What would you like to know about stem cell research? This is your chance to ask the experts.

There’s a lot of fiction, a lot of misinformation surrounding stem cells and stem cell research. There are claims that are not based on solid science and clinics that are offering so-called “treatments” that are unproven, even dangerous for patients. Now you have a chance to talk to the experts in the field and get solid answers from them about what’s working, what’s not, and how you can find a therapy that might be appropriate for you.

Do you have questions about the latest in research using stem cells to help people recovering from a stroke? We’ll have someone who can answer them.

Want to know if stem cells can help people battling cancer? Or what’s happening in finding a stem cell treatment for diabetes or sickle cell disease, even autism, Alzheimer’s or Parkinson’s disease? We’ll have experts to answers those.

This is all happening in a special Facebook Live “Ask the Stem Cell Team” event on Thursday, December 12th from 10.30am to 11.30am PDT. To take part all you have to do is tune in on the day and post a question or you can send us one ahead of time at info@cirm.ca.gov

We will do our best to answer as many of them as we can during the Facebook Live event, and those we don’t have time to get to we’ll answer in a blog at a later date.

So join us.

The challenges of living with IPEX

Last week the CIRM Board awarded $5.53 million to Dr. Rosa Bacchetta at Stanford to complete the work necessary to conduct a clinical trial for IPEX syndrome. This is a rare disease caused by mutations in the FOXP3 gene which leaves people with the condition vulnerable to immune system attacks on their organs and tissues. These attacks can be devastating, even fatal.

At the Board meeting Taylor Lookofsky, a young man with IPEX syndrome, talked about the impact the condition has had on his life. The transcript of his talk is below.

It’s a powerful reminder that syndromes like this, because they affect a small number of people, are often overlooked and have few resources devoted to finding new treatments and cures. After reading Taylor’s story you come to appreciate his courage and determination, and why the funding CIRM provides is so important in helping researchers like Dr. Bacchetta find therapies to help people like Taylor.

Brian Lookofsky (Taylor’s father), Taylor Lookofsky and Dr. Rosa Bacchetta at the CIRM Board meeting

“Good morning, my name is Taylor Lookofsky and I would first like to thank Rosa, who is one of the many doctors in my life. Rosa presented me with this amazing opportunity to come and speak to you today about my life and the challenges living with IPEX.

  • I’d like to give you some background into my health challenges I’ve faced my entire life. Now to give some context to my years of struggle, I am 28 years old, not 10 years younger as some may have assumed.
  • My first diagnosis came at the age of 1 ½ years old -type 1 diabetes.
  • Soon after being diagnosed with type 1 diabetes, I had to have a feeding tube inserted in my abdomen as I was restricted from eating almost all foods due to unknown food allergies. I was not allowed to ingest ANY food until the age of 6 years old. When I was finally introduced to food, any food ingested was tasteless and felt like sandpaper on my tongue since I had to train myself to eat.
  • Around age 10, I would be faced with the beginning of a never-ending battle with my dermatitis. I remember specific details where my mother had taken me to a dermatologist to try and figure out what was happening to my skin as it was red, blotchy, oozing. I remember shivering so badly that my mom had to ask the doctor’s office to turn the air down.
  • At age 18 I had been formally diagnosed with IPEX. I lost my hair and my skin started a battle that was more intense than any previous episode. I remember taking showers and clumps of my hair would fall out, and I would cry in the shower not knowing what was going on.
  • At age 20, I would go through the most horrific episode with my skin to date. I was bed ridden, on pain meds and could not sleep. I had gone to all of my doctors trying to figure out what had triggered this event, and no doctor could figure out what was happening, leaving me extremely frustrated, depressed and drained of all energy. I went to the burn center as a last resort and was then treated like a burn patient. To care for these wounds, I would bathe, take a sponge and physically scrape these wounds to keep them infection free and as clean as possible. When I would exit the bath, I felt like a dried-up sponge and my skin was so tight that any movement would make my skin crack open and start bleeding. To add to this, I had to use medicated wraps to help with the healing process.
  • In an ongoing attempt to treat my many symptoms, I took a series of medications that came with side effects. I have had at least 15 surgeries to remove squamous cells caused by one of the medications: In 2018, my colon perforated. As a result, I now have a colostomy bag.

