Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

CIRM Board Approves Third Clinical Trial for COVID-19

Dr. Xiaokui Zhang (left), Dr. Albert Wong (center), and Dr. Preet Chaudhary (right)

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $750,000 to Dr. Xiaokui Zhang at Celularity to conduct a clinical trial for the treatment of COVID-19.  This brings the total number of CIRM clinical trials to 64, including three targeting the coronavirus.

This trial will use blood stem cells obtained from the placenta to generate natural killer (NK) cells, a type of white blood cell that is a vital part of the immune system, and administer them to patients with COVID-19.  NK cells play an important role in defense against cancer and in fighting off viral infections.  The goal is to administer these cells to locate the active sites of COVID-19 infection and destroy the virus-infected cells.  These NK cells have been used in two other clinical trials for acute myeloid leukemia and multiple myeloma.

The Board also approved two additional awards for Discovery Stage Research (DISC2), which promote promising new technologies that could be translated to enable broad use and improve patient care.

One award for $100,000 was given to Dr. Albert Wong at Stanford.  Dr. Wong has recently received an award from CIRM to develop a vaccine that produces a CD8+ T cell response to boost the body’s immune response to remove COVID-19 infected cells.  The current award will enable him to expand on the initial approach to increase its potential to impact the Latinx and African American populations, two ethnicities that are disproportionately impacted by the virus in California.

The other award was for $249,996 and was given to Dr. Preet Chaudhary at the University of Southern California.  Dr. Chaudary will use induced pluripotent stem cells (iPSCs) to generate natural killer cells (NK). These NK cells will express a chimeric antigen receptor (CAR), a synthetic receptor that will directly target the immune cells to kill cells infected with the virus.  The ultimate goal is for these iPSC-NK-CAR cells to be used as a treatment for COVID-19. 

“These programs address the role of the body’s immune T and NK cells in combatting viral infection and CIRM is fortunate enough to be able to assist these investigators in applying experience and knowledge gained elsewhere to find targeted treatments for COVID-19” says Dr. Maria T. Millan, the President & CEO of CIRM. “This type of critical thinking reflects the resourcefulness of researchers when evaluating their scientific tool kits.  Projects like these align with CIRM’s track record of supporting research at different stages and for different diseases than the original target.”

The CIRM Board voted to endorse a new initiative to refund the agency and provide it with $5.5 billion to continue its work. The ‘California Stem Cell Research, Treatments and Cures Initiative of 2020 will appear on the November ballot. 

The Board also approved a resolution honoring Ken Burtis, PhD., for his long service on the Board. Dr. Burtis was honored for his almost four decades of service at UC Davis as a student, professor and administrator and for his 11 years on the CIRM Board as both a member and alternate member. In the resolution marking his retirement the Board praised him, saying “his experience, commitment, knowledge, and leadership, contributed greatly to the momentum of discovery and the future therapies which will be the ultimate outcome of the dedicated work of the researchers receiving CIRM funding.”

Jonathan Thomas, the Chair of the Board, said “Ken has been invaluable and I’ve always found him to have tremendous insight. He has served as a great source of advice and inspiration to me and to the ICOC in dealing with all the topics we have had to face.” 

Lauren Miller Rogen thanked Dr. Burtis, saying “I sat next to you at my first meeting and was feeling so extraordinarily overwhelmed and you went out of your way to explain all these big science words to me. You were always a source of help and support, and you explained things to me in a way that I always appreciated with my normal brain.”

Dr. Burtis said it has been a real honor and privilege to be on the Board. “I’ve been amazed and astounded at the passion and dedication that the Board and CIRM staff have brought to this work. Every meeting over the years there has been a moment of drama and then resolution and this Board always manages to reach agreement and serve the people of California.”

