Rats, research and the road to new therapies

Don Reed

Don Reed has been a champion of CIRM even before there was a CIRM. He’s a pioneer in pushing for funding for stem cell research and now he’s working hard to raise awareness about the difference that funding is making.

In a recent article on Daily Kos, Don highlighted one of the less celebrated partners in this research, the humble rat.

A BETTER RAT? Benefit #62 of the California Stem Cell Agency

By Don C. Reed

When I told my wife Gloria I was writing an article about rats, she had several comments, including: “Oo, ugh!” and also “That’s disgusting!”

Obviously, there are problems with rats, such as when they chew through electrical wires, which may cause a short circuit and burn down the house. Also, they are blamed for carrying diseased fleas in their ears and spreading the Black Plague, which in 1340 killed half of China and one-third of Europe—but this is not certain. The plague may in fact have been transmitted by human-carried parasites.

But there are positive aspects to rats as well. For instance: “…a rat paired with  another that has a disability…will be very kind to the other rat. Usually, help is offered with food, cleaning, and general care.”—GUIDE TO THE RAT, by Ginger Cardinal.

Above all, anyone who has ever been sick owes a debt to rats, specifically the Norway rat with that spectacular name, rattus norvegicus domesticus, found in labs around the world.

I first realized its importance on March 1, 2002, when I held in my hand a rat which had been paralyzed, but then recovered the use of its limbs.

The rat’s name was Fighter, and she had been given a derivative of embryonic stem cells, which restored function to her limbs. (This was the famous stem cell therapy begun by Hans Keirstead with a Roman Reed grant, developed by Geron, and later by CIRM and Asterias, which later benefited humans.)

As I felt the tiny muscles struggling to be free, it was like touching tomorrow— while my paralyzed son, Roman Reed, sat in his wheelchair just a few feet away.

Was it different working with rats instead of mice? I had heard that the far smaller lab mice were more “bitey” than rats.  

Wanting to know more about the possibilities of a “better rat”, I went to the CIRM website, (www.cirm.ca.gov) hunted up the “Tools and Technology III” section, and the following complicated sentence::

“Embryonic stem cell- based generation of rat models for assessing human cellular therapies.”

Hmm. With science writing, it always takes me a couple of readings to know what they were talking about. But I recognized some of the words, so that was a start.

“Stemcells… rat models… human therapies….”  

I called up Dr. Qilong Ying, Principle Investigator (PI) of the study.

As he began to talk, I felt a “click” of recognition, as if, like pieces of a puzzle, facts were fitting together.

It reminded me of Jacques Cousteau, the great underwater explorer, when he tried to invent a way to breathe underwater. He had the compressed air tank, and a mouthpiece that would release air—but it came in a rush, not normal breathing.

So he visited his friend, race car mechanic Emil Gagnan, and told him, “I need something that will give me air, but only when I inhale,”– and Gagnan said: “Like that?” and pointed to a metal contraption on a nearby table.

It was something invented for cars. But by adding it to what Cousteau already had, the Cousteau-Gagnan SCUBA (Self Contained Underwater Breathing Apparatus) gear was born—and the ocean could now be explored.

Qi-Long Ying’s contribution to science may also be a piece of the puzzle of cure…

A long-term collaboration with Dr. Austin Smith centered on an attempt to do with rats what had done with mice.

In 2007, the  Nobel Prize in Medicine had been won by Dr. Martin Evans, Mario Capecchi, and Oliver Smithies. Working independently, they developed “knock-out” and “knock-in” mice, meaning to take out a gene, or put one in.  

But could they do the same with rats?

 “We and others worked very, very hard, and got nowhere,” said Dr. Evans.

Why was this important?

Many human diseases cannot be mimicked in the mouse—but might be in the rat. This is for several reasons: the rat is about ten times larger; its internal workings are closer to those of a human; and the rat is considered several million years closer (in evolutionary terms) to humans than the mouse.