The IPEX symptoms have affected me not just physically, but mentally as well. I had lost all my hair and growth has been permanently stunted, and I have not reached the point in puberty as my male counterparts. I would go day by day and see all my peers and be envious that they were tall, had beards and hair, had relationships, and the confidence that I was lacking and admittedly, still lack to this day at times.

I’ve felt hopeless because there have been so few treatment options and with the treatment currently available, I have tried hundreds of medications and creams, and have had my blood drawn countless times in hopes of finding a medication that works for me, or a cure for this insufferable disease. However, nothing. As a result, I have been battling depression singe age 20. There were days that went by where I thought “I just don’t want to be here if this is what life is going to be like.” 

The funding needed for Dr. Rosa’s therapy would be life changing in the way of new treatment options and potentially lead to a cure for this horrific disease.

I am determined to see that there is so much more to life than what society is telling me. I’ve decided that I would not conform to societies rules, and instead, tell society how I am going to live my unique and authentic life with IPEX.

I appreciate your time and consideration to fund this important research.”

Using film to break down barriers around rare disease

You can read about a disease or hear someone talking about it and be engaged and interested. But when you see and hear the people who have the disease talking about it and the impact it has on their lives, that’s when a profound impact occurs. When you look into their eyes and hear them describe, in their own words, how it affects them, you are moved, truly moved, in ways that are hard to describe.

That’s the goal of the Rare Disease Film Festival taking place in San Francisco Saturday November 9 and Sunday November 10. Over two days they’ll be showing 50 films on rare diseases. The film “Rare But Not Alone” highlights conditions such as Batten Disease, Sanfilippo Syndrome and Epidermolysis Bullosa. It shows how families with rare conditions can often feel isolated and alone, but through the internet they can create support groups and a community to help them cope with the pain and challenges that these conditions create.

Daniel DeFabio, the co-founder of the festival, says the idea grew out of his own experiences as a parent.

“I had run a film festival before, it was general interest short independent films. But when my son was diagnosed with Menkes Disease, I made a film about that. After exploring the best festivals and conferences to screen a rare disease film I saw an unmet need.  There was nothing out there like a film festival focused on the rare disease community.  A community of 30 million Americans seemed to deserve its own festival.”

A rare disease is one that affects fewer than 200,000 people. In the US they are also called “Orphan diseases” because drug companies were not interested in adopting them to help create cures or new treatments. At CIRM we are committed to funding research into these kinds of condition. We are not in the business of making a profit. We are here to try and save lives. Of the 60 clinical trials we now fund more than a dozen of them target rare conditions.

DeFabio says the festival is designed to be a place for people to come and share their experiences, but he also hopes it has a more practical, tangible result.

“I partnered with Bo Bigelow. His daughter has USP7. We knew we wanted more than just increased awareness. We wanted awareness that could lead to action. We structured the festival to get the right people together and talking about what they learn in the films. You know Debussy’s line on how music is what happens in the space between the notes? We felt advocacy was what happens in the space between the films. We hope after a screening people stay for a while and start conversations in our lobby. Ideally, they’ll make connection to a new researcher, or a researcher might realize a new application for work that has already been done.”

“We say of our festival you may never be more moved at the movies. And we provide the packs to tissues to our audience in case we’re right.”

How early CIRM support helped an anti-cancer therapy overcome obstacles and help patients

Dr. Catriona Jamieson, UC San Diego

When you read about a new drug or therapy being approved to help patients it always seems so simple. Researchers come up with a brilliant idea, test it to make sure it is safe and works, and then get approval from the US Food and Drug Administration (FDA) to sell it to people who need it.

