CIRM Alpha Clinics offer treatments based on solid science, unlike the unlicensed clinics sprouting up around California that peddle unproven and potentially harmful therapies that cost patients thousands of dollars.

CIRM has:

  • Supported the creation of 12 stem-cell research facilities in California
  • Attracted hundreds of top-tier researchers to California
  • Trained a new generation of stem-cell scientists
  • Brought clinical trials to California — for example, one targeting ALS or Lou Gehrig’s disease
  • Deployed rigorous scientific standards and support so our programs have a “seal of approval” to attract $2.7 billion in additional investments from industry and other sources.

We recently have partnered with the National Institutes of Health to break down barriers and speed up the approval process to bring curative treatments to patients with Sickle Cell Disease.

Have we achieved all we wanted to? Of course not. The first decade of CIRM’s life was laying the groundwork, developing the knowledge and expertise and refining processes so that we can truly accelerate progress. As a leader in this burgeoning field of regenerative medicine, CIRM needs to continue its mission of accelerating stem-cell treatments to patients with unmet medical needs.

Dr. Maria T. Millan is President and CEO and Jonathan Thomas, JD, PhD, is the Board Chairman of the California Institute of Regenerative Medicine. 

 

 

Saying goodbye to a good friend and a stem cell pioneer: Karl Trede

FrankTrede_B_0110_20161204120959_2016_12_04_CIRM_AnnualReport_KarlTrede_SanJose_Portraits_SeesTheDay

Sometimes even courage and determination are not enough. Karl Trede had courage and determination in droves as he fought a 12 year battle against cancer. He recently lost that battle. But he remains an inspiration for all who knew him.

I got to know Karl for our 2016 Annual Report. Karl had been diagnosed with throat cancer in 2006. He underwent surgery to remove his vocal cords and the cancer seemed to be in remission. But then it returned, this time having spread to his lungs. His doctors said they had pretty much run out of options but would Karl consider trying something new, something no one else had tried before; stem cells.

Karl told me he didn’t hesitate.

“I said “sure”. I don’t believe I knew at the time that I was going to be the first one but I thought I’d give it a whirl. It was an experience for me. It was eye opening. I wasn’t real concerned about being the first, I figured I was going to have to go someday so I guess if I was the first person and something really went wrong then they’d definitely learn something. So, to me, that was kind of worth my time.”

Happily nothing went wrong and the team behind the therapy (Forty Seven Inc.) definitely learned something, they learned a lot about the correct dosage for patients; invaluable information in treating future patients.

Karl’s cancer was held at bay and he was able to do the one thing that brought him more pleasure than anything else; spend time with his family, his wife Vita, their four sons and their families. He doted on his grand kids and got to see them grow, and they got to know him.

Recently the cancer returned and this time there was no holding it at bay. To the end Karl remained cheerful and positive.

KARL poster

In our office is a huge poster of Karl with the words “Every Moment Counts” at the bottom. It’s a reminder to us why we come to work every day, why the people at Forty Seven Inc. and all the other researchers we support work so hard for years and years; to try and give people like Karl a few extra moments with his family.

At the top of the poster the word “Courage” is emblazoned across it. Karl has a huge smile on his face. Karl was certainly courageous, a stem cell pioneer willing to try something no one else ever had. He was also very modest.

Here is Karl speaking to our governing Board in December 2016

When I spoke to him in 2016, despite all he had gone through in his fight against cancer, he said he had no regrets:

“I consider myself very fortunate. I’m a lucky guy.”

Those of us who got to spend just a little time with Karl know that we were the lucky ones.

Our hearts go out to his family and friends for their loss.

 

 

How small talk led to a big break; a summer internship at CIRM

At CIRM, California’s Stem Cell Agency, we are fortunate to work with some amazing people. This summer we added another name that list when Melissa Cairos joined us for an internship. Melissa is now on to the next part of her adventure, as a policy wonk in Washington DC., but before she left we asked her to write about her experiences, and thoughts after her time at the Stem Cell Agency.

Melissa

Melissa Cairos

In January of 2018, I had a casual conversation with a woman, whom I had never met before, at a high school basketball game. Through small talk about my studies in school and my career interests for the future, the woman suggested I may be interested in her work because it seemed to be aligned with what I wanted to do. Her work happened to be at CIRM and she happened to be Maria Millan, the President and CEO.