In 2008 (“in China, that is the year of the rat,” noted Dr. Ying in our conversation) he received the first of three grants from CIRM.

“We proposed to use the classical embryonic stem cell-based gene-targeting technology to generate rat models mimicking human heart failure, diabetes and neurodegenerative diseases…”

How did he do?

In 2010, Science Magazine honored him with inclusion in their “Top 10 Breakthroughs for using embryonic stem cell-based gene targeting to produce the world’s first knockout rats, modified to lack one or more genes…”

And in 2016, he and Dr. Smith received the McEwen Award for Innovation,  the highest honor bestowed by the International Society for Stem Cell Research (ISSCR).

Using knowledge learned from the new (and more relevant to humans) lab rat, it may be possible to develop methods for the expansion of stem cells directly inside the patient’s own bone marrow. Stem cells derived in this fashion would be far less likely to be rejected by the patient.  To paraphrase Abraham Lincoln, they would be “of the patient, by the patient and for the patient—and shall not perish from the patient”—sorry!

Several of the rats generated in Ying’s lab (to mimic human diseases) were so successful that they have been donated to the Rat Research Resource center so that other scientists can use them for their study.

“Maybe in the future we will develop a cure for some diseases because of knowledge from using rat models,” said Ying. “I think it’s very possible. So we want more researchers from USC and beyond to come and use this technology.”

And it all began with the humble rat…

Facebook Live – Ask the Stem Cell Team about Patient Advocacy

How often do you get to ask an expert a question about something that matters deeply to you and get an answer right away? Not very often I’m guessing. That’s why CIRM’s Facebook Live “Ask the Stem Cell Team About Patient Advocacy” gives you a chance to do just that this Thursday, March 14th from noon till 1pm PST.

We have three amazing individuals who will share their experiences, their expertise and advice as Patient Advocates, and answer your questions about how to be an effective advocate for your cause.

The three are:

Gigi McMillan became a Patient Advocate when her 5-year-old son was diagnosed with a brain tumor. That led her to helping develop support systems for families going through the same ordeal, to help researchers develop appropriate consent processes and to campaign for the rights of children and their families in research.

Adrienne Shapiro comes from a family with a long history of Sickle Cell Disease (SCD) and has fought to help people with SCD have access to compassionate care. She is the co-founder of Axis Advocacy, an organization dedicated to raising awareness about SCD and support for those with it. In addition she is now on the FDA’s Patient Engagement Collaborative, a new group helping the FDA ensure the voice of the patient is heard at the highest levels.

David Higgins is a CIRM Board member and a Patient Advocate for Parkinson’s Disease. David has a family history of the disease and in 2011 was diagnosed with Parkinson’s. As a scientist and advocate he has championed research into the disease and worked to raise greater awareness about the needs of people with Parkinson’s.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you miss the broadcast, not to worry. We’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

And, of course, feel free to share this information with anyone you think might be interested.

Of Mice and Men, and Women Too; Stem cell stories you might have missed

Mice brains can teach us a lot

Last week’s news headlines were dominated by one big story, the use of a stem cell transplant to effectively cure a person of HIV. But there were other stories that, while not quite as striking, did also highlight how the field is advancing.

A new way to boost brain cells (in mice!)

It’s hard to fix something if you don’t really know what’s wrong in the first place. It would be like trying to determine why a car is not working just by looking at the hood and not looking inside at the engine. The human brain is far more complex than a car so trying to determine what’s going wrong is infinitely more challenging. But a new study could help give us a new option.

Researchers in Luxembourg and Germany have developed a new computer model for what’s happening inside the brain, identifying what cells are not operating properly, and fixing them.

Antonio del Sol, one of the lead authors of the study – published in the journal Cell – says their new model allows them to identify which stem cells are active and ready to divide, or dormant. 

“Our results constitute an important step towards the implementation of stem cell-based therapies, for instance for neurodegenerative diseases. We were able to show that, with computational models, it is possible to identify the essential features that are characteristic of a specific state of stem cells.”