Rare Disease, Type 1 Diabetes, and Heart Function: Breakthroughs for Three CIRM-Funded Studies

This past week, there has been a lot of mention of CIRM funded studies that really highlight the importance of the work we support and the different disease areas we make an impact on. This includes important research related to rare disease, Type 1 Diabetes (T1D), and heart function. Below is a summary of the promising CIRM-funded studies released this past week for each one of these areas.

Rare Disease

Comparison of normal (left) and Pelizaeus-Merzbacher disease (PMD) brains (right) at age 2. 

Pelizaeus-Merzbacher disease (PMD) is a rare genetic condition affecting boys. It can be fatal before 10 years of age and symptoms of the disease include weakness and breathing difficulties. PMD is caused by a disruption in the formation of myelin, a type of insulation around nerve fibers that allows electrical signals in the brain to travel quickly. Without proper signaling, the brain has difficulty communicating with the rest of the body. Despite knowing what causes PMD, it has been difficult to understand why there is a disruption of myelin formation in the first place.

However, in a CIRM-funded study, Dr. David Rowitch, alongside a team of researchers at UCSF, Stanford, and the University of Cambridge, has been developing potential stem cell therapies to reverse or prevent myelin loss in PMD patients.

Two new studies, of which Dr. Rowitch is the primary author, published in Cell Stem Cell, and Stem Cell Reports, respectively report promising progress in using stem cells derived from patients to identify novel PMD drugs and in efforts to treat the disease by directly transplanting neural stem cells into patients’ brains. 

In a UCSF press release, Dr. Rowitch talks about the implications of his findings, stating that,

“Together these studies advance the field of stem cell medicine by showing how a drug therapy could benefit myelination and also that neural stem cell transplantation directly into the brains of boys with PMD is safe.”

Type 1 Diabetes

Viacyte, a company that is developing a treatment for Type 1 Diabetes (T1D), announced in a press release that the company presented preliminary data from a CIRM-funded clinical trial that shows promising results. T1D is an autoimmune disease in which the body’s own immune system destroys the cells in the pancreas that make insulin, a hormone that enables our bodies to break down sugar in the blood. CIRM has been funding ViaCyte from it’s very earliest days, investing more than $72 million into the company.

The study uses pancreatic precursor cells, which are derived from stem cells, and implants them into patients in an encapsulation device. The preliminary data showed that the implanted cells, when effectively engrafted, are capable of producing circulating C-peptide, a biomarker for insulin, in patients with T1D. Optimization of the procedure needs to be explored further.

“This is encouraging news,” said Dr. Maria Millan, President and CEO of CIRM. “We are very aware of the major biologic and technical challenges of an implantable cell therapy for Type 1 Diabetes, so this early biologic signal in patients is an important step for the Viacyte program.”

Heart Function

Although various genome studies have uncovered over 500 genetic variants linked to heart function, such as irregular heart rhythms and heart rate, it has been unclear exactly how they influence heart function.

In a CIRM-funded study, Dr. Kelly Frazer and her team at UCSD studied this link further by deriving heart cells from induced pluripotent stem cells. These stem cells were in turn derived from skin samples of seven family members. After conducting extensive genome-wide analysis, the team discovered that many of these genetic variations influence heart function because they affect the binding of a protein called NKX2-5.

In a press release by UCSD, Dr. Frazer elaborated on the important role this protein plays by stating that,

“NKX2-5 binds to many different places in the genome near heart genes, so it makes sense that variation in the factor itself or the DNA to which it binds would affect that function. As a result, we are finding that multiple heart-related traits can share a common mechanism — in this case, differential binding of NKX2-5 due to DNA variants.”

The full results of this study were published in Nature Genetics.

Stanford study successful in transplant of mismatched stem cells, tissue in mice

Dr. Irv Weissman at Stanford University

A transplant can be a lifesaving procedure for many people across the United States. In fact, according to the Health Resources & Services Administration, 36,528 transplants were performed in 2018. However, as of January 2019, the number of men, women, and children on the national transplant waiting list is over 113,000, with 20 people dying each day waiting for a transplant and a new person being added to the list every 10 minutes.

