CIRM weekly stem cell roundup: stomach bacteria & cancer; vitamin C may block leukemia; stem cells bring down a 6’2″ 246lb football player

gastric

This is what your stomach glands looks like from the inside:  Credit: MPI for Infection Biology”

Stomach bacteria crank up stem cell renewal, may be link to gastric cancer.

The Centers for Disease Control and Prevention estimate that two-thirds of the world’s population is infected with H. pylori, a type of bacteria that thrives in the harsh acidic conditions of the stomach. Data accumulated over the past few decades shows strong evidence that H. pylori infection increases the risk of stomach cancers. The underlying mechanisms of this link have remained unclear. But research published this week in Nature suggests that the bacteria cause stem cells located in the stomach lining to divide more frequently leading to an increased potential for cancerous growth.

Tumors need to make an initial foothold in a tissue in order to grow and spread. But the cells of our stomach lining are replaced every four days. So, how would H. pylori bacterial infection have time to induce a cancer? The research team – a collaboration between scientists at the Max Planck Institute in Berlin and Stanford University – asked that question and found that the bacteria are also able to penetrate down into the stomach glands and infect stem cells whose job it is to continually replenish the stomach lining.

Further analysis in mice revealed that two groups of stem cells exist in the stomach glands – one slowly dividing and one rapidly dividing population. Both stem cell populations respond similarly to an important signaling protein, called Wnt, that sustains stem cell renewal. But the team also discovered a second key stem cell signaling protein called R-spondin that is released by connective tissue underneath the stomach glands. H. pylori infection of these cells causes an increase in R-spondin which shuts down the slowly dividing stem cell population but cranks up the cell division of the rapidly dividing stem cells. First author, Dr. Michal Sigal, summed up in a press release how these results may point to stem cells as the link between bacterial infection and increased risk of stomach cancer:

“Since H. pylori causes life-long infections, the constant increase in stem cell divisions may be enough to explain the increased risk of carcinogenesis observed.”

vitamin-c-1200x630

Vitamin C may have anti-blood cancer properties

Vitamin C is known to have a number of health benefits, from preventing scurvy to limiting the buildup of fatty plaque in your arteries. Now a new study says we might soon be able to add another benefit: it may be able to block the progression of leukemia and other blood cancers.

Researchers at the NYU School of Medicine focused their work on an enzyme called TET2. This is found in hematopoietic stem cells (HSCs), the kind of stem cell typically found in bone marrow. The absence of TET2 is known to keep these HSCs in a pre-leukemic state; in effect priming the body to develop leukemia. The researchers showed that high doses of vitamin C can prevent, or even reverse that, by increasing the activity level of TET2.

In the study, in the journal Cell, they showed how they developed mice that could have their levels of TET2 increased or decreased. They then transplanted bone marrow with low levels of TET2 from those mice into healthy, normal mice. The healthy mice started to develop leukemia-like symptoms. However, when the researchers used high doses of vitamin C to restore the activity levels of TET2, they were able to halt the progression of the leukemia.

Now this doesn’t mean you should run out and get as much vitamin C as you can to help protect you against leukemia. In an article in The Scientist, Benjamin Neel, senior author of the study, says while vitamin C does have health benefits,  consuming large doses won’t do you much good:

“They’re unlikely to be a general anti-cancer therapy, and they really should be understood based on the molecular understanding of the many actions vitamin C has in cells.”

However, Neel says these findings do give scientists a new tool to help them target cells before they become leukemic.

Jordan reed

Bad toe forces Jordan Reed to take a knee: Photo courtesy FanRag Sports

Toeing the line: how unapproved stem cell treatment made matters worse for an NFL player  

American football players are tough. They have to be to withstand pounding tackles by 300lb men wearing pads and a helmet. But it wasn’t a crunching hit that took Washington Redskins player Jordan Reed out of the game; all it took to put the 6’2” 246 lb player on the PUP (Physically Unable to Perform) list was a little stem cell injection.

Reed has had a lingering injury problem with the big toe on his left foot. So, during the off-season, he thought he would take care of the issue, and got a stem cell injection in the toe. It didn’t quite work the way he hoped.

