World Sickle Cell Day: A View from the Front Line

June 19th is World Sickle Cell Day. Sickle cell disease is an inherited blood disorder that causes normally round red blood cells to take on an abnormal sickle shape, resulting in clogged arteries, severe pain, increased risk of stroke and reduced life expectancy. To mark the occasion we asked Nancy M. Rene to write a guest blog for us. Nancy is certainly qualified; she is the grandmother of a child with sickle cell disease, and the co-founder of Axis Advocacy, a non-profit advocating for those with sickle cell disease and their families.

Nancy ReneOn this World Sickle Cell Day, 2017, we can look back to the trailblazers in the fight against Sickle Cell Disease.  More than 40 years ago, the Black Panther Party established the People’s Free Medical Clinics in several cities across the country. One of the functions of these free clinics: to screen people for sickle cell disease and sickle cell trait. This life-saving screening began  in 1971.

Around that same time, President Richard Nixon allocated $10 million to begin the National Sickle Cell Anemia Control Act. This included counseling and screening, educational activities, and money for research.

In the early part of the twentieth century, most children with sickle cell died before their fifth birthday. With newborn screening available nationwide, the use of penicillin to prevent common infections, and the finding that hydroxyurea was useful in fighting the disease, life expectancy began to improve.

For much of the twentieth century, people with sickle cell disease felt that they were fighting the fight alone, knowledgeable doctors were scarce and insurance was often denied.

Making progress

As we moved into the twenty-first century, patients and families found they had some powerful allies. The National Institutes of Health (NIH), Centers for Disease Control and Prevention (CDC) and the Food and Drug Administration (FDA) joined the battle.  In 2016 the NIH held its tenth annual international conference on sickle cell disease that featured speakers from all over the world.  Participants were able to learn about best practices in Europe, Africa, India, and South America.

Sickle Cell centers at Howard University, the Foundation for Sickle Cell Disease Research, and other major universities across the country are pointing the way to the best that medicine has to offer.

Last year, the prestigious American Society of Hematology (ASH) launched an initiative to improve understanding and treatment of sickle cell disease.  Their four-point plan includes education, training, advocacy, and expanding its global reach.

Just last month, May 2017, the FDA looked at Endari, developed by Emmaus Medical in Torrance, California.  It is the first drug specifically developed for sickle cell disease to go through the FDA’s approval process. We should have a decision on whether or not the drug goes to market in July.

The progress that had been made up to the beginning of the twenty-first century was basically about alleviating the symptoms of the disease: the sickling, the organ damage and the pervasive anemia. But a cure was still elusive.

But in 2004, California’s Stem Cell Agency, CIRM, was created and it was as if the gates had opened.

Researchers had a new source of funding to enable  them to work on Sickle Cell Disease and many other chronic debilitating diseases at the cellular level. Scientists like Donald Kohn at UCLA, were able to research gene editing and find ways to use autologous bone marrow transplants to actually cure people with sickle cell. While some children with sickle cell have been cured with traditional bone marrow transplants, these transplants must come from a matched donor, and for most patients, a matched donor is simply not available. CIRM has provided the support needed so that researchers are closing in on the cure. They are able to share strategies with doctors and researchers throughout the world

And finally, support from the federal government came with the passage of the Affordable Care Act and adequate funding for the NIH, CDC, the Health Resources and Services Administration (HRSA), and FDA.

Going backwards

And yet, here we are, World Sickle Cell Day, 2017.

Will this be a case of one step forward two steps back?

Are we really going back to the time when people with Sickle Cell Disease could not get health insurance because sickle cell is a pre-existing condition, to the time when there was little money and no interest in research or professional training, to a time when patients and their families were fighting this fight alone?

For all of those with chronic disease, it’s as if we are living a very bad dream.

Time to wake up

For me, I want to wake up from that dream.  I want to look forward to a future where patients and families, where Joseph and Tiffany and Marissa and Ken and Marcus and all the others, will no longer have to worry about getting well-informed, professional treatment for their disease.

Where patients will no longer fear going to the Emergency Room

Where doctors and researchers have the funding they need to support them in their work toward the cure,

Where all children, those here in the United States along with those in Africa, India, and South America, will have access to treatments that can free them from pain and organ damage of sickle cell disease.