The work, done in mice, identified a protein that helped keep brain stem cells inactive in older animals. By blocking this protein they were able to help “wake up” those stem cells so they could divide and proliferate and help regenerate the aging brain.

And if it works in mice it must work in people right? Well, that’s what they hope to see next.

Deeper understanding of fetal development

According to the Mayo Clinic between 10 and 20 percent of known pregnancies end in miscarriage (though they admit the real number may be even higher) and our lack of understanding of fetal development makes it hard to understand why. A new study reveals a previously unknown step in this development that could help provide some answers and, hopefully, lead to ways to prevent miscarriages.

Researchers at the Karolinska Institute in Sweden used genetic sequencing to follow the development stages of mice embryos. By sorting those different sequences into a kind of blueprint for what’s happening at every stage of development they were able to identify a previously unknown phase. It’s the time between when the embryo attaches to the uterus and when it begins to turn these embryonic stem cells into identifiable parts of the body.

Qiaolin Deng, Karolinska Institute

Lead researcher Qiaolin Deng says this finding provides vital new evidence.

“Being able to follow the differentiation process of every cell is the Holy Grail of developmental biology. Knowledge of the events and factors that govern the development of the early embryo is indispensable for understanding miscarriages and congenital disease. Around three in every 100 babies are born with fetal malformation caused by faulty cellular differentiation.”

The study is published in the journal Cell Reports.

Could a new drug discovery reduce damage from a heart attack?

Every 40 seconds someone in the US has a heart attack. For many it is fatal but even for those who survive it can lead to long-term damage to the heart that ultimately leads to heart failure. Now British researchers think they may have found a way to reduce that likelihood.

Using stem cells to create human heart muscle tissue in the lab, they identified a protein that is activated after a heart attack or when exposed to stress chemicals. They then identified a drug that can block that protein and, when tested in mice that had experienced a heart attack, they found it could reduce damage to the heart muscle by around 60 percent.

Prof Michael Schneider, the lead researcher on the study, published in Cell Stem Cell, said this could be a game changer.

“There are no existing therapies that directly address the problem of muscle cell death and this would be a revolution in the treatment of heart attacks. One reason why many heart drugs have failed in clinical trials may be that they have not been tested in human cells before the clinic. Using both human cells and animals allows us to be more confident about the molecules we take forward.”

Mending Stem Cells: The Past, Present and Future of Regenerative Medicine

To Mend: (verb used with object) to make (something broken, worn, torn or otherwise damaged) whole, sound or usable by repairing.

It’s remarkable to believe, but today doctors literally have the tools to repair damaged cells. These tools are being used to treat people with diseases that were once incurable. The field of regenerative medicine has made tremendous progress in the last 15 years, but how did these tools come about and what is the experience of patients being treated with them?

These questions, and hopefully yours too, are going to be answered at the fourth annual CIRM Alpha Stem Cell Clinics Symposium on April 18, 2019 at the University of California at San Francisco.

UCSF Mission Bay Campus

The symposium is free, and the program is designed with patients and the public in mind, so don’t be shy and put your scientific thinking caps on! A complete agenda may be found here

Perhaps one of the most remarkable discoveries in the past decade are new tools that enable doctors to “edit” or correct a patient’s own DNA. DNA correction tools came about because of a remarkable string of scientific breakthroughs. The symposium will dive into this history and discuss  how these tools are being used today to treat patients.

One specific example of the promise that DNA editing holds is for those with sickle cell disease (SCD), a condition where patients’ blood forming stem cells contain a genetic error that causes the disease. The symposium will describe how the CIRM Alpha Stem Cell Clinics Network, a series of medical centers across California whose focus is on stem cell clinical trials, are supporting work aimed at mending blood cells to cure debilitating diseases like SCD.

Doctors, nurses and patients involved with these trials will be telling their stories and describing their experiences. One important focus will be how Alpha Clinic teams are partnering with community members to ensure that patients, interested in new treatments, are informed about the availability of clinical trials and receive sufficient information to make the best treatment choices.