Interestingly, I had never heard of CIRM (the California Institute for Regenerative Medicine) and had limited knowledge of regenerative medicine. But, I had dedicated a semester in spring of 2015 to analyzing and lobbying for the 21st Century Cures Act. I engaged in that work because I believe in the importance of investing in, and expediting the regulatory process for, lifesaving medical innovations, so that they can be accessed faster by patients and at a lower cost. The 21st Century Cures Act has since become law and has created incredible opportunities for both CIRM and the entire field of regenerative medicine.

Since joining CIRM, I have been able to continue with similar work by analyzing legislation, policies and regulations that affect patients’ abilities to access regenerative medicine therapies and our grantees’ abilities to receive reimbursement for their therapies. Because the stem cell and gene therapies CIRM’s grantees are coming up with are so new and innovative, I quickly realized that the legislative, policy and regulatory solutions for them needed to reflect that innovative spirit.

Working alongside Geoff Lomax, (the Senior Officer for CIRM Strategic Infrastructures)  my manager and mentor, we identified a number of potential barriers to access and reimbursement and tried to come up with policy solutions to address them.

For one project, we looked at the high cost of regenerative medicine therapies. Because high cost affects both patient access and potential reimbursement problems for the companies that develop those therapies we felt it was essential to try and come up with policy solutions to address these issues. To do this, we studied the traditional payment structure for drugs and medical devices and found it inappropriate for regenerative medicine in most cases.

This is because regenerative medicine requires a one-time high cost payment, but the regenerative medicine treatments/cures would eliminate long term costs including: previous treatment cost, complications from that treatment, progression of disease cost, hospitalizations, disability, quality of life, co-morbidities, disease effect on longevity etc. Thus, we proposed that payment models for regenerative medicine should consider their unique value benefits, such as the number of additional years of life the treatment added, and the overall cost-effectiveness of a one-time treatment compared to years of  treatment. With this in mind, we suggested innovative payment models that accounted for these factors and further proposed changes that need to be made so that different manufacturers and payors can engage in innovative financing agreements.

Through my work at CIRM, I found that what makes regenerative medicine unique is that it not only offers new ways of treating previously untreatable diseases, but it has additional benefits or value. Not only the economic value, but also the human value, as regenerative medicine offers patients with life threatening or painful chronic diseases a solution that will change their lives and the lives of their families for the better. Through this understanding, I grew an incredible appreciation for CIRM, for not only being a great place to work with incredibly talented and kind people, but also an incredibly unique government agency that reflected the value and innovative spirit of the research it supports.

I am so grateful that I met Maria at that basketball game and got the opportunity to support CIRM in adding value to California in my role this summer as a Policy Fellow. I plan to return to California in the future and work in the health policy field to further support programs, policies, and/or agencies, like CIRM, that bring so much value to this state.

 

 

A stepping stone for bringing stem cell therapy to patients with ALS

ALS Picture1

Imagine being told that you have a condition that gradually causes you to lose the ability to control your body movements, from picking up a pencil to walking to even breathing. Such is the reality for the nearly 6,000 people who are diagnosed with amyotrophic lateral sclerosis (ALS) every year, in the United States alone.

ALS, also known as Lou Gehrig’s disease, is a neurodegenerative disease that causes the degradation of motor neurons, or nerves that are responsible for all voluntary muscle movements, like the ones mentioned above. It is a truly devastating disease with a particularly poor prognosis of two to five years from the time of diagnosis to death. There are only two approved drugs for ALS and these do not stop it but only slow progression of the disease; and even then only for some patients, not all.

A ray of hope for such a bleak treatment landscape, has been the advent of stem cell therapy options over the past decade. Of particular excitement is the recent discovery made Nasser Aghdami’s group at the Royan Institute for Stem Cell Biology and Technology in Iran.

Two small Phase I clinical trials detailed in Cell Journal demonstrated that injecting mesenchymal stem cells (MSCs), derived from the patient’s own bone marrow, was safe when administered via injection into the bloodstream or the spinal cord. Previous studies had shown that MSCs both revived motor neurons and extended the lifespan in a rodent model of the disease.

In humans, many studies have shown that MSCs taken from bone marrow are safe for use in humans, but these studies have disagreed about whether injection via the bloodstream or spinal cord route is the most effective way to deliver the therapy. This report confirms that both routes of administration are safe as no adverse clinical events were observed for either group throughout the study time frame.