In an interview with the Richmond Times Dispatch he said:

“That kind of flared it up a bit on me. Now I’m just letting it calm down before I get out there. I’ve just gotta take my time, let it heal and strengthen up, then get back out there.”

It’s not clear what kind of stem cells Reed got, if they were his own or from a donor. What is clear is that he is just the latest in a long line of athletes who have turned to stem cells to help repair or speed up recovery from an injury. These are treatments that have not been approved by the Food and Drug Administration (FDA) and that have not been tested in a clinical trial to make sure they are both safe and effective.

In Reed’s case the problem seems to be a relatively minor one; his toe is expected to heal and he should be back in action before too long.

Stem cell researcher and avid blogger Dr. Paul Knoepfler wrote he is lucky, others who take a similar approach may not be:

“Fortunately, it sounds like Reed will be fine, but some people have much worse reactions to unproven stem cells than a sore toe, including blindness and tumors. Be careful out there!”

 

Treatments, cures and clinical trials: an in-person update on CIRM’s progress

Patients and Patient Advocates are at the heart of everything we do at CIRM. That’s why we are holding three free public events in the next few months focused on updating you on the stem cell research we are funding, and our plans for the future.

Right now we have 33 projects that we have funded in clinical trials. Those range from heart disease and stroke, to cancer, diabetes, ALS (Lou Gehrig’s disease), two different forms of vision loss, spinal cord injury and HIV/AIDS. We have also helped cure dozens of children battling deadly immune disorders. But as far as we are concerned we are only just getting started.

Over the course of the next few years, we have a goal of adding dozens more clinical trials to that list, and creating a pipeline of promising therapies for a wide range of diseases and disorders.

That’s why we are holding these free public events – something we try and do every year. We want to let you know what we are doing, what we are funding, how that research is progressing, and to get your thoughts on how we can improve, what else we can do to help meet the needs of the Patient Advocate community. Your voice is important in helping shape everything we do.

The first event is at the Gladstone Institutes in San Francisco on Wednesday, September 6th from noon till 1pm. The doors open at 11am for registration and a light lunch.

Gladstone Institutes

Here’s a link to an Eventbrite page that has all the information about the event, including how you can RSVP to let us know you are coming.

We are fortunate to be joined by two great scientists, and speakers – as well as being CIRM grantees-  from the Gladstone Institutes, Dr. Deepak Srivastava and Dr. Steve Finkbeiner.

Dr. Srivastava is working on regenerating heart muscle after it has been damaged. This research could not only help people recover from a heart attack, but the same principles might also enable us to regenerate other organs damaged by disease. Dr. Finkbeiner is a pioneer in diseases of the brain and has done ground breaking work in both Alzheimer’s and Huntington’s disease.

We have two other free public events coming up in October. The first is at UC Davis in Sacramento on October 10th (noon till 1pm) and the second at Cedars-Sinai in Los Angeles on October 30th (noon till 1pm). We will have more details on these events in the coming weeks.

We look forward to seeing you at one of these events and please feel free to share this information with anyone you think might be interested in attending.

A funny thing happened on my way to a PhD: one scientists change of mind and change of direction

Laurel Barchas is an old and dear friend of the communications team here at CIRM. As a student at U.C. Berkeley she helped us draft our education portal – putting together a comprehensive curriculum to help high schools teach students about stem cells in a way that met all state and federal standards. But a funny thing happened on her way to her Ph.D., she realized she had changed her mind about research, and so she changed her career direction.  

Laurel recently wrote this blog about that experience for the new and improved website of the Student Society for Stem Cell Research (SSSCR) –

Laurel #1

Laurel Barchas at the World Stem Cell Summit 2013

Stem cell parental advice—you can grow up to be anything!

I was one of those students who, since high school, knew I was destined for the lab. Throughout some of high school, and all of college and graduate school, I had internships or positions in amazing labs that warmly took me in and trained me how to be a scientist. I loved designing and carrying out experiments on my stem cells, presenting at lab meetings, writing theses, and teaching others about my work through undergraduate lectures and high school presentations. My participation in the Student Society for Stem Cell Research hugely supported all of my efforts; it even enabled me to get one of my first jobs as a contract curriculum writer (a project manager role) with the California Institute for Regenerative Medicine, which launched my writing career.