And where all people with this disease can be cured.

Stories that caught our eye: An antibody that could make stem cell research safer; scientists prepare for clinical trial for Parkinson’s disease; and the stem cell scientist running for Congress

Antibody to make stem cells safer:

There is an old Chinese proverb that states: ‘What seems like a blessing could be a curse’. In some ways that proverb could apply to stem cells. For example, pluripotent stem cells have the extraordinary ability to turn into many other kinds of cells, giving researchers a tool to repair damaged organs and tissues. But that same ability to turn into other kinds of cells means that a pluripotent stem cell could also turn into a cancerous one, endangering someone’s life.

A*STAR

Researchers at the A*STAR Bioprocessing Technology Institute: Photo courtesy A*STAR

Now researchers at the Agency for Science, Technology and Research (A*STAR) in Singapore may have found a way to stop that happening.

When you change, or differentiate, stem cells into other kinds of cells there will always be some of the original material that didn’t make the transformation. Those cells could turn into tumors called teratomas. Scientists have long sought for a way to identify pluripotent cells that haven’t differentiated, without harming the ones that have.

The team at A*STAR injected mice with embryonic stem cells to generate antibodies. They then tested the ability of the different antibodies to destroy pluripotent stem cells. They found one, they called A1, that did just that; killing pluripotent cells but leaving other cells unharmed.

Further study showed that A1 worked by attaching itself to specific molecules that are only found on the surface of pluripotent cells.

In an article on Phys.Org Andre Choo, the leader of the team, says this gives them a tool to get rid of the undifferentiated cells that could potentially cause problems:

“That was quite exciting because it now gives us a view of the mechanism that is responsible for the cell-killing effect.”

Reviving hope for Parkinson’s patients:

In the 1980’s and 1990’s scientists transplanted fetal tissue into the brains of people with Parkinson’s disease. They hoped the cells in the tissue would replace the dopamine-producing cells destroyed by Parkinson’s, and stop the progression of the disease.

For some patients the transplants worked well. For some they produced unwanted side effects. But for most they had little discernible effect. The disappointing results pretty much brought the field to a halt for more than a decade.

But now researchers are getting ready to try again, and a news story on NPR explained why they think things could turn out differently this time.

tabar-viviane

Viviane Tabar, MD; Photo courtesy Memorial Sloan Kettering Cancer Center

Viviane Tabar, a stem cell researcher at Memorial Sloan Kettering Cancer Center in New York, says in the past the transplanted tissue contained a mixture of cells:

“What you were placing in the patient was just a soup of brain. It did not have only the dopamine neurons, which exist in the tissue, but also several different types of cells.”

This time Tabar and her husband, Lorenz Studer, are using only cells that have been turned into the kind of cell destroyed by the disease. She says that will, hopefully, make all the difference:

“So you are confident that everything you are putting in the patient’s brain will consist of  the right type of cell.”

Tabar and Studer are now ready to apply to the Food and Drug Administration (FDA) for permission to try their approach out in a clinical trial. They hope that could start as early as next year.

Hans runs for Congress:

Keirstead

Hans Keirstead: Photo courtesy Orange County Register

Hans Keirstead is a name familiar to many in the stem cell field. Now it could become familiar to a lot of people in the political arena too, because Keirstead has announced he’s planning to run for Congress.

Keirstead is considered by some to be a pioneer in stem cell research. A CIRM grant helped him develop a treatment for spinal cord injury.  That work is now in a clinical trial being run by Asterias. We reported on encouraging results from that trial earlier this week.

Over the years the companies he has founded – focused on ovarian, skin and brain cancer – have made him millions of dollars.

Now he says it’s time to turn his sights to a different stage, Congress. Keirstead has announced he is going to challenge 18-term Orange County Republican Dana Rohrabacher.

In an article in the Los Angeles Times, Keirstead says his science and business acumen will prove important assets in his bid for the seat:

“I’ve come to realize more acutely than ever before the deficits in Congress and how my profile can actually benefit Congress. I’d like to do what I’m doing but on a larger stage — and I think Congress provides that, provides a forum for doing the greater good.”