While an important stepping stone, there is still a long way to go. For example, while no adverse clinical events were observed in either group, the overall ALS-FRS score, a clinical scale to determine ALS disease progression, worsened in all patients over the course of the study. Whether this was just due to natural progression of the disease, or because of the stem cell treatment is difficult to determine given the small size of the cohort.

One reason the scientists suggest that could explain the disease decline is because the MSCs were taken from the ALS patients themselves, which means these cells were likely not functioning optimally prior to re-introduction into the patient. To remedy this, they hope to test the effect of MSCs taken from healthy donors in both injection routes in the future. They also need a larger cohort of patients to determine whether or not there is a difference in the therapeutic effect of administering stem cells via the two different routes.

While it may seem that the results from this clinical trial are not particularly groundbreaking or innovative, it is important to remember that these incremental improvements through clinical trials are critical for bringing safe and effective therapies to the market. For more information on the different phases of clinical trials, please refer to this video.

CIRM is also funding clinical trials targeting ALS. One is a Phase 1 trial out of Cedars-Sinai Medical Center and another is a Phase 3 trial with the company Brainstorm Cell Therapeutics.

Has Regenerative Medicine Come of Age?

Signals logo

For the past few years the Signals blog site –  which offers an insiders’ perspectives on the world of regenerative medicine and stem cell research – has hosted what it calls a “Blog Carnival”. This is an event where bloggers from across the stem cell field are invited to submit a piece based on a common theme. This year’s theme is “Has Regenerative Medicine Come of Age?” Here’s my take on that question:

Many cultures have different traditions to mark when a child comes of age. A bar mitzvah is a Jewish custom marking a boy reaching his 13th birthday when he is considered accountable for his own actions. Among Latinos in the US a quinceañera is the name given to the coming-of-age celebration on a girl’s 15th birthday.

Regenerative Medicine (RM) doesn’t have anything quite so simple or obvious, and yet the signs are strong that if RM hasn’t quite come of age, it’s not far off.

For example, look at our experience at the California Institute for Regenerative Medicine (CIRM). When we were created by the voters of California in 2004 the world of stem cell research was still at a relatively immature phase. In fact, CIRM was created just six years after scientists first discovered a way to derive stem cells from human embryos and develop those cells in the laboratory. No surprise then that in the first few years of our existence we devoted a lot of funding to building world class research facilities and investing in basic research, to gain a deeper understanding of stem cells, what they could do and how we could use them to develop therapies.

Fast forward 14 years and we now have funded 49 projects in clinical trials – everything from stroke and cancer to spinal cord injury and HIV/AIDS – and our early funding also helped another 11 projects get into clinical trials. Clearly the field has advanced dramatically.

In addition the FDA last year approved the first two CAR-T therapies – Kymriah and Yescarta – another indication that progress is being made at many levels.

But there is still a lot of work to do. Many of the trials we are funding at the Stem Cell Agency are either Phase 1 or 2 trials. We have only a few Phase 3 trials on our books, a pattern reflected in the wider RM field. For some projects the results are very encouraging – Dr. Gary Steinberg’s work at Stanford treating people recovering from a stroke is tremendously promising. For others, the results are disappointing. We have cancelled some projects because it was clear they were not going to meet their goals. That is to be expected. These clinical trials are experiments that are testing, often for the first time ever in people, a whole new way of treating disease. Failure comes with the territory.

As the number of projects moving out of the lab and into clinical trials increases so too are the other signs of progress in RM. We recently held a workshop bringing together researchers and regulators from all over the world to explore the biggest problems in manufacturing, including how you go from making a small batch of stem cells for a few patients in an early phase clinical trial to mass producing them for thousands, if not millions of patients. We are also working with the National Institutes of Health and other stakeholders in discussing the idea of reimbursement, figuring out who pays for these therapies so they are available to the patients who need them.

And as the field advances so too do the issues we have to deal with. The discovery of the gene-editing tool CRISPR has opened up all sorts of possible new ways of developing treatments for deadly diseases. But it has also opened up a Pandora’s box of ethical issues that the field as a whole is working hard to respond to.

