Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

Celebrating a life that almost didn’t happen

Evie Vaccaro

You can’t look at this photo and not smile. This is Evie Vaccaro, and it’s clear she is just bursting with energy and vitality. Sometimes it feels like I have known Evie all her life. In a way I have. And I feel so fortunate to have done so, and that’s why this photo is so powerful, because it’s a life that almost ended before it had a chance to start.

Evie was born with a rare condition called Severe Combined Immunodeficiency (SCID). Children with this condition lack a functioning immune system so even a simple cold or diaper rash can prove fatal. Imagine how perilous their lives are in a time of COVID-19. These children used to be called “bubble babies” because they were often kept inside sterile plastic bubbles to keep them alive. Many died before their second birthday.

Today there is no need for plastic bubbles. Today, we have a cure. That’s a word we use very cautiously, but in Evie’s case, and the case of more than 40 other children, we use it with pride.

Dr. Don Kohn and a child born with SCID

Dr. Don Kohn at UCLA has developed a method of taking the child’s own blood stem cells and, in the lab, inserting a corrected copy of the gene that caused SCID, and then returning those cells to the child. Because they are stem cells they multiply and renew and replicate themselves, creating a new blood supply, one free of the SCID mutation. The immune system is restored. The children are cured.

This is a story we have told several times before, but we mention it again because, well, it never gets old, and because Evie is on the front and back cover of our upcoming Annual Report. The report is actually a look back on the last 18 months in CIRM’s life, reporting on the progress we have made in advancing stem cell research, in saving and changing lives, and in producing economic benefits for California (billions of dollars in sales revenue and taxes and thousands of jobs).  

Evie’s story, Evie’s photo, is a reminder of what is possible thanks to the voters of California who created CIRM back in 2004. Hers is just one of the stories in the report. I think,  you’ll enjoy reading all of them.

Of course, I might be just a little bit biased.

Stem Cell/Gene Therapy combo heals patients battling rare disorder

Brenden Whittaker and his dog: Photo by Colin McGuire

A few years ago, Brenden Whittaker was running out of time. Brenden was born with a rare condition called x-linked chronic granulomatous disease or XCGD. It meant he lacked a critical part of his immune system that protects against bacterial or fungal infections.

Over 22 years Brenden was in and out of the hospital hundreds of times. Twice he almost died. When antibiotics failed to clear up persistent infections surgeons had to remove parts of his lungs and liver.

Brenden felt he was running out of options. Then he signed up for a clinical trial (funded by CIRM) that would use his own stem cells to correct the problem. More than four years later Brenden is doing just fine.

And he’s not the only one. A new study, published in the journal Nature Medicine, shows that six other patients in the clinical trial are now in remission and have stopped taking any other medications.

Dr. Don Kohn: Photo courtesy UCLA

Don Kohn, the lead researcher on the team from UCLA’s Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, says that in the past the only “cure” for people with CGD was a bone marrow transplant, but that was rarely an option for most patients. In a news release he said finding a perfect match for a transplant was difficult, and even then, patients had to take powerful anti-rejection medications to stop their body rejecting the transplant. So, they developed another approach, using genetically re-engineered stem cells from the patient themselves.

“With this gene therapy, you can use a patient’s own stem cells instead of donor cells for a transplant. This means the cells are perfectly matched to the patient and it should be a much safer transplant, without the risks of rejection.”

The team removed blood stem cells from the patients and, in the lab, corrected the genetic mutation that caused CGD. They then returned those cells to the patients which, because they are stem cells, multiplied and created a new blood supply – one free of CGD – and repaired the immune system.

Brenden was the first of five patients treated in the US. Another four were treated in Europe. All were between the ages of 2 and 27 (CGD patients often die in their 20’s because of the impact of repeated infections).