 

 

 

 

 

 

 

 

 

Baseball’s loss is CIRM’s gain as Stanford’s Linda Boxer is appointed to Stem Cell Agency Board

Boxer

Dr. Linda Boxer: Photo courtesy Stanford University

One of the things that fascinates me is finding out how people end up in the job they have, the job they love. It is rare that the direction they started out on is the one they end on. Usually, people take several different paths, some intended, some unintended, to get to where they want to be.

A case in point is Dr. Linda Boxer, a renowned and respected researcher and physician at the Stanford School of Medicine, and now the newest member of the CIRM Board (you can read all about that in our news release).

In Dr. Boxer’s case, her original career path was a million miles from working with California’s stem cell agency:

“The first career choice that I recall as a young child was professional baseball—growing up in Minnesota, I was a huge Twins fan—I did learn fairly quickly that this was not likely to be a career that was available for a girl, and it wasn’t clear what one did after that career ended at a relatively young age.”

Fortunately for us she became interested in science.

“I have always been curious about how things work—science classes in grade school were fascinating to me. I was given a chemistry kit as a birthday gift, and I was amazed at what happened when different chemicals were mixed together: color changes, precipitates forming, gas bubbles, explosions (small ones, of course).

Then when we studied biology in middle school, I was fascinated by what one could observe with a microscope and became very interested in trying to understand how living organisms work.

It was an easy decision to plan a career in science.  The tougher decision came in college when I had planned to apply to graduate school and earn a PhD, but I was also interested in human health and disease and thought that perhaps going to medical school made more sense.  Fortunately, one of my faculty advisors told me about combined MD/PhD programs, and that choice seemed perfect for me.”

Along the way she says she got a lot of help and support from her colleagues. Now she wants to do the same for others:

“Mentors are incredibly important at every career stage.  I have been fortunate to have been mentored by some dedicated scientists and physicians.  Interestingly, they have all been men.  There were really very few women available as mentors at the time—of course, that has changed for the better now.  It never occurred to me then that gender made a difference, and I just looked for mentors who had successful careers as scientists and physicians and who could provide advice to someone more junior.

One of the aspects of my role now that I enjoy the most is mentoring junior faculty and trainees.  I don’t think one can have too many mentors—different mentors can help with different aspects of one’s life and career.  I think it is very important for established scientists to give back and to help develop the next generation of physicians and scientists.”

Dr. Boxer is already well known to everyone at CIRM, having served as the “alternate” on the Board for Stanford’s Dr. Lloyd Minor. But her appointment by State Controller Betty Yee makes her the “official” Board member for Stanford. She brings a valuable perspective as both a scientist and a physician.

The Minnesota Twins lost out when she decided to pursue a career in science. We’re glad she did.

 

New stem cell technique gives brain support cells a starring role

Gage et al

The Salk team. From left: Krishna Vadodaria, Lynne Moore, Carol Marchetto, Arianna Mei, Fred H. Gage, Callie Fredlender, Ruth Keithley, Ana Diniz Mendes. Photo courtesy Salk Institute

Astrocytes are some of the most common cells in the brain and central nervous system but they often get overlooked because they play a supporting role to the more glamorous neurons (even though they outnumber them around 50 to 1). But a new way of growing those astrocytes outside the brain could help pave the way for improved treatments for stroke, Alzheimer’s and other neurological problems.

Astrocytes – which get their name because of their star shape (Astron – Greek for “star” and “kyttaron” meaning cell) – have a number of key functions in the brain. They provide physical and metabolic support for neurons; they help supply energy and fuel to neurons; and they help with detoxification and injury repair, particularly in terms of reducing inflammation.

Studying these astrocytes in the lab has not been easy, however, because existing methods of producing them have been slow, cumbersome and not altogether effective at replicating their many functions.

Finding a better way

Now a team at the Salk Institute, led by CIRM-funded Professor Fred “Rusty” Gage, has developed a way of using stem cells to create astrocytes that is faster and more effective.

Their work is published in the journal Stem Cell Reports. In a news release, Gage says this is an important discovery:

“This work represents a big leap forward in our ability to model neurological disorders in a dish. Because inflammation is the common denominator in many brain disorders, better understanding astrocytes and their interactions with other cell types in the brain could provide important clues into what goes wrong in disease.”