But it’s not always that simple, or straight forward. Sometimes it can take years, with several detours along the way, before the therapy finds its way to patients.

That’s the case with a blood cancer drug called fedratinib (we blogged about it here) and the relentless efforts by U.C. San Diego researcher Dr. Catriona Jamieson to help make it available to patients. CIRM funded the critical early stage research to help show this approach could help save lives. But it took many more years, and several setbacks, before Dr. Jamieson finally succeeded in getting approval from the FDA.

The story behind that therapy, and Dr. Jamieson’s fight, is told in the San Diego Union Tribune. Reporter Brad Fikes has been following the therapy for years and in the story he explains why he found it so fascinating, and why this was a therapy that almost didn’t make it.

A bridge to the future: training the next generation of stem cell scientists

At CIRM we don’t just invest in stem cell research, we invest in people. One prime example of that is our Bridges to Stem Cell Research program. This is helping train the next generation of scientists by preparing Californian undergraduate and master’s students for careers in stem cell research.

The students who go through the Bridges program get up to a year-long internship, hands-on training and education in stem cell research. Just as importantly, they also get to work directly with patients to help them understand why we do this work; to help people in need.

One of our recent Bridges graduates is Zach Wagoner. Zach was a biology student and wondering what to do next to help him get some experience for a job when someone told him about the Bridges program. That set him on a course that is changing his life.

So how did the random conversation impact Zach? The team at the UC Irvine Sue and Bill Gross Stem Cell Research Center shot this video to answer that question.

It’s not just Zach who benefited from the program.  Of the 1257 alumni who graduated from the program by March of this year: 

  • 50% are working full time in academic or biotech research related positions
  • 30% enrolled in graduate or professional school

We think it’s been a wise investment.

CIRM Team answers your questions about stem cell research

It’s not often you get the chance to ask a group of world class experts any question you like about stem cells and stem cell research, but that’s what we are offering you. We’re going to hold our next Facebook Live “Ask the Stem Cell Team” event focused solely on your questions with answers from our Team here at CIRM.

We are still finalizing the date – likely early December before the holiday madness hits – but we’d like to start collecting your questions now. So, let us know what you’d like to know.

It can be anything from how do stem cells work (come to think of it I’d like to know that myself) to what is the latest in using stem cells to help people recovering from a stroke or heart attack, battling cancer or caring for a loved one experiencing Alzheimer’s or dementia.

We will do our best to answer as many of these as we can, and of course we are also ready to answer any questions you post on our Facebook “Live” page during the event itself. Any questions we can’t get to on the day we’ll answer in a blog at a later date.

So. Send your questions to info@cirm.ca.gov We’re looking forward to hearing from you.

CIRM funded research could lead to treatment to prevent recurrence of deadly blood cancer

Chronic myelogenous leukemia

Chronic myelogenous leukemia (CML) is a cancer of the white blood cells. It causes them to increase in number, crowd out other blood cells, leading to anemia, infection or heavy bleeding. Up until the early 2000’s the main weapon against CML was chemotherapy, but the introduction of drugs called tyrosine kinase inhibitors changed that, dramatically improving long term survival rates.

However, these medications are not a cure and do not completely eradicate the leukemia stem cells that can fuel the growth of the cancer, so if people stop taking the medication the cancer can return.

Dr. John Chute: Photo courtesy UCLA

But now Dr. John Chute and a team of researchers at UCLA, in a CIRM-supported study, have found a way to target those leukemia stem cells and possibly eliminate them altogether.

The team knew that mice that had the genetic mutation responsible for around 95 percent of CML cases normally developed the disease and died with a few months. However, mice that had the CML gene but lacked another gene, one that produced a protein called pleiotrophin, had normal white blood cells and lived almost twice as long. Clearly there was something about pleiotrophin that played a key role in the growth of CML.

They tested this by transplanting blood stem cells from mice with the CML gene into healthy mice. The previously healthy mice developed leukemia and died. But when they did the same thing from mice that had the CML gene but lacked the pleiotrophin gene, the mice remained healthy.