  • Two patients died because of previously incurred infections
  • Six of the seven surviving patients have discontinued previous treatments
  • Four new patients have since been treated and are currently free of infections

Dr. Kohn said the results are really encouraging: “None of the patients had complications that you might normally see from donor cells and the results were as good as you’d get from a donor transplant — or better.”

The next step is for the researchers to work with the US Food and Drug Administration to get permission to carry out a larger trial, with the eventual goal of getting approval to make it available to all patients who need it.  

Regular readers of our blog will remember that Don Kohn also pioneered a similar approach in treating, and curing, children battling another rare immune disorder, severe combined immunodeficiency or SCID. You can read about that here.

As for Brenden, he is now in college and has his sights set on medical school. In 2016 we profiled him in our Annual Report and ran a long interview with him on the blog where he talked about the joys of mowing the lawn and learning to live without a deadly disease stalking him.

Gene therapy gives patient a cure and a new lease on life

Brenden Whittaker (left), of Ohio, is a patient born with a rare genetic immune disease who was treated at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center in a CIRM funded gene therapy trial. Dr. David Williams (on right) is Brenden’s treating physician.
Photo courtesy of Rose Lincoln – Harvard Staff Photographer

Pursuing an education can be quite the challenge in itself without the added pressure of external factors. For Brenden Whittaker, a 25 year old from Ohio, the constant trips to the hospital and debilitating nature of an inherited genetic disease made this goal particularly challenging and, for most of his life, out of sight.

Brenden was born with chronic granulomatous disease (CGD), a rare genetic disorder that affects the proper function of neutrophils, a type of white blood cell that is an essential part of the body’s immune system. This leads to recurring bacterial and fungal infections and the formation of granulomas, which are clumps of infected tissue that arise as the body attempts to isolate infections it cannot combat. People with CGD are often hospitalized routinely and the granulomas themselves can obstruct digestive pathways and other pathways in the body. Antibiotics are used in an attempt to prevent infections from occurring, but eventually patients stop responding to them. One in two people with CGD do not live past the age of 40.

In Brenden’s case, when the antibiotics he relied on started failing, the doctors had to resort to surgery to cut out an infected lobe of his liver and half his right lung. Although the surgery was successful, it would only be a matter of time before a vital organ was infected and surgery would no longer be an option.

This ultimately lead to Brenden becoming the first patient in a CGD gene therapy trial at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center.  The trial, lead by UCLA’s Dr. Don Kohn thanks to a CIRM grant, combats the disease by correcting the dysfunctional gene inside a patient’s blood stem cells. The patient’s corrected blood stem cells are then reintroduced, allowing the body to produce properly functioning neutrophils, rebooting the immune system.

It’s been a little over three years since Brenden received this treatment in late 2015, and the results have been remarkable. Dr. David Williams, Brenden’s treating physician, expected Brenden’s body to produce at least 10 percent of the functional neutrophils, enough so that Brenden’s immune system would provide protection similar to somebody without CGD. The results were over 50 percent, greatly exceeding expectations.

Brenden Whittaker mowing the lawn in the backyard of his home in Columbus, Ohio. He is able to do many more things without the fear of infection since participating in the trial. Photo courtesy of Colin McGuire

In an article published by The Harvard Gazette, Becky Whittaker, Brendan’s mother, is quoted as saying, ““Each day that he’s free of infection, he’s able to go to class, he’s able to work at his part-time job, he’s able to mess around playing with the dog or hanging out with friends…[this] is a day I truly don’t believe he would have had beyond 2015 had something not been done.”

In addition to the changes to his immune system, the gene therapy has reinvigorated Brenden’s drive for the future. Living with CGD had caused Brenden to miss out on much of his schooling throughout the years, having to take constant pauses from his academics at a community college. Now, Brenden aims to graduate with an associate’s degree in health sciences in the spring and transfer to Ohio State in the fall for a bachelor’s degree program. In addition to this, Brenden now has dreams of attending medical school.