Stylized microscopy image of an astrocyte (red) and neuron (green). (Salk Institute)

In a step by step process the Salk team used a series of chemicals, called growth factors, to help coax stem cells into becoming, first, generic brain cells, and ultimately astrocytes. These astrocytes not only behaved like the ones in our brain do, but they also have a particularly sensitive response to inflammation. This gives the team a powerful tool in helping develop new treatment to disorders of the brain.

But wait, there’s more!

As if that wasn’t enough, the researchers then used the same technique to create astrocytes from induced pluripotent stem cells (iPSCs) – adult cells, such as skin, that have been re-engineered to have the ability to turn into any other kind of cell in the body. Those man-made astrocytes also showed the same characteristics as natural ones do.

Krishna Vadodaria, one of the lead authors on the paper, says having these iPSC-created astrocytes gives them a completely new tool to help explore brain development and disease, and hopefully develop new treatments for those diseases.

“The exciting thing about using iPSCs is that if we get tissue samples from people with diseases like multiple sclerosis, Alzheimer’s or depression, we will be able to study how their astrocytes behave, and how they interact with neurons.”

Stem cell study shows how smoking attacks the developing liver in unborn babies

smoking mom

It’s no secret that smoking kills. According to the Centers for Disease Control and Prevention (CDC) smoking is responsible for around 480,000 deaths a year in the US, including more than 41,000 due to second hand smoke. Now a new study says that damage can begin in utero long before the child is born.

Previous studies had suggested that smoking could pose a serious risk to a fetus but those studies were done in petri dishes in the lab or using animals so the results were difficult to extrapolate to humans.

Researchers at the University of Edinburgh in Scotland got around that problem by using embryonic stem cells to explore how the chemicals in tobacco can affect the developing fetus. They used the embryonic stem cells to develop fetal liver tissue cells and then exposed those cells to a cocktail of chemicals known to be found in the developing fetus of mothers who smoke.

Dangerous cocktail

They found that this chemical cocktail proved far more potent, and damaged the liver far more, than individual chemicals. They also found it damaged the liver of males and females in different ways.  In males the chemicals caused scarring, in females it was more likely to negatively affect cell metabolism.

There are some 7,000 chemicals found in cigarette smoke including tar, carbon monoxide, hydrogen cyanide, ammonia, and radioactive compounds. Many of these are known to be harmful by themselves. This study highlights the even greater impact they have when combined.

Long term damage

The consequences of exposing a developing fetus to this toxic cocktail can be profound, including impaired growth, premature birth, hormonal imbalances, increased predisposition to metabolic syndrome, liver disease and even death.

The study is published in the Archives of Toxicology.

In a news release Dr. David Hay, one of the lead authors, said this result highlights yet again the dangers posed to the fetus by women smoking while pregnant or being exposed to secondhand smoke :

“Cigarette smoke is known to have damaging effects on the foetus, yet we lack appropriate tools to study this in a very detailed way. This new approach means that we now have sources of renewable tissue that will enable us to understand the cellular effect of cigarettes on the unborn foetus.”

Texas tries to go it alone in offering unproven stem cell therapies to patients

Texas Capitol. (Shutterstock)

One of the most hotly debated topics in stem cell research is whether patients should be able to have easier access to unproven therapies using their own stem cells, at their own risk, and their own cost. It’s a debate that is dividing patients and physicians, researchers and lawmakers.

In California, a bill working its way through the state legislature wants to have warning signs posted in clinics offering unproven stem cell therapies, letting patients know they are potentially putting themselves at risk.

Texas is taking a very different approach. A series of bills under consideration would make it easier for clinics to offer unproven treatments; make it easier for patients with chronic illnesses to use the “right to try” law to take part in early-stage clinical trials (in the past, it was only patients with a terminal illness who could do that); and allow these clinics to charge patients for these unproven stem cell therapies.

Not surprisingly, the Texas bills are attracting some widely divergent views. Many stem cell researchers and some patient advocates are opposed to them, saying they prey on the needs of vulnerable people, offering them treatments – often costing thousands, even tens of thousands of dollars – that have little or no chance of success.