So, Chute and his team wanted to know if the same thing happens in human cells. Studying human CML stem cells they found these had not just 100 times more pleiotrophin than ordinary cells, they were also producing their own pleiotrophin.

In a news release Chute, said this was unexpected:

“This provides an example of cancer stem cells that are perpetuating their own disease growth by hijacking a protein that normally supports the growth of the healthy blood system.”

Next Chute and the team developed an antibody that blocked the action of pleiotrophin and when they tested it in human cells the CML stem cells died.

Then they combined this antibody with a drug called imatinib (better known by its brand name, Gleevec) which targets the genetic abnormality that causes most forms of CML. They tested this in mice who had been transplanted with human CML stem cells and the cells died.

“Our results suggest that it may be possible to eradicate CML stem cells by combining this new targeted therapy with a tyrosine kinase inhibitor,” said Chute. “This could lead to a day down the road when people with CML may not need to take a tyrosine kinase inhibitor for the rest of their lives.”

The next step is for the researchers to modify the antibody so that it is better suited for humans and not mice and to see if it is effective not just in cells in the laboratory, but in people.

The study is published in the Journal of Clinical Investigation

Predicting the Impact of Stem Cell Cures on Healthcare Burden in California

A new independent report says developing stem cell treatments and cures for some of the most common and deadly diseases could produce multi-billion dollar benefits for California in reduced healthcare costs and improved quality and quantity of life.

The report, by researchers at the University of Southern California’s Leonard D. Schaeffer Center for Health Policy & Economics, looked at the value of hypothetical future interventions to reduce or cure cancer, diabetes, stroke and blindness.

Predicting the future is always complicated and uncertain and many groups are looking at the best models to determine the value and economic impact of cell and gene therapy as the first products are just entering the market. This study provides some insights into the potential financial benefits of developing effective stem cell treatments for some of the most intractable diseases affecting California today.

The impact could affect millions of people. In 2018 for Californians over the age of 50:

  • Nearly half were predicted to develop diabetes in their lifetime
  • More than one third will experience a stroke
  • Between 5 and 8 percent will develop either breast, colorectal, lung, or prostate cancer

The report says that a therapy that decreased the incidence of diabetes by 50 percent in Californians over the age of 51 would translate into a gain for the state of $322 billion in social value between now and 2050. Even just reducing diabetes 10% would lead to a gain of $60 billion in social value over the same period.

  • For stroke a 50 percent reduction would generate an estimated $229 billion in social value. A 10 percent reduction would generate $47 billion
  • For breast cancer a 50 percent reduction would generate $56 billion in social value; for colorectal cancer it would be $72 billion; for lung cancer $151 billion; and prostate cancer $53 billion. 

The impact of a cure for any one of those diseases would be enormous. For example, a 51-year-old woman cured of lung cancer could expect to gain a lifetime social value of almost half a million dollars ($467,275). That’s a measure of years of healthy life gained, of years spent enjoying time with family and friends and not wasting away or lying in a hospital bed.

The researchers say: “Though advances in scientific research defy easy predictions, investing in biomedical research is important if we want to reduce the burden of common and costly diseases for individuals, their families, and society. These findings show the value and impact breakthrough treatments could have for California.”

“Put in this context, the CIRM investment would be worthwhile if it increased our chances of success even modestly. Against the billions of dollars in disease burden facing California, the relatively small initial investment is already paying dividends as researchers work to bring new therapies to patients.”

The researchers determined the “social value” using a measure called a quality adjusted life-year (QALY). This is a way of estimating the cost effectiveness and consequences of treating or not treating a disease. For example, one QALY is equivalent to one year of perfect health for an individual. In this study the value of that year was estimated at $150,000. If someone is sick with, say, diabetes, their health would be estimated to be 0.5 QALY or $75,000. So, the better health a person enjoys and the longer they enjoy it the higher QALY score they accumulate. In the case of a disease affecting millions of people in that state or country that can obviously lead to very large QALY scores representing potentially billions of dollars.