The fourth annual CIRM Alpha Stem Cell Clinics Symposium is an opportunity for patients, their families and the public to meet the pioneers who are literally mending a patients own stem cells to cure their disease.

For registration information go here.


Rare Disease Day – fighting for awareness and hope

It’s hard thinking of something as rare when one in 20 people are at risk of experiencing it in their lifetime. But that’s the situation with rare diseases. There are more than 7,000 of them and each affects under 200,000 people. In some cases they may only affect a few hundred people. But for each person that disease, though rare, poses a real threat. And that’s why Rare Disease Day was created.

Rare Disease Day is held on the last day of February each year.  The goal is to raise awareness among the general public about the huge impact these diseases have on people’s lives. That impact is not just on the person with the disease but on the whole family who are often struggling just to get a diagnosis.

Every year groups around the world, from patients and patient advocacy organizations to researchers and policymakers, stage events to mark the day. This year there are more than 460 events being held in 96 countries, everywhere from Albania and Andora to Tunisia and Uruguay.

Here in the US many groups organize events at State Capitols to educate elected officials and policy makers about the particular needs of these communities and the promise that scientific research holds to combat these conditions. Others have auctions to raise funds for research or public debates to raise awareness.

Each event is unique in its own way because each represents many different diseases, many different needs, and many different stories. The goal of these events is to put a human face on each condition, to give it visibility, so that it is no longer something most people have never heard of, instead it becomes something that affects someone you may know or who reminds you of someone you know.

Here’s a video from Spain that does just that.

You can find a complete list of events being held around the world to mark Rare Disease Day.

At CIRM we feel a special link to this day. That’s because many of the diseases we fund research into are rare diseases such as severe combined immunodeficiency (SCID), and ALS or Lou Gehrig’s disease, and Sickle Cell Disease.

Evie Vaccaro, cured of SCID

These diseases affect relatively small numbers of patients so they often struggle to get funding for research. Because we do not have to worry about making a profit on any therapy we help develop we can focus our efforts on supporting those with unmet medical needs. And it’s paying off. Our support has already helped develop a therapy for SCID that has cured 40 children. We have two clinical trials underway for ALS or Lou Gehrig’s disease. We also have two clinical trials for Sickle Cell Disease and have reached a milestone agreement with the National Heart, Lung and Blood Institute (NHLBI) on a partnership to help develop a cure for this crippling and life-threatening disorder.

The hope is that events like Rare Disease Day let people know that even though they have a condition that affects very few, that they are not alone, but that they are part of a wider, global community, a community committed to working to find treatments and cures for all of them.

Stories that caught our eye: National Geographic takes a deep dive into iPS cells; Japanese researchers start iPS cell clinical trial for spinal cord injury; and do high fat diets increase your risk of colorectal cancer

Can cell therapy beat the most difficult diseases?

That’s the question posed in a headline in National Geographic. The answer; maybe, but it is going to take time and money.

The article focuses on the use of iPS cells, the man-made equivalent of embryonic stem cells that can be turned into any kind of cell or tissue in the body. The reporter interviews Kemal Malik, the member of the Board of Management for pharmaceutical giant Bayer who is responsible for innovation. When it comes to iPS cells, it’s clear Malik is a true believer in their potential.

“Because every cell in our bodies can be produced from a stem cell, the applicability of cell therapy is vast. iPSC technology has the potential to tackle some of the most challenging diseases on the planet.”

But he also acknowledges that the field faces some daunting challenges, including:

  • How to manufacture the cells on a large scale without sacrificing quality and purity
  • How do you create products that have a stable shelf life and can be stored until needed?
  • How do you handle immune reactions if you are giving these cells to patients?

Nonetheless, Malik remains confident we can overcome those challenges and realize the full potential of these cells.

“I believe human beings are on the cusp of the next big wave of pharmaceutical innovation. The use of living cells to make people better.”