In an article on STATnews, Sean Morrison, a stem cell researcher at the University of Texas Southwestern Medical Center, in Dallas, said the Texas bills would be bad for patients:

“When patients get desperate, they have a capacity to suspend disbelief. When offered the opportunity of a therapy they believe in, even without data and if the chances of benefit are low, they’ll fight for access to that therapy. The problem is there are fraudulent stem cell clinics that have sprung up to exploit that.”

Patients like Jennifer Ziegler disagree with that completely. Ziegler has multiple sclerosis and has undergone three separate stem cell treatments – two in the US and one in Panama – to help treat her condition. She is also a founding member of Patients For Stem Cells (PFSC):

Jennifer Ziegler

“PFSC does not believe our cells are drugs. We consider the lack of access to adult stem cells an overreach by the federal government into our medical freedoms. My cells are not mass produced, and they do not cross state lines. An adult stem cell treatment is a medical procedure, between me, a fully educated patient, and my fully competent doctor.”

The issue is further complicated because the US Food and Drug Administration (FDA) – which has regulatory authority over stem cell treatments – considers the kinds of therapies these clinics offer to be a technical violation of the law. So even if Texas passes these three bills, they could still be in violation of federal law. However, a recent study in Cell Stem Cell showed that there are some 570 clinics around the US offering these unproven therapies, and to date the FDA has shown little inclination to enforce the law and shut those clinics down.

UC Davis stem cell researcher – and CIRM grantee – Paul Knoepfler is one of the co-authors of the study detailing how many clinics there are in the US. On his blog – The Niche – he recently expressed grave concerns about the Texas bills:

Paul Knoepfler

“The Texas Legislature is considering three risky bills that would give free rein to stem cell clinics to profit big time off of patients by selling unproven and unapproved “stem cell treatments” that have little if any science behind them. I call one of these bills “Right to Profit” for clinics, which if these became law could get millions from vulnerable patients and potentially block patient rights.”

Ziegler counters that patients have the right to try and save their own lives, saying if the Texas bills pass: “chronically ill, no option patients in the US, will have the opportunity to seek treatment without having to leave the country.”

It’s a debate we are all too familiar with at CIRM. Every day we get emails and phone calls from people asking for help in finding a treatment, for them or a loved one, suffering from a life-threatening or life-altering disease or disorder. It’s incredibly difficult having to tell them there is nothing that would help them currently being tested in a clinical trial.

Inevitably they ask about treatments they have seen online, offered by clinics using the patient’s own stem cells to treat them. At that point, it is no longer an academic debate about proven or unproven therapies, it has become personal; one person asking another for help, to find something, anything, to save their life.

Barring a dramatic change of policy at the FDA. these clinics are not going to go away. Nor will the need of patients who have run out of options and are willing to try anything to ease their pain or delay death. We need to find another way, one that brings these clinics into the fold and makes the treatments they offer part of the clinical trial process.

There are no easy answers, no simple solutions. But standing on either side of the divide, saying those on the other side are either “heartless” or “foolish” serves no one, helps no one. We need to figure out another way.

Positively good news from Asterias for CIRM-funded stem cell clinical trial for spinal cord injury

AsteriasWhenever I give a talk on stem cells one of the questions I invariably get asked is “how do you know the cells are going where you want them to and doing what you want them to?”

The answer is pretty simple: you look. That’s what Asterias Biotherapeutics did in their clinical trial to treat people with spinal cord injuries. They used magnetic resonance imaging (MRI) scans to see what was happening at the injury site; and what they saw was very encouraging.

Asterias is transplanting what they call AST-OPC1 cells into patients who have suffered recent injuries that have left them paralyzed from the neck down.  AST-OPC1 are oligodendrocyte progenitor cells, which develop into cells that support and protect nerve cells in the central nervous system, the area damaged in spinal cord injury. It’s hoped the treatment will restore connections at the injury site, allowing patients to regain some movement and feeling.

Taking a closer look

Early results suggest the therapy is doing just that, and now follow-up studies, using MRIs, are adding weight to those findings.

The MRIs – taken six months after treatment – show that the five patients given a dose of 10 million AST-OPC1 cells had no evidence of lesion cavities in their spines. That’s important because often, after a spinal cord injury, the injury site expands and forms a cavity, caused by the death of nerve and support cells in the spine, that results in permanent loss of movement and function below the site, and additional neurological damage to the patient.