These are clear signs of a maturing field. Five years ago, we dreamed of having these kinds of conversations. Now they are a regular feature of any RM conference.

The simple fact that we can pose a question asking if RM has come of age is a sign all by itself that we are on the way.

Like little kids sitting in the back of a car, anxious to get to their destination, we are asking “Are we there yet?” And as every parent in the front seat of their car responds, “Not yet. But soon.”

Why having a wrinkled brain is a good thing

Brain_01

We normally associate wrinkles with aging, such as wrinkled skin. But there’s one organ that is wrinkled right from the time we are born. It’s our brain. And new research shows those wrinkles are not a sign of age but are, in fact, a sign of just how large and complex our brains are.

The wrinkles, according to U.C. Santa Barbara (UCSB) postdoctoral scholar Eyal Karzbrun, are vital to our development because they create a greater surface area giving our neurons, or brain nerve cells, more space to create connections and deliver information.

In an article in UCSB’s Daily Nexus, Karzbrun says while our knowledge of the brain is increasing there are still many things we don’t understand:

“The brain is a complex organ whose organization is essential to its function. Yet it is ‘assembled by itself’. How this assembly takes place and what physics come into play is fundamental to our understanding of the brain.”

Eyal Karzbrun

Eyal Karzbrun: Photo courtesy UCSB

Karzbrun used stem cells to create 3D clusters of brain cells, to better understand how they organize themselves. He said brains are like computers in the way they rely on surface area to process information.

“In order to be computationally strong and quick, what your brain does is take a lot of surface area and put it in a small volume. The cerebral cortex, which occupies most of the volume in your brain, has a unique architecture in which neurons are layered on the outer surface of the brain, and the bulk of the brain is composed of axons, [or] biological wire which interconnect the neurons.”

Karzbrun says gaining a deeper understanding of how the brain is formed, and why it takes the shape it does, may help us develop new approaches to treating problems in the brain.

 

A brief history of the Stem Cell Agency

On Wednesday, August 15 the California State Assembly Select Committee on Biotechnology held an informational hearing on CIRM as part of its mission of ensuring the legislature is up to date and informed about the biotech industry in California. The committee heard from CIRM’s President and CEO Dr. Maria T. Millan and the Vice Chair of our Board, Senator Art Torres (Ret.); two of CIRM’s Patient Advocates (Pawash Priyank and Don Reed) and Dr. Jan Nolta, the Director of the Institute for Regenerative Cures at UC Davis.

The final speaker was David Jensen, whose California Stem Cell Report blog has charted the history of CIRM since its inception. At CIRM we know that not everyone agrees with us all the time, or supports all the decisions we have made in the years since we were approved by voters in 2004, but we do pride ourselves on being open to a thoughtful, vigorous debate on all aspects of stem cell research. David’s presentation to the committee was nothing if not thoughtful, and we thought you might enjoy reading it and so we are presenting it here in its entirety.

For those who prefer to watch than read, here is a video of the entire hearing:

https://www.assembly.ca.gov/media/assembly-select-committee-biotechnology-20180815/video

California’s Stem Cell “Gold Rush:” A Brief Overview of the State’s $3 Billion Stem Cell Agency
Prepared testimony by David Jensen, publisher/editor of the California Stem Cell Report, before the Assembly Select Committee on Biotechnology, Aug. 15, 2018
I was in Mazatlan in Mexico in the fall of 2004 when I first heard about the creation of
California’s stem cell agency. I was reading the Wall Street Journal online and saw a headline that said a new Gold Rush was about to begin in California — this one involving stem cells instead of nuggets.

“Holy Argonauts,” I said to myself, using the term, of course, that refers to the tens of thousands of people who rushed to the California gold fields in 1849. I wanted to know more about what was likely to happen with this new stem cell gold rush.

Today, nearly 14 years later, I still want to know more about the California Institute for
Regenerative Medicine or CIRM, as the agency is formally known. But I can tell you that certain facts are clear.

Borrowing and Autonomy
The agency is unique in California history and among the states throughout the nation. It is the first state agency to fund scientific research with billions of dollars – all of it borrowed. At one point in its history, it is safe to say that the agency was the largest single source of funding in the world for human embryonic stem cell research.