Four years into my biology PhD program, things became clear that I didn’t want to do research anymore. I couldn’t handle the failure inherent in doing research. I wasn’t able to put in the time and focus necessary to do big experiments—then repeat them over and over. Although I loved science, I wasn’t meant to be a career scientist like many of my colleagues. I was a science communicator. Realizing this, and taking into account my personal struggles, my advisers and I decided the best thing was to get a terminal master’s degree.**

Differentiation—finding the right path

I struggled for a while finding a job that suited me. I worked as an education consultant, writing materials directed at teachers and students. I worked as a marketing, communications and operations assistant for a real estate group. I looked for jobs as a teacher, curriculum developer, and science education program coordinator, but none felt quite right for me. Although I had extensive experience in school developing materials for teachers and giving presentations to students, and I knew education could be a rewarding career path, I wasn’t sure I wanted to be in the academic world anymore.

Finally, I found some listings looking for technical writers. I didn’t even know what that was at the time. Various biotech companies had their feelers out for entry level writers with advanced degrees in biology or STEM fields—and a master’s degree was just fine. It turns out I was a perfect fit. Surprisingly, many people in the “tech com” (technical communications) and “mar com” (marketing communications) departments at my company had a similar experience; they didn’t want careers in research or the medical professions, so they chose communications.

Laurel #2

Life as a technical writer—feeling like a glial cell

As a technical writer at my company, I have many responsibilities beyond writing and editing user manuals, application notes, and diagrams. Tech writers are much like the oft-forgotten glial cells that “glue the brain together.” I manage each project from start to finish, and I get to work on all types of technical documentation and marketing collateral with a team of company scientists (R&D), graphic designers, marketing specialists, coders, product managers, and other writers. Often, I have major creative input on the content, design, and development of marketing campaigns. I enjoy starting with ideas—maybe a few bullet points or a rough draft—and building colorful, captivating content. It feels like solving a complex puzzle.

I’ve gotten the chance to write articles on human induced pluripotent stem cell-derived beta cells for a drug discovery publication and to create portals for our website. I’ve helped make booth panels and printed resources for conferences like the International Society for Stem Cell Research. Most importantly (to me), I’ve managed to stay within the field of stem cell research/regenerative medicine. I am the main writer for that product and service line, so I can use my expertise and experience (plus, knowledge of my audience) to present products that advance my audience’s basic, translational and clinical research.

I love my job. It pays well, has regular hours, and gives me a sense of belonging to a team. It’s fast paced, I’m working on a new thing every day, and I get to learn and write about the latest advancements from our R&D teams around the world. I could go on and on, but suffice it to say that the job fits like a glove, and I can see myself doing this long term. Also…I get to live in Silicon Valley! (Pros: great food, culture, people. Cons: cost of living, traffic.)

I hope you can get encouragement from the retelling of my experience that there is a space for you in this field. This is the first post in a series of articles about careers in regenerative medicine. I aim to take you through a tour of the vocational landscape—its ups, its downs—and am looking forward to hearing from you with any jobs/roles/scenarios you are curious about. Please comment on what you’d like to learn about next!

Remember: there are plenty of options and ways for you to apply your talent and experience to pushing our field forward. SSSCR is here to help!

*I want to thank everyone who serves in the research and medical areas. Without you our field would stop in its tracks. However, not everyone is cut out for such positions. Luckily, there are other options.

**Some reading this might say “awwwww, too bad, she was so close to that PhD” and some might say “that’s a major accomplishment and you can do a lot with that degree!” Both are right, but I choose to believe the latter, as I am so much happier now that I released myself from the allure of lab research and went into science communications. We tend to hold science and medicine up on pedestals; however, science communication facilitates almost all interactions between academic and industry scientists, clinicians, and the public. An understanding of and engagement with new science is critical to promoting a healthy democracy with citizens who can make informed decisions about their society’s future.

Laurel is a co-founder of SSSCR, the current Associate Director, and a member of the SSSCR International executive committee. She has been involved in SSSCR since 2004, when she helped start UC Berkeley’s chapter. Her main contributions are educating various communities about stem cell research and building career development opportunities for students. Along with a team of SSSCR members, Laurel created the California Institute for Regenerative Medicine’s stem cell education portal to provide teachers with the materials they need to engage students with the field. Currently, Laurel is a Senior Technical Writer focused on stem cell products and services.