Another group of patients, treated in an earlier phase of the clinical trial, showed no signs of lesion cavities 12 months after their treatment.

Positively encouraging

In a news release, Dr. Edward Wirth, the Chief Medical Officer at Asterias, says this is very positive:

“These new follow-up results based on MRI scans are very encouraging, and strongly suggest that AST-OPC1 cells have engrafted in these patients post-implantation and have the potential to prevent lesion cavity formation, possibly reducing long-term spinal cord tissue deterioration after spinal cord injury.”

Because the safety data is also encouraging Asterias is now doubling the dose of cells that will be transplanted into patients to 20 million, in a separate arm of the trial. They are hopeful this dose will be even more effective in helping restore movement and function in patients.

We can’t wait to see what they find.

Stem cell stories that caught our eye: update on Capricor’s heart attack trial; lithium on the brain; and how stem cells do math

Capricor ALLSTARToday our partners Capricor Therapeutics announced that its stem cell therapy for patients who have experienced a large heart attack is unlikely to meet one of its key goals, namely reducing the scar size in the heart 12 months after treatment.

The news came after analyzing results from patients at the halfway point of the trial, six months after their treatment in the Phase 2 ALLSTAR clinical trial which CIRM was funding. They found that there was no significant difference in the reduction in scarring on the heart for patients treated with donor heart-derived stem cells, compared to patients given a placebo.

Obviously this is disappointing news for everyone involved, but we know that not all clinical trials are going to be successful. CIRM supported this research because it clearly addressed an unmet medical need and because an earlier Phase 1 study had showed promise in helping prevent decline in heart function after a heart attack.

Yet even with this failure to repeat that promise in this trial,  we learned valuable lessons.

In a news release, Dr. Tim Henry, Director of the Division of Interventional Technologies in the Heart Institute at Cedars-Sinai Medical Center and a Co-Principal Investigator on the trial said:

“We are encouraged to see reductions in left ventricular volume measures in the CAP-1002 treated patients, an important indicator of reverse remodeling of the heart. These findings support the biological activity of CAP-1002.”

Capricor still has a clinical trial using CAP-1002 to treat boys and young men developing heart failure due to Duchenne Muscular Dystrophy (DMD).

Lithium gives up its mood stabilizing secrets

As far back as the late 1800s, doctors have recognized that lithium can help people with mood disorders. For decades, this inexpensive drug has been an effective first line of treatment for bipolar disorder, a condition that causes extreme mood swings. And yet, scientists have never had a good handle on how it works. That is, until this week.

evan snyder

Evan Snyder

Reporting in the Proceedings of the National Academy of Sciences (PNAS), a research team at Sanford Burnham Prebys Medical Discovery Institute have identified the molecular basis of the lithium’s benefit to bipolar patients.  Team lead Dr. Evan Snyder explained in a press release why his group’s discovery is so important for patients:

“Lithium has been used to treat bipolar disorder for generations, but up until now our lack of knowledge about why the therapy does or does not work for a particular patient led to unnecessary dosing and delayed finding an effective treatment. Further, its side effects are intolerable for many patients, limiting its use and creating an urgent need for more targeted drugs with minimal risks.”

The study, funded in part by CIRM, attempted to understand lithium’s beneficial effects by comparing cells from patient who respond to those who don’t (only about a third of patients are responders). Induced pluripotent stem cells (iPSCs) were generated from both groups of patients and then the cells were specialized into nerve cells that play a role in bipolar disorder. The team took an unbiased approach by looking for differences in proteins between the two sets of cells.

The team zeroed in on a protein called CRMP2 that was much less functional in the cells from the lithium-responsive patients. When lithium was added to these cells the disruption in CRMP2’s activity was fixed. Now that the team has identified the molecular location of lithium’s effects, they can now search for new drugs that do the same thing more effectively and with fewer side effects.

The stem cell: a biological calculator?

math

Can stem cells do math?

Stem cells are pretty amazing critters but can they do math? The answer appears to be yes according to a fascinating study published this week in PNAS Proceedings of the National Academy of Sciences.