The agency operates with financial and oversight autonomy that is rare in California government, courtesy of the ballot initiative that created it. But that measure also proved to be both a blessing and a curse. The agency’s financial autonomy has allowed it to provide a reasonably steady stream of cash over a number of years, something that is necessary to sustain the long-term research that is critical for development of widely available treatments.

At the same time, the ballot measure carried the agency’s death warrant — no more money after the $3 billion was gone. Cash for new awards is now expected to run out at the end of next year. Over its life, the agency has had a national and somewhat more modestly global impact, both as a source of funding and international cooperation, but also in staying the course on human embryonic stem cell research when the federal government was backing away from it.

Beyond that, the stem cell agency is the only state department whose primary objective is to produce a marketable commercial product. In this case, a cure or treatment for afflictions now nearly untreatable.

Finally, I am all but certain that CIRM is the only state agency that takes back money when a project winds up on the rocks. By the end of last month, that figure totalled in recent years more than $34 million in two big categories of awards. This sort of cash recovery is not a practice that occurs with federal research dollars. With CIRM the money goes back into the pot for more research aimed at treating horrible afflictions.

Evaluations of the Research Effort
Nonetheless the agency has hit some shoals from time to time. In 2010, the agency’s governing board commissioned a $700,000 study of its efforts by the prestigious Institute of Medicine. Two years later, the IOM reported to CIRM that it had some significant flaws.

The IOM study said that the agency had “achieved many notable results.” But it also
recommended sweeping changes to remove conflict of interest problems, clean up a troubling dual-executive arrangement and fundamentally change the nature of the governing board.

The report said,“Far too many board members represent organizations that receive CIRM funding or benefit from that funding. These competing personal and professional interests compromise the perceived independence of the ICOC (the CIRM governing board), introduce potential bias into the board’s decision making, and threaten to undermine confidence in the board.”

The conflict issues are built in by the ballot measure, which gave potential recipient institutions seats on the 29-member governing board. Indeed, in 2017, the last time I calculated the correlation between the board and awards, roughly 90 percent of the money given out by CIRM had gone to institutions with ties to members of the governing board.

About two months after the IOM presented its report, the CIRM board approved a new policy that bars 13 of its 29 members from voting on any grants whatsoever to help deal with questions concerning conflicts of interest on the board.

Other studies about the agency’s performance resulted from a 2010 law in which the legislature modified the initiative to require triennial performance audits that would be paid for by the agency itself. The requirement specifically excluded “scientific performance” from the audit.

The first audit results came in 2012 and contained 27 recommendations for improvement. The most recent performance audit came last spring. The audit firm, Moss Adams, recommended improvements in the areas of private fund-raising, retention of staff and better utilization of board members. The board was told that the agency had made “incredible progress” and that the auditors “usually see a lot of good things.”

The Story of CIRM 2.0
In recent years the agency has been on a self-improvement regime. The effort began in 2014 and was dubbed CIRM 2.0 — a term that was originally coined by a stem cell researcher at UC Davis.

The new direction and emphasis was described by the agency as “radical.” It was aimed at improving speed, efficiency and innovation. And it seems to have largely succeeded.
In 2014, it took almost two years for a good idea to go from application to the final funding stage. The goal was to shorten that to 120 days. Delays in funding are of particular concern to businesses, often for cash flow reasons, but they also mean delays in actually developing a treatment.

This week, the agency said the cash delivery figure now stands at less than 90 days for clinical awards and about 120 days for translational awards.

In 2014, the agency was participating in nine clinical trials, the last stage before a treatment is certified by the federal government for widespread use. Today the agency is involved in 49. In 2014, about 50 patients were involved in those trials. Today the figure is more than 800.

One of the more interesting aspects of CIRM 2.0 marked a departure from what might be called an academic pass-fail approach to the “final exam” for applications from scientists. Instead, CIRM is engaged in a more partner-oriented approach that can be found in some businesses.

Instead of flatly failing an application that is not quite ready for prime time, the idea is to coach applicants along to help bring them up to approval level. Today the agency can count 30 applications that won approval through that process. All of which is work could have slipped away in the more distant past.

CIRM and the Biotech Biz
CIRM is now much more engaged with industry than during its earlier years, when it drew bitter criticism from some business executives. Engagement with biotech firms is critical to bringing a treatment to the public. CIRM is not in the business of actually manufacturing, marketing and selling products. That is a matter left to the private sector.