How mice and zebrafish are unlocking clues to repairing damaged hearts

Bee-Gees

The Bee Gees, pioneers in trying to find ways to mend a broken heart. Photograph: Michael Ochs Archives

This may be the first time that the Australian pop group the Bee Gees have ever been featured in a blog about stem cell research, but in this case I think it’s appropriate. One of the Bee Gees biggest hits was “How can you mend a broken heart” and while it was a fine song, Barry and Robin Gibb (who wrote the song) never really came up with a viable answer.

Happily some researchers at the University of Southern California may succeed where Barry and Robin failed. In a study, published in the journal Nature Genetics, the USC team identify a gene that may help regenerate damaged heart tissue after a heart attack.

When babies are born they have a lot of a heart muscle cell called a mononuclear diploid cardiomyocyte or MNDCM for short. This cell type has powerful regenerative properties and so is able to rebuild heart muscle. However, as we get older we have less and less MNDCMs. By the time most of us are at an age where we are most likely to have a heart attack we are also most likely to have very few of these cells, and so have a limited ability to repair the damage.

Michaela Patterson, and her colleagues at USC, set out to find ways to change that. They found that in some adult mice less than 2 percent of their heart cells were MNDCMs, while other mice had a much higher percentage, around 10 percent. Not surprisingly the mice with the higher percentage of MNDCMs were better able to regenerate heart muscle after a heart attack or other injury.

So the USC team – with a little help from CIRM funding – dug a little deeper and did a genome-wide association study of these mice, that’s where they look at all the genetic variants in different individuals to see if they can spot common traits. They found one gene, Tnni3k, that seems to play a key role in generating MNDCMs.

Turning Tnni3K off in mice resulted in higher numbers of MNDCMs, increasing their ability to regenerate heart muscle. But when they activated Tnni3k in zebrafish it reduced the number of MNDCMs and impaired the fish’s ability to repair heart damage.

While it’s a long way from identifying something interesting in mice and zebrafish to seeing if it can be used to help people, Henry Sucov, the senior author on the study, says these findings represent an important first step in that direction:

“The activity of this gene, Tnni3k, can be modulated by small molecules, which could be developed into prescription drugs in the future. These small molecules could change the composition of the heart over time to contain more of these regenerative cells. This could improve the potential for regeneration in adult hearts, as a preventative strategy for those who may be at risk for heart failure.”

 

 

 

FDA creates a forum for patients to guide its decision making

FDA

It’s not hard to find people who don’t like the US Food and Drug Administration (FDA), the government agency that, among other things, regulates medical therapies. In fact, if you type “do people like the FDA?” into an internet search engine you’ll quickly find out that for a lot of people the answer is “no”.

But the Agency is trying to change and deserves credit for taking seriously many of the criticisms that have been levelled at it over the years and trying to address them.

The latest example is the news that the FDA has set a date for the first-ever meeting of its first-ever Patient Engagement Advisory Committee (PEAC). On its website, the FDA says the PEAC will be focused on patient-related issues:

“The PEAC is a forum for the voice of patients. It will be asked to advise on complex issues related to medical devices and their impact on patients. The goal of PEAC is to better understand and integrate patient perspectives into our oversight, to improve communications with patients about benefits, risks, and clinical outcomes related to medical devices, and to identify new approaches, unforeseen risks or barriers, and unintended consequences from the use of medical devices.”

In the past, the FDA has created forums to allow patients to talk about the impact of a disease on their daily life and their views on treatment options. But those were considered by many to be little more than window dressing, providing a sounding boards for patients but not actually producing any tangible benefits or changes.

The FDA also has patient representatives who take part in FDA advisory committee meetings, but the PEAC is the first time it has ever had a committee that was solely focused on patients and their needs. The nine core members of the PEAC all have experience either as patients or patient advocates and care-givers for patients. A really encouraging sign.

We tip our CAP to the FDA

At CIRM we support anything that ensures that patients not only have a seat at the table, but also that their voices are heard and taken seriously. That’s why for every clinical trial we fund (and even some pre-clinical projects too) we create what we call a Clinical Advisory Panel or CAP (we do love our acronyms).