In The Harvard Gazette article, Brenden elaborates on why he wants to go to medical school saying, ” Just being the patient for so long, I want to give back. There are so many people who’ve been there for me — doctors, nurses who’ve been there for me [and] helped me for so long.”

In a press release dated February 25, 2019, Orchard Therapeutics, a biopharmaceutical company that is continuing the aforementioned approach for CGD, announced that six patients treated have shown adequate neutrophil function 12 months post treatment. Furthermore, these six patients no longer receive antibiotics related to CGD. Orchard Therapeutics also announced that they are in the process of designing a registrational trial for CGD.

Frustration, failure and finally hope in the search for treatments for spina bifida

diana farmer_2015

Dr. Diana Farmer and her team at UC. Davis

By any standards Dr. Diana Farmer is a determined woman who doesn’t let setbacks and failure deter her. As a fetal and neonatal surgeon, and the chair of the Department of Surgery at UC Davis Health, Dr. Farmer has spent years trying to develop a cure for spina bifida. She’s getting closer.

Dr. Farmer and her partner in this research, Dr. Aijun Wang, have already shown they can repair the damage spina bifida causes to the spinal cord, in the womb, in sheep and bulldogs. Last year the CIRM Board voted to fund her research to get the data needed to apply to the US Food and Drug Administration for permission to start a clinical trial in people.

That work is so promising that we decided to profile Dr. Farmer in our 2018 Annual Report.

Here’s excerpts from an interview we conducted with her as part of the Annual Report.

I have been working on this since 2008. We have been thinking about how to help kids with spina bifida walk. It’s not fatal disease but it is a miserable disease.

It’s horrible for parents who think they are about to have a healthy child suddenly be faced with a baby who faces a life long struggle with their health, everything from difficulty or inability to walk to bowel and bladder problems and life-threatening infections.

As a fetal surgeon we used to only focus on fatal diseases because otherwise kids would die. But as we made progress in the field, we had the opportunity to help others who didn’t have a fatal condition, in ways we couldn’t have done in the past.

I’ve always been fascinated by the placenta, it has lots of protective properties. So, we asked the question if we were able to sample fetal cells from the placenta, could we augment those cells, and use them to tissue engineer spinal injuries, in the womb, to improve the outcome for kids with spina bifida?

Dr. Aijun Wang and I have been working on this project for the last decade.  Ten years of work has taken us to this point where we are now ready to move this to the next level.

It’s amazing to me how long this process takes and that’s why we are so grateful to CIRM because this is a rare disease and finding funding for those is hard. A lot of people are scared about funding fetal surgery and CIRM has been a perfect partner in helping bring this approach, blending stem cell therapy and tissue engineering, together.

If this therapy is successful it will have a huge economic impact on California, and on the rest of the world. Because spina bifida is a lifelong condition involving many operations, many stays in the hospital, in some cases lifelong use of a wheelchair. This has a huge financial burden on the family. And because this doesn’t just affect the child but the whole family, it has a huge psychological burden on families. It affects them in so many ways; parents having to miss work or take time off work to care for their child, other children in the family feeling neglected because their brother or sister needs so much attention.

In the MOMS Trial (a study that looked at prenatal – before birth – and postnatal – after birth – surgery to repair a defect in the spinal cord and showed that prenatal surgery had strong, long-term benefits and some risks) we showed that we could operate on the fetus before birth and help them. The fact that there was any improvement – doubling the number of kids who could walk from 20 to 40% showed this spinal cord injury is not a permanent situation and also showed there was some plasticity in the spinal cord, some potential for improvement. And so, the next question was can we do more. And that’s why we are trying this.

It’s pretty amazing. We are pretty excited.

The thing that makes surgeon-scientists feel so passionate is that we don’t just ask the fundamental questions, we ask questions in order to cure a problem in patients. I grew up in an environment where people were always asking “how can we do it better, how can we improve?”