One reason for closer business connections involves maturation of the work in the field, which has brought research closer to reality. But it is also due to a different focus within the agency as top management has changed.

One of the more difficult areas involving stem cell research and likely treatments is their cost. It is rare to hear researchers or companies talk forthrightly in public about specific dollar amounts. But the cost of drugs and treatment are high visibility matters for patients and elected officials. And estimates of stem cell treatments have run up to at least $900,000.

In 2010, the California legislature moved to help assure affordability by requiring grantees to submit affordable access plans with the caveat that the agency could waive that requirement. How that will ultimately play out as actual products come into the marketplace is yet to be determined.

The Public Policy Questions
A number of significant public policy questions surround the California’s stem cell program involving its creation and execution. They include:
● Is a ballot initiative the best way to approach research and create new state programs?
The initiative is very difficult to alter when changes are needed or priorities change. .
● Does the state have higher health priorities, such as prenatal health care, than supplying
researchers with cash that they could well secure from other sources?
● Is borrowing money to finance the research the best way to go about it? The interest
expense raise the total cost of a $20 million research award to $40 million.
● Should executives of potential recipient institutions serve on the board that awards their employers hundreds of millions of dollars?

This is just a short list of some of the policy matters. Other questions can and should be asked in the wake of the agency’s nearly 14 years of work.

Lives Saved but No Widespread Therapies
Returning to our earlier list of the clear facts about CIRM, another fact is that lives have been saved as the result of clinical trials that the agency it has helped to finance. The youngster from Folsom mentioned earlier in this hearing is one of a number of cases.

That said, these patients received treatment in clinical trials, which may or may not succeed in producing a commercial product that is available to the general public.

Little doubt exists that the agency has advanced the stem cell field and is building towards a critical mass in California. The burgeoning research program at UC Davis, with $138 million in CIRM funding, is one example. Another is the $50 million Alpha Clinic network aimed at creating powerful collaboration within institutions and throughout the state. In addition to Davis, UC San Francisco, UCLA, UC Irvine, UC San Diego and the City of Hope in the Los Angeles area are all part of the Alpha network.

Nonetheless, CIRM has not yet backed a stem cell treatment that is ready for widespread use and fulfilled the voter expectations from 2004 that stem cell cures were right around the corner.

The agency itself also has something of a deadline that is right around the corner in political and scientific terms. Backers of the agency are hoping for another ballot initiative in November 2020 that would pump $5 billion into the program and stave off its slow demise as research winds down. Development of a stem cell treatment that would resonate with voters would be an invaluable development to encourage voters to continue this unique experiment — even if California’s stem cell gold rush does not quite measure up to the dramatic events of 169 years ago.
#######################

Regenerative Medicine by the numbers: a snapshot of how the field is progressing

ARM_Q2_2018_Infographics-5-1024x597

Statistics don’t usually make for very exciting blog fodder, but they can be useful in charting progress. Case in point, the recent quarterly report from the Alliance for Regenerative Medicine (ARM), a global advocate and industry group for the field.

In the report ARM takes an in-depth look at cell therapy, gene therapy, tissue engineering and other trends in the regenerative medicine field.

Among the more notable findings are:

  • Companies in the regenerative medicine space collectively raised more than $4.1 billion in the second quarter of this year, up 164 percent over the same period in 2017.
  • Companies focused on cell therapy raised $2.2 billion, up 416 percent over the same period last year.
  • More and more companies in the space are turning to the public markets. So far this year they collectively raised $913.4 million in IPOs (initial public offerings – the very first sale of a company’s stock to the public), up from $254 million during all of last year.
  • Nearly 977 clinical trials testing such therapies are in progress across the globe; more than half of them are trying to treat cancer.

In a news release, Janet Lynch Lambert, ARM’s CEO, was understandably upbeat:

“There has been a tremendous amount of forward momentum during the first half of this year, both clinically and commercially. We’re excited for the continued growth of the regenerative medicine sector, and what it means for patients worldwide.”

ARM_Q2_2018_Infographics-2-1024x597

What makes an expert an expert?

When we launched our Facebook Live “Ask the Expert” series earlier this year we wanted to create an opportunity for people to hear from and question experts about specific diseases or disorders. The experts we turned to were medical ones, neurologists and neuroscientists in the case of the first two Facebook Live events, stroke and ALS.