Each CAP consists of three to five members, with a minimum of one Patient Representative, one External Advisor and one CIRM Science Officer. The purpose of the CAP is to make recommendations and provide guidance and advice to the Project Team running the trial.

Having a Patient Representative on a CAP ensures the patient’s perspective is included in shaping the design of the clinical trial, making sure that the trial is being carried out in a way that has the patient at the center. Patients can ask questions or raise issues that researchers might not think about, and can help the researchers not only do a better job of recruiting the patients they need for the trial, but also keeping those patients involved. We believe a trial designed around the patient, and with the patient in mind, is much more likely to be successful.

In announcing the formation of the PEAC the FDA said:

“Patients are at the heart of what we do. It makes sense to establish an advisory committee built just for them.”

I completely agree.

My only regret is that they didn’t call it the Patient Engagement Advisory Committee for Health, because then the acronym would have been PEACH. And this is certainly a peach of an idea, one worthy of support.

Related Links:

 

 

 

Family, faith and funding from CIRM inspire one patient to plan for his future

Caleb Sizemore speaks to the CIRM Board at the June 2017 ICOC meeting.

Having been to many conferences and meetings over the years I have found there is a really simple way to gauge if someone is a good speaker, if they have the attention of people in the room. You just look around and see how many people are on their phones or laptops, checking their email or the latest sports scores.

By that standard Caleb Sizemore is a spellbinding speaker.

Last month Caleb spoke to the CIRM Board about his experiences in a CIRM-funded clinical trial for Duchenne Muscular Dystrophy. As he talked no one in the room was on their phone. Laptops were closed. All eyes and ears were on him.

To say his talk was both deeply moving and inspiring is an understatement. I could go into more detail but it’s so much more powerful to hear it from  Caleb himself. His words are a reminder to everyone at CIRM why we do this work, and why we have to continue to do all that we can to live up to our mission statement and accelerate stem cell treatments to patients with unmet medical needs.

Video produced by Todd Dubnicoff/CIRM


Related Links:

CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.

 

 

 

 

 

Why Stem Cell Advocates Texans for Cures say “Right to Try” Legislation Should be Fought

Texans for Cures 

This week in Washington DC a delegation from the stem cell advocacy group Texans for Cures is meeting with members of Congress from both parties. The focus of the meetings are three bills promoting “Right to Try” legislation. Supporters of the bills say they will empower patients battling terminal illness. Texans for Cures say, quite the contrary, that these laws will endanger patients. In this guest blog, Texans for Cures explain why they feel these laws are bad.

In 2014, the Goldwater Institute published a policy report titled, “Everyone Deserves the Right to Try: Empowering the Terminally Ill to Take Control of their Treatment.”[i] The report calls for states to pass “Right to Try” legislation as a means to reclaim patients’ medical autonomy and right to determine their own medical treatment.

This policy recommendation is built on the theory that the Food and Drug Administration (FDA) should not be able to restrict terminal patients’ access to potentially life-saving treatments so long as the treatment has been tested for basic safety. While this idea may seem immediately appealing, the policy undermines medical research in several ways that are harmful to the development of new treatments.

Texans for Cures opposes this legislation because it harms the sound development of treatments for future patients on the mere chance that it may provide relief to current patients that have received a terminal diagnosis. In short, Right to Try policies ignore the attendant risks and overemphasize the potential benefits.

draft_bill_legislation_law

“Right to Try” Model Legislation and State Enacted Variants

The Goldwater Institute’s policy report included model legislation for interested legislators, which it summed up as follows:

Simply stated, Right to Try allows a patient to access investigational medications that have passed basic safety tests without interference by the government when the following conditions are met:

  1. The patient has been diagnosed with a terminal disease;
  2. The patient has considered all available treatment options;
  3. The patient’s doctor has recommended that the investigational drug, device, or biological product represents the patient’s best chance at survival;
  4. The patient or the patient’s guardian has provided informed consent; and
  5. The sponsoring company chooses to make the investigational drug available to patients outside the clinical trial.

Since the Goldwater Institute published this policy report in 2014, 33 states have enacted Right to Try laws.[ii] These laws contain minor variations from the model legislation, but each operates similarly to limit the FDA’s oversight roll.