There were many times of frustration, many times when cell types we explored and worked with didn’t work. But it’s the patients, seeing them, that keeps me motivated to do the science, to keep persevering. That’s the beauty of being a clinician-scientist. We can ask questions in a different way and look at data in a different way because we are driven by patient outcomes. So, whenever we get stuck in the rabbit hole of theoretical problems, we look to the patients for inspiration to keep going.

I am very cognizant of stirring up false hope, knowing that what occurs in animal models doesn’t always translate into humans. But we are optimistic, and I am anxious to get going.

 

Performance, Passion and Progress: and that’s just page one of our 2018 Annual Report

2018_ar_webimage

It’s hard to sum up the activities and achievements of a year in a single document, let alone one that’s just 24 pages. But that’s what we have done in putting together our 2018 Annual Report.

It’s a look back at the year just gone, the highlights, the low lights (spoiler alert – there weren’t any) and the impact we had on the field of stem cell research. But it’s far more than that. It’s also a look ahead. A look at the challenges we face, and profiles of the people who are going to help us overcome those challenges and maintain our progress.

And people are truly at the heart of this report, from UC San Francisco’s Dr. Tippi MacKenzie who is on the front cover for her work in developing an in-utero treatment for the almost always fatal disorder alpha thalassemia major (and the photo of the baby and mom whose lives were changed by that therapy) to Rich Lajara on the back cover, the first person ever treated in a CIRM-funded clinical trial.

Inside are an array of simple images designed to reflect how we as a state agency have performed this year. The numbers themselves tell a powerful story:

  • 50 clinical trials funded to date, 7 this year alone
  • $2.6 billion in CIRM grants has been leveraged to bring in an additional $3.2 billion in matching funds and investments from other sources.
  • 1,180 patients have been involved in CIRM clinical trials

We know people don’t have a lot of time to read Annual Reports so we have made this as visually engaging and informative as possible. We want you to get a real sense of who we are, what we have done and who has helped us do that without you having to wade through a document the size of War and Peace (great book by the way – the Russians beat Napoleon).

We think we have a great story to tell. This Annual Report is one chapter in that story. We hope you like it.

 

Saying goodbye to a good friend and a stem cell pioneer: Karl Trede

FrankTrede_B_0110_20161204120959_2016_12_04_CIRM_AnnualReport_KarlTrede_SanJose_Portraits_SeesTheDay

Sometimes even courage and determination are not enough. Karl Trede had courage and determination in droves as he fought a 12 year battle against cancer. He recently lost that battle. But he remains an inspiration for all who knew him.

I got to know Karl for our 2016 Annual Report. Karl had been diagnosed with throat cancer in 2006. He underwent surgery to remove his vocal cords and the cancer seemed to be in remission. But then it returned, this time having spread to his lungs. His doctors said they had pretty much run out of options but would Karl consider trying something new, something no one else had tried before; stem cells.

Karl told me he didn’t hesitate.

“I said “sure”. I don’t believe I knew at the time that I was going to be the first one but I thought I’d give it a whirl. It was an experience for me. It was eye opening. I wasn’t real concerned about being the first, I figured I was going to have to go someday so I guess if I was the first person and something really went wrong then they’d definitely learn something. So, to me, that was kind of worth my time.”

Happily nothing went wrong and the team behind the therapy (Forty Seven Inc.) definitely learned something, they learned a lot about the correct dosage for patients; invaluable information in treating future patients.

Karl’s cancer was held at bay and he was able to do the one thing that brought him more pleasure than anything else; spend time with his family, his wife Vita, their four sons and their families. He doted on his grand kids and got to see them grow, and they got to know him.

Recently the cancer returned and this time there was no holding it at bay. To the end Karl remained cheerful and positive.

KARL poster

In our office is a huge poster of Karl with the words “Every Moment Counts” at the bottom. It’s a reminder to us why we come to work every day, why the people at Forty Seven Inc. and all the other researchers we support work so hard for years and years; to try and give people like Karl a few extra moments with his family.