Stem cells, like all cells, process information from the outside through different receptors that stick out from the cells’ outer membranes like a satellite TV dish. Protein growth factors bind those receptors which trigger a domino effect of protein activity inside the cell, called cell signaling, that transfers the initial receptor signal from one protein to another. Ultimately that cascade leads to the accumulation of specific proteins in the nucleus where they either turn on or off specific genes.

Intuition would tell you that the amount of gene activity in response to the cell signaling should correspond to the amount of protein that gets into the nucleus. And that’s been the prevailing view of scientists. But the current study by a Caltech research team debunks this idea. Using real-time video microscopy filming, the team captured cell signaling in individual cells; in this case they used an immature muscle cell called a myoblast.

goentoro20170508

Behavior of cells over time after they have received a Tgf-beta signal. The brightness of the nuclei (circled in red) indicates how much Smad protein is present. This brightness varies from cell to cell, but the ratio of brightness after the signal to before the signal is about the same. Image: Goentoro lab, CalTech.

To their surprise the same amount of growth factor given to different myoblasts cells led to the accumulation of very different amounts of a protein called Smad3 in the cells’ nuclei, as much as a 40-fold difference across the cells. But after some number crunching, they discovered that dividing the amount of Smad3 after growth factor stimulation by the Smad3 amount before growth stimulation was similar in all the cells.

As team lead Dr. Lea Goentoro mentions in a press release, this result has some very important implications for studying human disease:

“Prior to this work, researchers trying to characterize the properties of a tumor might take a slice from it and measure the total amount of Smad in cells. Our results show that to understand these cells one must instead measure the change in Smad over time.”

A call to put the ‘public’ back in publication, and make stem cell research findings available to everyone

Opening the door

Opening the door to scientific knowledge

Thomas Gray probably wasn’t thinking about stem cell research when, in 1750 in his poem “Elegy in a Country Churchyard”, he wrote: “Full many a flower is born to blush unseen”. But a new study says that’s precisely what seems to happen to the findings of many stem cell clinical trials. They take place, but no details of their findings are ever made public. They blush, if they blush at all, unseen.

The study, in the journal Stem Cell Reports, says that only around 45 percent of stem cell clinical trials ever have their results published in peer-reviewed journals. Which means the results of around 55 percent of stem cell clinical trials are never shared with either the public or the scientific community.

Now, this finding apparently is not confined to stem cell research. Previous studies have shown a similar lack of publication of the results of more conventional therapies. Nonetheless, it’s a little disappointing – to say the least – to find out that so much knowledge and potentially valuable data is being lost due to lack of publication.

Definitely not full disclosure

Researchers at the University of Alberta in Canada used the US National Institute of Health’s (NIH) clinicaltrials.gov website as their starting point. They identified 1,052 stem cell clinical trials on the site. Only 393 trials were completed and of these, just 179 (45.4 percent) published their findings in a peer-reviewed journal.

In an interview in The Scientist, Tania Bubela, the lead researcher, says they chose to focus on stem cell clinical trials because of extensive media interest and the high public expectations for the field:

“When you have a field that is accused of over promising in some areas, it is beholden of the researchers in that field to publish the results of their trials so that the public and policy makers can realistically estimate the potential benefits.”

Now, it could be argued that publishing in a peer-reviewed journal is a rather high bar, that many researchers may have submitted articles but were rejected. However, there are other avenues for researchers to publish their findings, such as posting results on the clinicaltrials.gov database. Only 37 teams (3.5 percent) did that.

Why do it?

In the same article in The Scientist, Leigh Turner, a bioethicist at the University of Minnesota, raises the obvious question:

“The study shows a gap between studies that have taken place and actual publication of the data, so a substantial number of trials testing cell-based interventions are not entering the public domain. The underlying question is, what is the ethical and scientific basis to exposing human research subjects to risk if there is not going to be any meaningful contribution to knowledge at the end of the process?”

In short, why do it if you are not going to let anyone know what you did and what you found?

It’s a particularly relevant question when you consider that much of this research was supported with taxpayer dollars from the NIH and other institutions. So, if the public is paying for this research, doesn’t the public have a right to know what was learned?

Right to know

At CIRM we certainly think so. We expect and encourage all the researchers we fund to publish their findings. There are numerous ways and places to do that. For example, we expect each grantee to post a lay summary of their progress which we publish on our website. Stanford’s Dr. Joseph Wu’s progress reports for his work on heart disease shows you what those look like.