Right to Try is Loosely Grounded in the Constitution and May Require Federal Action

Due to the fact that these laws may infringe on the FDA’s authority over drug development and distribution, the policy report attempts to ground Right to Try in one’s constitutional right to liberty. This constitutional underpinning is loose and is not firmly supported by Supreme Court precedent.[iii] With the constitutional basis of Right to Try resting on a weak foundation, it is important for Right to Try proponents to pass a complimentary Right to Try statute on the federal level in Congress.

There are three bills actively working through the Congressional process that would prohibit the FDA or any other federal agency from interfering with a patient’s Right to Try: H.R. 878 by Representative Biggs,[iv] H.R. 2368 by Representative Fitzpatrick,[v] and S. 204 by Senator Johnson.[vi] Each of these bills shares three common provisions, while H.R. 2368 has two additional provisions:

Common Provisions:

  1. Prohibition on federal action
  2. No liability
  3. No use of outcomes

Provisions Unique to H.R. 2368:

  1. Manufacturers are not required to make treatments available
  2. Permits manufacturers to receive compensation or recover costs

All three of the federal bills would remove the FDA’s ability to intervene in state Right to Try programs. They also create a liability shield for any producer, manufacturer, distributor, prescriber, dispenser, possessor, or user participating in the program. And finally, each prohibits the use of outcomes from patients participating in Right to Try as a criteria for FDA review of the treatment. This means that harmed patients would have limited or no legal recourse, and the FDA may need another Act of Congress to grant them the authority to intervene in any programs that prove to be dangerous. However, it may be difficult to know if these programs are harming patients or not, because the bills do not provide any mechanism for tracking outcomes and using that information for oversight.

Each bill is drafted in a way that would remove FDA oversight authority and would allow states to proceed with Right to Try policies and grants states broad discretion to tailor these programs without federal oversight. However, H.R. 2368 contains two additional provisions that would compliment and potentially override state statute. First, the bill gives manufacturers the authority to deny patients access to investigational treatments, which is consistent with the Goldwater Institute’s model legislation. Second, the bill allows manufacturers to receive compensation or recover costs involved in making the drug available to patients. This second provision is particularly problematic in that it would allow manufacturers to charge patients for unproven treatments unless they were explicitly prohibited from doing so by state law.

Single pill

How Right to Try Laws Structurally Harm the Research Process

Right to Try laws create a number of problematic incentives and penalties that would likely harm the long term development of new therapies. First and foremost, under Right to Try, patients will be able to bypass the clinical trial process, request investigational treatments, and pay the cost of the drug, rather than enter into a clinical trial. Given that clinical trials may involve the use of placebos, Texans for Cures is concerned that patients may choose to exercise Right to Try rather than participate in a clinical trial, because under Right to Try the patient avoids the possibility of receiving a placebo.

Additionally, there is no mechanism in the proposed bills for tracking outcomes of patients participating in Right to Try, and there is no mechanism for government intervention if Right to Try proves to be unreasonably risky.

Right to Try seeks to shield all participants from liability, meaning that patients who are harmed will have limited or no legal recourse, even if manufacturers or physicians are negligent. Furthermore, Right to Try laws typically allow manufacturers to recover the cost of manufacturing the treatment for participating patients, but cost is not defined. Does cost include the cost of research and development or is it exclusively the cost of creating that specific treatment? The ambiguity surrounding this term is a cause for concern, because companies may be tempted to use this ambiguity to cover a broader sets of costs than the authors intended.

Conclusion

Texans for Cures opposes this legislative effort because the program could potentially harm patients and, if it does, the law does not provide adequate safeguards or remedies. Additionally, the law does not require any monitoring of outcomes and is therefore unscientific in its approach to treatments that are currently undergoing clinical research.

The FDA is already working to ease the burdens associated with Expanded Access programs, which achieve the end that Right to Try desires: providing access to research drugs for terminal patients. The difference is that Expanded Access has additional safeguards and a mechanism for FDA intervention if treatment is found to be dangerous or harmful to the clinical trial process.

Finding scientifically sound treatments for patients in need is the primary concern of Texans for Cures. Texans for Cures sympathizes with, and its members have similarly experienced, the pain of losing loved ones. The hope and emotion involved in Right to Try laws is not to be taken lightly, but it is precisely because strong emotions can cloud our judgment that we, as a society, must approach the clinical trial process with a clear mental state. Texans for Cures believes that Right to Try will harm the long term development of new treatments and therefore asks for your help in fighting this legislative effort.