At the top of the poster the word “Courage” is emblazoned across it. Karl has a huge smile on his face. Karl was certainly courageous, a stem cell pioneer willing to try something no one else ever had. He was also very modest.

Here is Karl speaking to our governing Board in December 2016

When I spoke to him in 2016, despite all he had gone through in his fight against cancer, he said he had no regrets:

“I consider myself very fortunate. I’m a lucky guy.”

Those of us who got to spend just a little time with Karl know that we were the lucky ones.

Our hearts go out to his family and friends for their loss.

 

 

A Noble pursuit; finding the best science to help the most people

MarkNoble-46

Mark Noble. Photo by Todd Dubnicoff

Mark Noble, Ph.D., is a pioneer in stem cell research and the Director of the University of Rochester Stem Cell and Regenerative Medicine Institute in New York. He is also a member of CIRM’s Grants Working Group (GWG), the panel of independent scientific experts we use to review research applications for funding and decide which are the most promising.

Mark has been a part of the GWG since 2011. When asked how he came to join the GWG he joked: “I saw an ad on Craigslist and thought it sounded fun.”  But he is not joking when he says it is a labor of love.

“My view is that CIRM is one of the greatest experiments in how to develop a new branch of science and medicine. If you look at ventures, like the establishment of the National Institutes of Health, what you see is that when there is a concentrated effort to achieve an enormous goal, amazing things can happen. And if your goal is to create a new field of medicine you have to take a truly expansive view.”

Mark has been on many other review panels but says they don’t compare to CIRM’s.

“These are the most exciting review panels in which I take part. I don’t know of any comparable panels that bring together experts working across such a wide range of disciplines and diseases.   It’s particularly interesting to be involved in reviews at this stage because we get to look at the fruits of CIRM’s long investment, and at projects that are now in, or well on the way towards, clinical trials.

It’s a wonderful scientific education because you come to these meetings and someone is submitting an application on diabetes and someone else has submitted an application on repairing the damage to the heart or spinal cord injury or they have a device that will allow you to transplant cells better. There are people in the room that are able to talk knowledgeably about each of these areas and understand how the proposed project might work in terms of actual financial development, and how it might work in the corporate sphere and how it fits in to unmet medical needs.  I don’t know of any comparable review panels like this that have such a broad remit and bring together such a breadth of expertise. Every review panel you come to you are getting a scientific education on all these different areas, which is great.”

Another aspect of CIRM’s work that Mark admires is its ability to look past the financial aspects of research, to focus on the bigger goal:

“I like that CIRM recognizes the larger problem, that a therapy that is curative but costs a million dollars a patient is not going to be implemented worldwide. Well, CIRM is not here to make money. CIRM is here to find cures for unmet medical needs, which means that if someone comes in with a great application on a drug that is going to cure some awful disease and it’s not going to be worth a fortune, that is not the main concern. The main concern is that you might be able to cure this disease and yeah, we’ll put up money to help you so that you might be able to get into clinical trials, to get enough information to find out if it works. And to have the vision to go all the way from, ‘ok, you guys, we want you to enter this field, we want you to be interested in therapeutic development, we are going to help you structure the clinical trials, we are going to provide all the Alpha Stem Cell Clinics that can talk to each other to make the clinical trials happen.

The goal of CIRM is to change medicine and these are the approaches that have worked really well in doing this. The CIRM view clearly is:

‘There are 100 horses in this race and every single one that crosses the finish line is a success story.’ That’s what is necessary, because there are so many diseases and injuries for which new approaches are needed.”

Mark says working with CIRM has helped him spread the word back home in New York state:

“I have been very involved in working with the New York state legislature over the years to promote funding for stem cell biology and spinal cord injury research so having the CIRM experience has really helped me to understand what it is that another place can try and accomplish. A lot of the ideas that have been worked out at CIRM have been extremely helpful for statewide scientific enterprises in New York, where we have had people involved in different areas of the state effort talk to people at CIRM to find out what best practice is.”