As if to prove Malik right there was also news this week that researchers at Japan’s Keio University have been given permission to start a clinical trial using iPS cells to treat people with spinal cord injuries. This would be the first of its kind anywhere in the world.

Japan launches iPSC clinical trial for spinal cord injury

An article in Biospace says that the researchers plan to treat four patients who have suffered varying degrees of paralysis due to a spinal cord injury.  They will take cells from the patients and, using the iPS method, turn them into the kind of nerve cells found in the spinal cord, and then transplant two million of them back into the patient. The hope is that this will create new connections that restore movement and feeling in the individuals.

This trial is expected to start sometime this summer.

CIRM has already funded a first-of-its-kind clinical trial for spinal cord injury with Asterias Biotherapeutics. That clinical trial used embryonic stem cells turned into oligodendrocyte progenitor cells – which develop into cells that support and protect nerve cells in the central nervous system. We blogged about the encouraging results from that trial here.

High fat diet drives colorectal cancer

Finally today, researchers at Salk have uncovered a possible cause to the rise in colorectal cancer deaths among people under the age of 55; eating too much high fat food.

Our digestive system works hard to break down the foods we eat and one way it does that is by using bile acids. Those acids don’t just break down the food, however, they also break down the lining of our intestines. Fortunately, our gut has a steady supply of stem cells that can repair and replace that lining. Unfortunately, at least according to the team from Salk, mutations in these stem cells can lead to colorectal cancer.

The study, published in the journal Cell, shows that bile acids affect a protein called FXR that is responsible for ensuring that gut stem cells produce a steady supply of new lining for the gut wall. When someone eats a high fat diet it upsets the balance of bile acids, starting a cascade of events that help cancer develop and grow.

In a news release Annette Atkins, a co-author of the study, says there is a strong connection between bile acid and cancer growth:

“We knew that high-fat diets and bile acids were both risk factors for cancer, but we weren’t expecting to find they were both affecting FXR in intestinal stem cells.”

So next time you are thinking about having that double bacon cheese burger for lunch, you might go for the salad instead. Your gut will thank you. And it might just save your life.

CIRM Invests in Chemotherapy-Free Approach to Rare But Deadly Childhood Disease

David Vetter, boy diagnosed with SCID

Imagine being told that your seemingly healthy newborn baby has a life-threatening disease. In a moment your whole world is turned upside down. That’s the reality for families with a child diagnosed with severe combined immunodeficiency (SCID). Children with SCID lack a functioning immune system so even a simple cold can prove fatal. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $3.7 million to develop a new approach that could help these children.

The funding will enable Stanford’s Dr. Judith Shizuru to complete an earlier CIRM-funded Phase 1 clinical trial using a chemotherapy-free transplant procedure for SCID.

Dr. Judy Shizuru: Photo courtesy Stanford University

The goal of the project is to replace SCID patients’ dysfunctional immune cells with healthy ones using a safer form of bone marrow transplant (BMT). Current BMT procedures use toxic chemotherapy to make space in the bone marrow for the healthy transplanted stem cells to take root and multiply. The Stanford team is testing a safe, non-toxic monoclonal antibody that targets and removes the defective blood forming stem cellsin order to promote the engraftment of the transplanted stem cells in the patient. 

The funding is contingent on Dr. Shizuru raising $1.7 million in co-funding by May 1 of this year. 

“This research highlights two of the things CIRM was created to do,” says Maria T. Millan, MD, President & CEO of CIRM. “We fund projects affecting small numbers of patients, something many organizations or companies aren’t willing to do, and we follow those projects from the bench to the bedside, supporting them every step along the way.”

Early testing has shown promise in helping patients and it’s hoped that if this approach is successful in children with SCID it may also open up similar BMT therapies for patients with other auto-immune diseases such as multiple sclerosis, lupus or diabetes.