Then we learned about a blog post on the ALS Advocacy website questioning our use of the word “expert”. The author, Cathy Collet, points out that doctors or scientists are far from the only experts about these conditions, that there are many people who, by necessity, have become experts on a lot of issues relating to ALS and any other disease.

Cathy Collet ALS

 

Here’s Cathy’s blog. After you read it please let us know what you think: should we come up with a different title for the series, if so what would you suggest?

 

 

 

“Over the years I’ve experienced many “Ask the Experts” sessions related to ALS.  It’s always a panel of neuroscientists who talk a lot about ALS research and then take a few questions.

The “Expert” crown defaults to them.  They speak from the dais.  We get to listen a lot and ask.  They are by default “The Experts” in the fight against ALS.

But wait, there are all kinds of people with superb and valuable knowledge related to ALS –

  • There are people who know a lot about insurance.
  • There are people who know a lot about communication technology.
  • There are people who know a lot about low-tech hacks.
  • There are people who know a lot about suction machines.
  • There are people who know a lot about breathing.
  • There are people who know a lot about the FDA.
  • There are people who know a lot about moving a person on and off a commode.
  • There are people who know a lot about taxes.
  • There are people who know a lot about drugs.
  • There are people who know a lot about data.
  • There are people who know a lot about choking.
  • There are people who know a lot about financing research.
  • There are people who know a lot about stem cells.
  • There are people who know a lot about feeding tubes and nutrition.
  • There are people who know a lot about what’s important in living with the beast ALS.
  • There are people who know a lot about primary care in ALS.
  • There are people who know a lot about constipation.

Our default implication for the word experts being neuroscientists is revealing. There are many people in the fight against ALS, including those living with it, who know a lot.  We still live in a hierarchy where people with ALS and caregivers are at the bottom.

Words matter.  “Expert” is not a royal title to be owned by anyone by default.

It’s time for simple changes to some traditions.  “Ask the Neuroscientists,” anyone?

 

By the way, our next Facebook Live “Ask the ?” feature is targeting Sickle Cell Disease. It will be from noon till 1pm on Tuesday August 28th. More details, and maybe even a new name, to follow.

 

CIRM-supported study shows promise in fighting acute myeloid leukemia

Chemotherapy

Chemotherapy

For years chemotherapy has been a mainstay in the war against cancer. While it can be very effective it can also come with some nasty side effects. Since chemo works by killing rapidly growing cells, it not only hits the cancer cells, but can also hit other rapidly growing cells too, including those in our hair roots, which is why many people undergoing chemo lose their hair.

So, the key to a truly effective anti-cancer therapy is one that does as much damage as possible to the cancer cells, and as little as possible to all the healthy cells in the body. A therapy being developed by Cellerant Therapeutics seems to have found that sweet spot in a new therapy targeting acute myeloid leukemia (AML).

AML starts in the bone marrow and quickly moves into the blood, where it can spread to other parts of the body. It is the second most common form of leukemia and claims around 10,000 lives in the US every year. Chemotherapy is the main weapon used against AML but it can also cause nausea, hair loss and other complications and in most cases has limited effectiveness because, over time, the leukemia cells get used to it.

Cellerant 2013In a study published in the journal Blood Advances, Cellerant researchers explain the limitations of existing treatments.

“The current standard of care for acute myeloid leukemia (AML) is largely ineffective with very high relapse rates and low survival rates, mostly due to the inability to eliminate a rare population of leukemic stem cells (LSCs) that initiate tumor growth and are resistant to standard chemotherapy.”

Cellerant has developed a therapy called CLT030 which targets CLL1, a marker found on the surface of leukemia cells but not on normal blood stem cells. Preclinical studies in mice show CLT030 is able to zero in on this surface marker and attack the leukemia but do little damage to blood or other surrounding cells.

In a news release, Ram Mandalam, President and CEO of Cellerant, said this is encouraging news:

“AML remains a significant unmet medical need, and our therapy, CLT030, that can target leukemic stem cells precisely while minimally affecting normal hematopoietic stem cells could improve outcomes while avoiding much of the toxicities associated with conventional chemotherapy and other targeted therapeutics.”

Mandalam says they are now doing the late-stage preclinical testing to be able to apply to the Food and Drug Administration for permission to start a clinical trial. CIRM is funding this stage of the research.