We also require researchers conducting clinical trials that we are funding to submit and post their trial results on the clinicaltrials.gov website.

The International Society for Stem Cell Research (ISSCR), agrees and recently updated its Guidelines for Stem Cell Research and Clinical Translation calling on researchers to publish, as fully as possible, their clinical trial results.

That is true regardless of whether or not the clinical trial showed it was both safe and effective, or whether it showed it was unsafe and ineffective. We can learn as much from failure as we can from success. But to do that we need to know what the results are.

Publishing only positive findings skews the scientific literature, and public perception of this work. Ignoring the negative could mean that other scientists waste a lot of time and money trying to do something that has already demonstrated it won’t work.

Publication should be a requirement for all research, particularly publicly funded research. It’s time to put the word “public” back in publication.

 

 

jCyte gets FDA go-ahead for Fast Track review process of Retinitis Pigmentosa stem cell therapy

21 century cures

When the US Congress approved, and President Obama signed into law, the 21st Century Cures Act last year there was guarded optimism that this would help create a more efficient and streamlined, but no less safe, approval process for the most promising stem cell therapies.

Even so many people took a wait and see approach, wanting a sign that the Food and Drug Administration (FDA) would follow the recommendations of the Act rather than just pay lip service to it.

This week we saw encouraging signs that the FDA is serious when it granted Regenerative Medicine Advanced Therapy (RMAT) status to the CIRM-funded jCyte clinical trial for a rare form of blindness. This is a big deal because RMAT seeks to accelerate approval for stem cell therapies that demonstrate they can help patients with unmet medical needs.

klassen

jCyte co-founder Dr. Henry Klassen

jCyte’s work is targeting retinitis pigmentosa (RP), a genetic disease that slowly destroys the cells in the retina, the part of the eye that converts light into electrical signals which the brain then interprets as vision. At first people with RP lose their night and peripheral vision, then the cells that help us see faces and distinguish colors are damaged. RP usually strikes people in their teens and, by the time they are 40, many people are legally blind.

jCyte’s jCell therapy uses what are called retinal progenitor cells, injected into the eye, which then release protective factors to help repair and rescue diseased retinal cells. The hope is this will stop the disease’s progression and even restore some vision to people with RP.

Dr. Henry Klassen, jCyte’s co-founder and a professor at UC Irvine, was understandably delighted by the designation. In a news release, he said:

“This is uplifting news for patients with RP. At this point, there are no therapies that can help them avoid blindness. We look forward to working with the FDA to speed up the clinical development of jCell.”

FDA

On the FDA’s blog – yes they do have one – it says researchers:

“May obtain the RMAT designation for their drug product if the drug is intended to treat serious or life-threatening diseases or conditions and if there is preliminary clinical evidence indicating that the drug has the potential to address unmet medical needs for that disease or condition. Sponsors of RMAT-designated products are eligible for increased and earlier interactions with the FDA, similar to those interactions available to sponsors of breakthrough-designated therapies. In addition, they may be eligible for priority review and accelerated approval.”

Paul Bresge

jCyte CEO Paul Bresge

jCyte is one of the first to get this designation, a clear testimony to the quality of the work done by Dr. Klassen and his team. jCyte CEO Paul Bresge says it may help speed up their ability to get this treatment to patients.

 

“We are gratified by the FDA’s interest in the therapeutic potential of jCell and greatly appreciate their decision to provide extra support. We are seeing a lot of momentum with this therapy. Because it is well-tolerated and easy to administer, progress has been rapid. I feel a growing sense of excitement among patients and clinicians. We look forward to getting this critical therapy over the finish line as quickly as possible.”

Regular readers of this blog will already be familiar with the story of Rosie Barrero, one of the first group of people with RP who got the jCell therapy. Rosie says it has helped restore some vision to the point where she is now able to read notes she wrote ten years ago, distinguish colors and, best of all, see the faces of her children.

RMAT is no guarantee the therapy will be successful. But if the treatment continues to show promise, and is safe, it could mean faster access to a potentially life-changing therapy, one that could ultimately rescue many people from a lifetime of living in the dark.