Before considering a transplant, there needs to be an immunological match between the donated tissue and/or blood stem cells and the recipient. To put it simply, a “match” indicates that the donor’s cells will not be marked by the recipient’s immune cells as foreign and begin to attack it, a process known as graft-versus-host disease. Unfortunately, these matches can be challenging to find, particularly for some ethnic minorities. Often times, immunosuppression drugs are also needed in order to prevent the foreign cells from being attacked by the body’s immune system. Additionally, chemotherapy and radiation are often needed as well.

Fortunately, a CIRM-funded study at Stanford has shown some promising results towards addressing the issue of matching donor cells and recipient. Dr. Irv Weissman and his colleagues at Stanford have found a way to prepare mice for a transplant of blood stem cells, even when donor and recipient are an immunological mismatch. Their method involved using a combination of six specific antibodies and does not require ongoing immunosuppression.

The combination of antibodies did this by eliminating several types of immune cells in the animals’ bone marrow, which allowed blood stem cells to engraft and begin producing blood and immune cells without the need for continued immunosuppression. The blood stem cells used were haploidentical, which, to put it simply, is what naturally occurs between parent and child, or between about half of all siblings. 

Additional experiments also showed that the mice treated with the six antibodies could also accept completely mismatched purified blood stem cells, such as those that might be obtained from an embryonic stem cell line. 

The results established in this mouse model could one day lay the foundation necessary to utilize this approach in humans after conducting clinical trials. The idea would be that a patient that needs a transplanted organ could first undergo a safe, gentle transplant with blood stem cells derived in the laboratory from embryonic stem cells. The same embryonic stem cells could also then be used to generate an organ that would be fully accepted by the recipient without requiring the need for long-term treatment with drugs to suppress the immune system. 

In a news release, Dr. Weissman is quoted as saying,

“With support by the California Institute for Regenerative Medicine, we’ve been able to make important advances in human embryonic stem cell research. In the past, these stem cell transplants have required a complete match to avoid rejection and reduce the chance of graft-versus-host disease. But in a family with four siblings the odds of having a sibling who matches the patient this closely are only one in four. Now we’ve shown in mice that a ‘half match,’ which occurs between parents and children or in two of every four siblings, works without the need for radiation, chemotherapy or ongoing immunosuppression. This may open up the possibility of transplant for nearly everyone who needs it. Additionally, the immune tolerance we’re able to induce should in the future allow the co-transplantation of [blood] stem cells and tissues, such as insulin-producing cells or even organs generated from the same embryonic stem cell line.”

The full results to this study were published in Cell Stem Cell.

CIRM-funded research is helping unlock the secrets behind “chemo brain”

chemo brain

Every year millions of Americans undergo chemotherapy. The goal of the treatment is to destroy cancer, but along the way more than half of the people treated lose something else. They suffer from something called “chemo brain” which causes problems with thinking and memory. In some cases it can be temporary, lasting a few months. In others it can last years.

Now a CIRM-funded study by researchers at Stanford has found what may be behind chemo brain and identifying potential treatments.

In an article on the Stanford Medicine News Center, senior author Michelle Monje said:

“Cognitive dysfunction after cancer therapy is a real and recognized syndrome. In addition to existing symptomatic therapies — which many patients don’t know about — we are now homing in on potential interventions to promote normalization of the disorders induced by cancer drugs. There’s real hope that we can intervene, induce regeneration and prevent damage in the brain.”

The team first looked at the postmortem brains of children, some of whom had undergone chemotherapy and some who had not. The chemotherapy-treated brains had far fewer oligodendrocyte cells, a kind of cell important in protecting nerve cells in the brain.

Next the team injected methotrexate, a commonly used chemotherapy drug, into mice and then several weeks later compared the brains of those mice to untreated mice. They found that the brains of the treated mice had fewer oligodendrocytes and that the ones they had were in an immature state, suggested the chemo was blocking their development.