Tips on how to be a great Patient Advocate from three of the best Advocates around

No one sets out to be a Patient Advocate. It’s something that you become because of something that happens to you. Usually it’s because you, or  a loved one or a friend, becomes ill and you want to help find a treatment. Whatever the reason, it is the start of a journey that often throws you into a world that you know nothing about: a world of research studies and scientific terminology, of talking to and trying to understand medical professionals, and of watching someone you love struggle.

It’s a tough, demanding, sometimes heart-breaking role. But it’s also one of the most important roles you can ever take on. Patient Advocates not only care for people afflicted with a particular disease or disorder, they help them navigate a new and scary world, they help raise money for research, and push researchers to work harder to find new treatments, maybe even cures. And they remind all of us that in the midst of pain and suffering the human touch, a simple kindness is the most important gift of all.

But what makes a great Patient Advocate, what skills do you need and how can you get them? At CIRM we are blessed to have some of the most amazing Patient Advocates you will ever meet. So we asked three of them to join us for a special Facebook Live “Ask the Stem Cell Team” event to share their knowledge, experience and expertise with you.

The Facebook Live “Ask the Stem Cell Team About Patient Advocacy” event will be on Thursday, March 14th from noon till 1pm PST.

The three experts are:

Gigi McMillan

Gigi McMillan became a Patient Advocate when her 5-year-old son was diagnosed with a brain tumor. That has led her to helping develop support systems for families going through the same ordeal, to help researchers develop appropriate consent processes and to campaign for the rights of children and their families in research.

Adrienne Shapiro

Adrienne Shapiro comes from a family with a long history of Sickle Cell Disease (SCD) and has fought to help people with SCD have access to compassionate care. She is the co-founder of Axis Advocacy, an organization dedicated to raising awareness about SCD and support for those with it. In addition she is now on the FDA’s Patient Engagement Collaborative, a new group helping the FDA ensure the voice of the patient is heard at the highest levels.

David Higgins

David Higgins is a CIRM Board member and a Patient Advocate for Parkinson’s Disease. David has a family history of the disease and in 2011 was diagnosed with Parkinson’s. As a scientist and advocate he has championed research into the disease and strived to raise greater awareness about the needs of people with Parkinson’s.

Please join us for our Facebook Live event on Patient Advocates on Thursday, March 14 from noon till 1pm and feel free to share information about the event with anyone you think would be interested.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you miss the broadcast, not to worry. We’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

Rare Disease Gets Big Boost from California’s Stem Cell Agency

UC Irvine’s Dr. Leslie Thompson and patient advocate Frances Saldana after the CIRM Board vote to approve funding for Huntington’s disease

If you were looking for a poster child for an unmet medical need Huntington’s disease (HD) would be high on the list. It’s a devastating disease that attacks the brain, steadily destroying the ability to control body movement and speech. It impairs thinking and often leads to dementia. It’s always fatal and there are no treatments that can stop or reverse the course of the disease. Today the Board of the California Institute for Regenerative Medicine (CIRM) voted to support a project that shows promise in changing that.

The Board voted to approve $6 million to enable Dr. Leslie Thompson and her team at the University of California, Irvine to do the late stage testing needed to apply to the US Food and Drug Administration for permission to start a clinical trial in people. The therapy involves transplanting stem cells that have been turned into neural stem cells which secrete a molecule called brain-derived neurotrophic factor (BDNF), which has been shown to promote the growth and improve the function of brain cells. The goal is to slow down the progression of this debilitating disease.

“Huntington’s disease affects around 30,000 people in the US and children born to parents with HD have a 50/50 chance of getting the disease themselves,” says Dr. Maria T. Millan, the President and CEO of CIRM. “We have supported Dr. Thompson’s work for a number of years, reflecting our commitment to helping the best science advance, and are hopeful today’s vote will take it a crucial step closer to a clinical trial.”

Another project supported by CIRM at an earlier stage of research was also given funding for a clinical trial.