New Report Says CIRM Produces Big Economic Boost for California

An independent Economic Impact Report says the California Institute for Regenerative Medicine (CIRM) has had a major impact on California’s economy, creating tens of thousands of new jobs, generating hundreds of millions of dollars in new taxes, and producing billions of dollars in additional revenue for the state.

The report, done by Dan Wei and Adam Rose at the Price School of Public Policy at the University of Southern California, looked at the impacts of CIRM funding on both the state and national economy from the start of the Stem Cell Agency in 2004 to the end of 2018.

The total impacts on the California economy are estimated to be:

  • $10.7 billion of additional gross output (sales revenue)
  • $641.3 million of additional state/local tax revenues
  • $726.6 million of additional federal tax revenues
  • 56,549 additional full-time equivalent (FTE) jobs, half of which offer salaries considerably higher than the state average

Maria Millan, M.D., CIRM’s President and CEO, says the report reflects the Agency’s role in building an ecosystem to accelerate the translation of important stem cell science to solutions for patients with unmet medical needs. “CIRM’s mission on behalf of patients has been the priority from day one, but this report shows that CIRM funding brings additional benefits to the state. This report reflects how CIRM is promoting economic growth in California by attracting scientific talent and additional capital, and by creating an environment that supports the development of businesses and commercial enterprises in the state”

In addition to the benefits to California, the impacts outside of California on the US economy are estimated to be:

  • $4.7 billion of additional gross output (sales revenue)
  • $198.7 million of additional state (non-Californian) & local tax revenue
  • $208.6 million of additional federal tax revenues
  • 25,816 additional full-time equivalent (FTE) jobs

The researchers summarize their findings, saying: “In terms of economic impacts, the state’s investment in CIRM has paid handsome dividends in terms of output, employment, and tax revenues for California.”

The estimates in the report are based on the economic stimulus created by CIRM funding and by the co-funding that researchers and companies were required to provide for clinical and late-stage preclinical projects. The estimates also include:

  • Investments in CIRM-supported projects from private funders such as equity investments, public offerings and mergers and acquisitions,
  • Follow-on funding from the National Institutes of Health and other organizations due to data generated in CIRM-funded projects
  • Funding generated by clinical trials held at CIRM’s Alpha Stem Cell Clinics network

The researchers state “Nearly half of these impacts emanate from the $2.67 billion CIRM grants themselves.”

“The economic impact of California’s investment in stem and regenerative cell research is reflective of significant progress in this field that was just being born at the time of CIRM’s creation,” says Dr. Millan. “We fund the most promising projects based on rigorous science from basic research into clinical trials. We partnered with researchers and companies to increase the likelihood of success and created specialized infrastructure such as the Alpha Clinics Network to support the highest quality of clinical care and research standards for these novel approaches.  The ecosystem created by CIRM has attracted scientists, companies and capital from outside the state to California. By supporting promising science projects early on, long before most investors were ready to come aboard, we enabled our scientists to make progress that positioned them to attract significant commercial investments into their programs and into California.”

These partnerships have helped move promising therapies out of the lab and into clinical trials for companies like Orchard Therapeutics’ successful treatment for Severe Combined Immunodeficiency and Forty Seven Inc.’s innovative approach to treating cancer.

Dr. Don Kohn: Photo courtesy UCLA Jonsson Comprehensive Cancer Center

“I think one of the greatest strengths of CIRM has been their focus on development of new stem cell therapies that can become real medicines,” says UCLA and Orchard Therapeutics’ Don Kohn, M.D. “This has meant guiding academic investigators to do the things that may be second nature in industry/pharmaceutical companies but are not standard for basic or clinical research.  The support from CIRM to perform the studies and regulatory activities needed to navigate therapies through the FDA and to form alliances with biotech and pharma companies has allowed the stem cell gene therapy we developed to treat SCID babies to be advanced and licensed to Orchard Therapeutics who can make it available to patients across the country.”