Footnotes:

[1] Christina Corieri, “Everyone Deserves the Right to Try: Empowering the Terminally Ill to Take Control of their Treatment,” Goldwater Institute (2014), https://goldwater-media.s3.amazonaws.com/cms_page_media/2015/1/28/Right%20To%20Try.pdf

2 KHN Morning Briefing, “‘Right to Try’ Advocates Help Pass Laws In 33 States As Movement Gains National Foothold,” Kaiser Health News (2017), http://khn.org/morning-breakout/right-to-try-advocates-help-pass-laws-in-33-states-as-movement-gains-national-foothold/

3 The Goldwater Institute’s sole source for constitutional grounding for this law comes from a concurrence by Justice Douglas in Doe v. Bolton, 410 U.S. 179, 218 (1973), where he noted that individuals have a “right to care for one’s health and person.” The Goldwater Institute appears to recognize the precarious footing of their model legislation, stating in their policy report, “Although the right of terminal patients to access investigational medications has not yet been recognized by the Supreme Court, it is consistent with and can be supported by existing precedent.”

[1] H.R. 878 by Representative Biggs, https://www.congress.gov/bill/115th-congress/house-bill/878/text?q=%7B%22search%22%3A%5B%22right+to+try%22%5D%7D&r=2

[1] H.R. 2368 by Representative Fitzpatrick, https://www.congress.gov/bill/115th-congress/house-bill/2368/text?q=%7B%22search%22%3A%5B%22right+to+try%22%5D%7D&r=1

[1] S. 204 by Senator Johnson, https://www.congress.gov/bill/115th-congress/senate-bill/204/text?q=%7B%22search%22%3A%5B%22right+to+try%22%5D%7D&r=3

Stem cell agency funds Phase 3 clinical trial for Lou Gehrig’s disease

ALS

At CIRM we don’t have a disease hierarchy list that we use to guide where our funding goes. We don’t rank a disease by how many people suffer from it, if it affects children or adults, or how painful it is. But if we did have that kind of hierarchy you can be sure that Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, would be high on that list.

ALS is a truly nasty disease. It attacks the neurons, the cells in our brain and spinal cord that tell our muscles what to do. As those cells are destroyed we lose our ability to walk, to swallow, to talk, and ultimately to breathe.

As Dr. Maria Millan, CIRM’s interim President and CEO, said in a news release, it’s a fast-moving disease:

“ALS is a devastating disease with an average life expectancy of less than five years, and individuals afflicted with this condition suffer an extreme loss in quality of life. CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and, in keeping with this mission, our objective is to find a treatment for patients ravaged by this neurological condition for which there is currently no cure.”

Having given several talks to ALS support groups around the state, I have had the privilege of meeting many people with ALS and their families. I have seen how quickly the disease works and the devastation it brings. I’m always left in awe by the courage and dignity with which people bear it.

BrainStorm

I thought of those people, those families, today, when our governing Board voted to invest $15.9 million in a Phase 3 clinical trial for ALS run by BrainStorm Cell Therapeutics. BrainStorm is using mesenchymal stem cells (MSCs) that are taken from the patient’s own bone marrow. This reduces the risk of the patient’s immune system fighting the therapy.

After being removed, the MSCs are then modified in the laboratory to  boost their production of neurotrophic factors, proteins which are known to help support and protect the cells destroyed by ALS. The therapy, called NurOwn, is then re-infused back into the patient.

In an earlier Phase 2 clinical trial, NurOwn showed that it was safe and well tolerated by patients. It also showed evidence that it can help stop, or even reverse  the progression of the disease over a six month period, compared to a placebo.

CIRM is already funding one clinical trial program focused on treating ALS – that’s the work of Dr. Clive Svendsen and his team at Cedars Sinai, you can read about that here. Being able to add a second project, one that is in a Phase 3 clinical trial – the last stage before, hopefully, getting approval from the Food and Drug Administration (FDA) for wider use – means we are one step closer to being able to offer people with ALS a treatment that can help them.