The inner changes were also reflected in behavior. The treated mice had slower movement, showed more anxiety, and impaired memory compared to untreated mice; symptoms that persisted for up to six months after the injections.

As if that wasn’t enough, they also found that the chemo affected other cells in the brain, creating a kind of cascade effect that seemed to amplify the impaired memory and other cognitive functions.

However, there is some encouraging news in the study, which is published in the journal Cell. The researchers gave the treated mice a drug to reverse some of the side effects of methotrexate, and that seemed to reduce some of the cognitive problems the mice were having.

Monje says that’s where her research is heading next.

“If we understand the cellular and molecular mechanisms that contribute to cognitive dysfunction after cancer therapy, that will help us develop strategies for effective treatment. It’s an exciting moment.”

 

Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Saying goodbye to a good friend and a stem cell pioneer: Karl Trede

FrankTrede_B_0110_20161204120959_2016_12_04_CIRM_AnnualReport_KarlTrede_SanJose_Portraits_SeesTheDay

Sometimes even courage and determination are not enough. Karl Trede had courage and determination in droves as he fought a 12 year battle against cancer. He recently lost that battle. But he remains an inspiration for all who knew him.

I got to know Karl for our 2016 Annual Report. Karl had been diagnosed with throat cancer in 2006. He underwent surgery to remove his vocal cords and the cancer seemed to be in remission. But then it returned, this time having spread to his lungs. His doctors said they had pretty much run out of options but would Karl consider trying something new, something no one else had tried before; stem cells.

Karl told me he didn’t hesitate.

“I said “sure”. I don’t believe I knew at the time that I was going to be the first one but I thought I’d give it a whirl. It was an experience for me. It was eye opening. I wasn’t real concerned about being the first, I figured I was going to have to go someday so I guess if I was the first person and something really went wrong then they’d definitely learn something. So, to me, that was kind of worth my time.”

Happily nothing went wrong and the team behind the therapy (Forty Seven Inc.) definitely learned something, they learned a lot about the correct dosage for patients; invaluable information in treating future patients.

Karl’s cancer was held at bay and he was able to do the one thing that brought him more pleasure than anything else; spend time with his family, his wife Vita, their four sons and their families. He doted on his grand kids and got to see them grow, and they got to know him.

Recently the cancer returned and this time there was no holding it at bay. To the end Karl remained cheerful and positive.

KARL poster

In our office is a huge poster of Karl with the words “Every Moment Counts” at the bottom. It’s a reminder to us why we come to work every day, why the people at Forty Seven Inc. and all the other researchers we support work so hard for years and years; to try and give people like Karl a few extra moments with his family.

At the top of the poster the word “Courage” is emblazoned across it. Karl has a huge smile on his face. Karl was certainly courageous, a stem cell pioneer willing to try something no one else ever had. He was also very modest.

Here is Karl speaking to our governing Board in December 2016

When I spoke to him in 2016, despite all he had gone through in his fight against cancer, he said he had no regrets:

“I consider myself very fortunate. I’m a lucky guy.”

Those of us who got to spend just a little time with Karl know that we were the lucky ones.

Our hearts go out to his family and friends for their loss.

 

 

Research Targeting Prostate Cancer Gets Almost $4 Million Support from CIRM

Prostate cancer

A program hoping to supercharge a patient’s own immune system cells to attack and kill a treatment resistant form of prostate cancer was today awarded $3.99 million by the governing Board of the California Institute for Regenerative Medicine (CIRM)

In the U.S., prostate cancer is the second most common cause of cancer deaths in men.  An estimated 170,000 new cases are diagnosed each year and over 29,000 deaths are estimated in 2018.  Early stage prostate cancer is usually managed by surgery, radiation and/or hormone therapy. However, for men diagnosed with castrate-resistant metastatic prostate cancer (CRPC) these treatments often fail to work and the disease eventually proves fatal.