Dr. Mark Chao: Photo courtesy Forty Seven Inc.

“CIRM’s support has been instrumental to our early successes and our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach with magrolimab,” says Mark Chao, M.D., Ph.D., Founder and Vice President of Clinical Development at Forty Seven Inc. “ CIRM was an early collaborator in our clinical programs, and will continue to be a valued partner as we move forward with our MDS/AML clinical trials.”

The researchers say the money generated by partnerships and investments, what is called “deal-flow funding”, is still growing and that the economic benefits created by them are likely to continue for some time: “Deal-flow funding usually involves several waves or rounds of capital infusion over many years, and thus is it expected that CIRM’s past and current funding will attract increasing amounts of industry investment and lead to additional spending injections into the California economy in the years to come.”

They conclude their report by saying: “CIRM has led to California stem cell research and development activities becoming a leader among the states.”

When Google turns on you, you know you are in trouble

For years CIRM and others in the stem cell community (hello Paul Knoepfler) have been warning people about the dangers of going to clinics offering unproven and unapproved stem cell therapies. Recently the drum beat of people and organizations coming out in support of that stand has grown louder and louder. Mainstream media – TV and print – have run articles about these predatory clinics. And now, Google has joined those ranks, announcing it will restrict ads promoting these clinics.

“We regularly review and revise our advertising policies. Today, we’re announcing a new Healthcare and medicines policy to prohibit advertising for unproven or experimental medical techniques such as most stem cell therapy, cellular (non-stem) therapy, and gene therapy.”

Deepak Srivastava: Photo courtesy Gladstone Institutes

The president of the International Society for Stem Cell Research (ISSCR) Dr. Deepak Srivastava quickly issued a statement of support, saying:

“Google’s new policy banning advertising for speculative medicines is a much-needed and welcome step to curb the marketing of unscrupulous medical products such as unproven stem cell therapies. While stem cells have great potential to help us understand and treat a wide range of diseases, most stem cell interventions remain experimental and should only be offered to patients through well-regulated clinical trials. The premature marketing and commercialization of unproven stem cell products threatens public health, their confidence in biomedical research, and undermines the development of legitimate new therapies.”

Speaking of Deepak – we can use first names here because we are not only great admirers of him as a physician but also as a researcher, which is why we have funded some of his research – he has just published a wonderfully well written article criticizing these predatory clinics.

The article – in Scientific American – is titled “Don’t Believe Everything You Hear About Stem Cells” and rather than paraphrase his prose, I think it best if you read it yourself. So, here it is.

Enjoy.

Don’t Believe Everything You Hear about Stem Cells

The science is progressing rapidly,but bad actors have co-opted stem cells’ hope and promise by preying on unsuspecting patients and their families

Stem cell science is moving forward rapidly, with potential therapies to treat intractable human diseases on the horizon.Clinical trials are now underway to test the safety and effectiveness of stem cell–based treatments for blindness,spinal cord injury,heart disease,Parkinson’s disease, and more,some with early positive results.A sense of urgency drives the scientific community, and there is tremendous hope to finally cure diseases that, to date, have had no treatment.


But don’t believe everything you hear about stem cells. Advertisements and pseudo news articles promote stem cell treatments for everything from Alzheimer’s disease,autism and ALS, to cerebral palsy and other diseases.The claims simply aren’t true–they’re propagated by people wanting to make money off of a desperate and unsuspecting or unknowing public.Patients and their families can be misled by deceptive marketing from unqualified physicians who often don’t have appropriate medical credentials and offer no scientific evidence of their claims.In many cases, the cells being utilized are not even true stem cells.

Advertisements for stem cell treatments are showing up everywhere, with too-good-to-be-true claims and often a testimonial or two meant to suggest legitimacy or efficacy.Beware of the following:

    •       Claims that stem cell treatments can treat a wide range of diseases using a singular stem cell type. This is unlikely to be true.