Diane Winokur, the CIRM Board Patient Advocate member for ALS, says this is something that has been a long time coming:

CIRM Board member and ALS Patient Advocate Diane Winokur

“I lost two sons to ALS.  When my youngest son was diagnosed, he was confident that I would find something to save him.  There was very little research being done for ALS and most of that was very limited in scope.  There was one drug that had been developed.  It was being released for compassionate use and was scheduled to be reviewed by the FDA in the near future.  I was able to get the drug for Douglas.  It didn’t really help him and it was ultimately not approved by the FDA.

When my older son was diagnosed five years later, he too was convinced I would find a therapy.  Again, I talked to everyone in the field, searched every related study, but could find nothing promising.

I am tenacious by nature, and after Hugh’s death, though tempted to give up, I renewed my search.  There were more people, labs, companies looking at neurodegenerative diseases.

These two trials that CIRM is now funding represent breakthrough moments for me and for everyone touched by ALS.  I feel that they are a promising beginning.  I wish it had happened sooner.  In a way, though, they have validated Douglas and Hugh’s faith in me.”

These therapies are not a cure for ALS. At least not yet. But what they will do is hopefully help buy people time, and give them a sense of hope. For a disease that leaves people desperately short of both time and hope, that would be a precious gift. And for people like Diane Winokur, who have fought so hard to find something to help their loved ones, it’s a vindication that those efforts have not been in vain.

CIRM & NIH: a dynamic duo to advance stem cell therapies

NIH

National Institutes of Health

There’s nothing more flattering than to get an invitation, out of the blue, from someone you respect, and be told that they are interested in learning about the way you work, to see if it can help them improve the way they work.

That’s what happened to CIRM recently. I will let Randy Mills, who was our President & CEO at the time, pick up the story:

“Several weeks ago I got a call from the head of the National Heart. Lung and Blood Institute (NHLBI) asking would we be willing to come out to the National Institutes of Health (NIH) and talk about what we have been doing, the changes we have made and the impact they are having.”

Apparently people at the NIH had been reading our Strategic Plan and our Annual Report and had been hearing good things about us from many different individuals and organizations. We also heard that they had been motivated to engage more fully with the regenerative medicine community following the passage of the 21st Century Cures Act.

We were expecting a sit down chat with them but we got a lot more than that. They blocked out one and a half days for us so that we had the time to engage in some in-depth, thoughtful conversations about how to advance the field.

collins-portrait_1

Dr. Francis Collins, NIH Director

The meeting was kicked off by both Francis Collins, the NIH Director, and Gary Gibbons, the NHLBI Director. Then the CIRM team – Dr. Mills, Dr. Maria Millan, Gabe Thompson and James Harrison – gave a series of presentations providing an overview of how CIRM operates, including our vision and strategic priorities, our current portfolio, the lessons learned so far, our plans for the future and the challenges we face.

The audience included the various heads and representatives from the various NIH Institutes who posed a series of questions for us to answer, such as:

  • What criteria do we use to determine if a project is ready for a clinical trial?
  • How do we measure success?
  • How have our strategies and priorities changed under CIRM 2.0?
  • How well are those strategies working?

The conversation went so well that the one day of planned meetings were expanded to two. Maria Millan, now our interim President & CEO, gave an enthusiastic summary of the talks

“The meetings were extremely productive!  After meeting with Dr. Collins’ group and the broader institute, we had additional sit down meetings.   The NIH representatives reported that they received such enthusiastic responses from Institute heads that they extended the meeting into a second day. We met with with the National Institutes of Dental and Craniofacial Research, Heart, Lung and Blood, Eye Institute, Institute on Aging, Biomedical Imaging and Bioengineering, Diabetes, and Digestive and Kidney Diseases, and the National Center for Advancing Translational Sciences.  We covered strategic and operational considerations for funding the best science in the stem cell and regenerative medicine space.  We explored potential avenues to join forces and leverage the assets and programs of both organizations, to accelerate the development of regenerative medicine and stem cell treatments.”

This was just a first meeting but it laid the groundwork for what we hope will be a truly productive partnership. In fact, shortly after returning from Washington, D.C., CIRM was immediately invited to follow-up NIH workgroups and meetings.

As this budding partnership progresses we’ll let you know how it’s working out.