The Board approved almost $12 million to support a clinical trial to help people undergoing a kidney transplant. Right now, there are around 100,000 people in the US waiting to get a kidney transplant. Even those fortunate enough to get one face a lifetime on immunosuppressive drugs to stop the body rejecting the new organ, drugs that increase the risk for infection, heart disease and diabetes.  

Dr. Everett Meyer, and his team at Stanford University, will use a combination of healthy donor stem cells and the patient’s own regulatory T cells (Tregs), to train the patient’s immune system to accept the transplanted kidney and eliminate the need for immunosuppressive drugs.

The initial group targeted in this clinical trial are people with what are called HLA-mismatched kidneys. This is where the donor and recipient do not share the same human leukocyte antigens (HLAs), proteins located on the surface of immune cells and other cells in the body. Around 50 percent of patients with HLA-mismatched transplants experience rejection of the organ.

In his application Dr. Meyer said they have a simple goal: “The goal is “one kidney for life” off drugs with safety for all patients. The overall health status of patients off immunosuppressive drugs will improve due to reduction in side effects associated with these drugs, and due to reduced graft loss afforded by tolerance induction that will prevent chronic rejection.”

Media shine a spotlight on dodgy stem cell clinics

A doctor collects fat from a patient’’s back as part of an experimental stem cell procedure in Beverly Hills, Calif. on Dec. 5, 2014. (Raquel Maria Dillon / Associated Press)

For several years now, we have been trying to raise awareness about the risks posed by clinics offering unproven or unapproved stem cell therapies. At times it felt as if we were yelling into the wind, that few people were listening. But that’s slowly changing. A growing number of TV stations and newspapers are picking up the message and warning their readers and viewers. It’s a warning that is getting national exposure.

Why are we concerned about these clinics? Well, they claim their therapies, which usually involve the patient’s own fat or blood cells, can cure everything from arthritis to Alzheimer’s. However, they offer no scientific proof, have no studies to back up their claims and charge patients thousands, sometimes tens of thousands of dollars.

In the LA Times, for example, reporter Usha Lee McFarling, wrote an article headline “California has gone crazy for sketchy stem cell treatments”. In it she writes about the claims made by these clinics and the dangers they pose:

“If it sounds too good to be true, it is. There is no good scientific evidence the pricey treatments work, and there is growing evidence that some are dangerous, causing blindness, tumors and paralysis. Medical associations, the federal government and even Consumer Reports have all issued stern warnings to patients about the clinics.”

In Denver, the ABC TV station recently did an in-depth interview with a local doctor who is trying to get Colorado state legislators to take legal action against stem cell clinics making these kinds of unsupported claims.

Chris Centeno of the Centeno-Schultz Clinic, who’s specialized in regenerative medicine and research for more than a decade, said too many people are simply being scammed.

“It’s really out of control,” he told the station.

ABC7 did a series of reports last year on the problem and that may be prompting this push for a law warning consumers about the dangers posed by these unregulated treatments which are advertised heavily online, on TV and in print.

In California there is already one law on the books attempting to warn consumers about these clinics. CIRM worked with State Senator Ed Hernandez to get that passed (you can read about that here) and we are continuing to support even stronger measures.

And the NBC TV station in San Diego recently reported on the rise of stem cell clinics around the US, a story that was picked up by the networks and run on the NBC Today Show.

One of the critical elements in helping raise awareness about the issue has been the work done by Paul Knoepfler and Leigh Turner in identifying how many of these clinics there are around the US. Their report, published in the journal Cell Stem Cell, was the first to show how big the problem is. It attracted national attention and triggered many of the reports that followed.

It is clear momentum is building and we hope to build on that even further. Obviously, the best solution would be to have the Food and Drug Administration (FDA) crack down on these clinics, and in some cases they have. But the FDA lacks the manpower to tackle all of them.

That’s where the role of the media is so important. By doing stories like these and raising awareness about the risks these clinics pose they can hopefully help many patients avoid treatments that will do little except make a dent in their pocket.