Mark says he feels as if he has a front row seat to history.

“Seeing the stem cell field grow to its present stage and enhancing the opportunity to address multiple unmet medical needs, is a thrilling adventure. Working with CIRM to help create a better future is a privilege.”

 

A year in review – CIRM’s 2017 Annual Report focuses on a year of accelerating stem cell treatments to patients

Facebook-AR-2017[3]

At CIRM we have our focus very clearly on the future, on accelerating stem cell therapies to patients with unmet medical needs. But every once in a while, it’s a good idea to look back at what you have already done. Knowing where you came from can help you get to where you are heading.

So, it’s with a sense of accomplishment that we are unveiling our 2017 Annual Report. It’s a look back at another banner year for the stem cell agency, the research we funded, the partnerships we created and, most importantly, the lives we touched.

It features profiles of several people who received stem cell therapies in CIRM-funded clinical trials and the impact those therapies are having on them. But it also looks at some of the other individuals who are such a vital part of the work we do: patient advocates, researchers and a member of our Grants Working Group which reviews applications for funding. Each one, in their own way, contributes to advancing the field.

The report also highlights some of the less obvious ways that our funding is benefitting California. For example, the additional $1.9 billion dollars our funding has helped generate through co-funding and partnerships, or the number of projects we are funding that have been awarded Regenerative Medicine Advanced Therapy Designation from the Food and Drug Administration (FDA), making them eligible for accelerated review if their results continue to be promising.

It’s a look back at a successful year.

But we are not resting on our laurels. We are already hard at work, determined to make 2018 even better.

 

 

Taking a new approach to fighting a deadly brain cancer

Christine Brown DSC_3794

Christine Brown, Ph.D., City of Hope researcher

CIRM’s 2017 Annual Report will be going live online very soon. In anticipation of that we are highlighting some of the key elements from the report here on the Stem Cellar.

One of the most exciting new approaches in targeting deadly cancers is chimeric antigen receptor (CAR) T-cell therapy, using the patient’s own immune system cells that have been re-engineered to help them fight back against the tumor.

Today we are profiling City of Hope’s Christine Brown, Ph.D., who is using CAR-T cells in a CIRM-funded Phase 1 clinical trial for an aggressive brain cancer called malignant glioma.

“Brain tumors are the hardest to treat solid tumors. This is a project that CIRM has supported from an early, pre-clinical stage. What was exciting was we finished our first milestone in record time and were able to translate that research out of the lab and into the clinic. That really allowed us to accelerate treatment to glioblastoma patients.

I think there are glimmers of hope that immune based therapies and CAR-T based therapies will revolutionize therapy for patients with brain tumors. We’ve seen evidence that these cells can travel to the central nervous system and eliminate tumors in the brain.

We now have evidence that this approach produces a powerful, therapeutic response in one group of patients. We are looking at why other patients don’t respond as well and the CIRM funding enables us to ask the questions that will, we hope, provide the answers.

Because our clinical trial is a being carried out at the CIRM-supported City of Hope Alpha Stem Cell Clinic this is a great example of how CIRM supports all the different ways of advancing therapy from early stage research through translation and into clinical trials in the CIRM Alpha Clinic network.

There are lots of ways the tumor tries to evade the immune system and we are looking at different approaches to combine this therapy with different approaches to see which combination will be best.

It’s a challenging problem and it’s not going to be solved with one approach. If it were easy we’d have solved it by now. That’s why I love science, it’s one big puzzle about how do we understand this and how do we make this work.

I don’t think we would be where we are at without CIRM’s support, it really gave the funding to bring this to the next level.”

Dr. Brown’s work is also creating interest among investors. She recently partnered with Mustang Bio in a $94.5 million agreement to help advance this therapy.