    •       Claims that stem cells taken from one area of the body can be used to treat another, unrelated area of the body. This is also unlikely to be true.     •       Patient testimonials used to validate a particular treatment, with no scientific evidence. This is a red flag.

    •       Claims that evidence doesn’t yet exist because the clinic is running a patient-funded trial. This is a red flag; clinical trials rarely require payment for experimental treatment.

    •       Claims that the trial is listed on ClinicalTrials.gov and is therefore NIH-approved. This may not be true. The Web site is simply a listing; not all are legitimate trials.

    •       The bottom line: Does the treatment sound too good to be true? If so, it probably is. Look for concrete evidence that the treatment works and is safe.

Hundreds of clinics offer costly, unapproved and unproven stem cell interventions, and patients may suffer physical and financial harm as a result.A Multi-Pronged Approach to Deal with Bad Actors 

The International Society for Stem Cell Research (ISSCR)has long been concerned that bad actors have co-opted the hope and promise of stem cell science to prey on unsuspecting patients and their families.

We read with sadness and disappointment the many stories of people trying unproven therapies and being harmed, including going blind from injections into the eyes or suffering from a spinal tumor after an injection of stem cells.Patients left financially strapped, with no physical improvement in their condition and no way to reclaim their losses, are an underreported and underappreciated aspect of these treatments.

Since late 2017, the Food and Drug Administration has stepped up its regulatory enforcement of stem cell therapies and provided a framework for regenerative medicine products that provides guidelines for work in this space.The agency has alerted many clinics and centers that they are not in compliance and has pledged to bring additional enforcement action if needed.

A Multi-Pronged Approach to Deal with Bad Actors  The International Society for Stem Cell Research (ISSCR) has long been concerned that bad actors have co-opted the hope and promise of stem cell science to prey on unsuspecting patients and their families.

We read with sadness and disappointment the many stories of people trying unproven therapies and being harmed, including going blind from injections into the eyesor suffering from a spinal tumor after an injection of stem cells.Patients left financially strapped, with no physical improvement in their condition and no way to reclaim their losses, are an underreported and underappreciated aspect of these treatments.

Since late 2017, the Food and Drug Administration has stepped up its regulatory enforcement of stem cell therapies and provided a framework for regenerative medicine products that provides guidelines for work in this space.The agency has alerted many clinics and centers that they are not in compliance and has pledged to bring additional enforcement action if needed.

In recent weeks, a federal judge granted the FDA a permanent injunction against U.S. Stem Cell, Inc. and U.S. Stem Cell Clinic, LLC for adulterating and misbranding its cellular products and operating outside of regulatory authority.We hope this will send a strong message to other clinics misleading patients with unapproved and potentially harmful cell-based products.

The Federal Trade Commission has also helped by identifying and curtailing unsubstantiated medical claims in advertising by several clinics. Late in 2018 the FTC won a $3.3-million judgment against two California-based clinics for deceptive health claims. The Federal Trade Commission has also helped by identifying and curtailing unsubstantiated medical claims in advertising by several clinics. Late in 2018 the FTC won a $3.3-million judgment against two California-based clinics for deceptive health claims.

These and other actions are needed to stem the tide of clinics offering unproved therapies and the people who manage and operate them.

Improving Public Awareness

We’re hopeful that the FDA will help improve public awareness of these issues and curb the abuses on ClinicalTrials.gov,a government-run Web site being misused by rogue clinics looking to legitimize their treatments. They list pay-to-participate clinical trials on the site, often without developing, registering or administering a real clinical trial.

The ISSCR Web site A Closer Look at Stem Cellsincludes patient-focused information about stem cells,with information written and vetted by stem cell scientists.The site includes how and where to report adverse events and false marketing claims by stem cell clinics.I encourage you to visit and learn about what is known and unknown about stem cells and their potential for biomedicine.The views expressed are those of the author(s) and are not necessarily those of Scientific American.