Poseida Therapeutics will be funded by CIRM to develop genetically engineered chimeric antigen receptor T cells (CAR-T) to treat metastatic CRPC. In cancer, there is a breakdown in the natural ability of immune T-cells to survey the body and recognize, bind to and kill cancerous cells. Poseida is engineering T cells and T memory stem cells to express a chimeric antigen receptor that arms these cells to more efficiently target, bind to and destroy the cancer cell. Millions of these cells are then grown in the laboratory and then re-infused into the patient. The CAR-T memory stem cells have the potential to persist long-term and kill residual cancer calls.

“This is a promising approach to an incurable disease where patients have few options,” says Maria T. Millan, M.D., President and CEO of CIRM. “The use of chimeric antigen receptor engineered T cells has led to impressive results in blood malignancies and a natural extension of this promising approach is to tackle currently untreatable solid malignancies, such as castrate resistant metastatic prostate cancer. CIRM is pleased to partner on this program and to add it to its portfolio that involves CAR T memory stem cells.”

Poseida Therapeutics plans to use the funding to complete the late-stage testing needed to apply to the Food and Drug Administration for the go-ahead to start a clinical trial in people.

Quest Awards

The CIRM Board also voted to approve investing $10 million for eight projects under its Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Among those approved for funding are:

  • Eric Adler at UC San Diego is using genetically modified blood stem cells to treat Danon Disease, a rare and fatal condition that affects the heart
  • Li Gan at the Gladstone Institutes will use induced pluripotent stem cells to develop a therapy for a familial form of dementia
  • Saul Priceman at City of Hope will use CAR-T therapy to develop a treatment for recurrent ovarian cancer

Because the amount of funding for the recommended applications exceeded the money set aside, the Application Subcommittee voted to approve partial funding for two projects, DISC2-11192 and DISC2-11109 and to recommend, at the next full Board meeting in October, that the projects get the remainder of the funds needed to complete their research.

The successful applications are:

 

APPLICATION

 

TITLE

 

INSTITUTION

CIRM COMMITTED FUNDING
DISC2-11131 Genetically Modified Hematopoietic Stem Cells for the

Treatment of Danon Disease

 

 

U.C San Diego

 

$1,393,200

 

DISC2-11157 Preclinical Development of An HSC-Engineered Off-

The-Shelf iNKT Cell Therapy for Cancer

 

 

U.C. Los Angeles

 

$1,404,000

DISC2-11036 Non-viral reprogramming of the endogenous TCRα

locus to direct stem memory T cells against shared

neoantigens in malignant gliomas

 

 

U.C. San Francisco

 

$900,000

DISC2-11175 Therapeutic immune tolerant human islet-like

organoids (HILOs) for Type 1 Diabetes

 

 

Salk Institute

 

$1,637,209

DISC2-11107 Chimeric Antigen Receptor-Engineered Stem/Memory

T Cells for the Treatment of Recurrent Ovarian Cancer

 

 

City of Hope

 

$1,381,104

DISC2-11165 Develop iPSC-derived microglia to treat progranulin-

deficient Frontotemporal Dementia

 

 

Gladstone Institutes

 

$1,553,923

DISC2-11192 Mesenchymal stem cell extracellular vesicles as

therapy for pulmonary fibrosis

 

 

U.C. San Diego

 

$865,282

DISC2-11109 Regenerative Thymic Tissues as Curative Cell

Therapy for Patients with 22q11 Deletion Syndrome

 

 

Stanford University

 

$865,282

 

 

CIRM invests in stem cell clinical trial targeting lung cancer and promising research into osteoporosis and incontinence

Lung cancer

Lung cancer: Photo courtesy Verywell

The five-year survival rate for people diagnosed with the most advanced stage of non-small cell lung cancer (NSCLC) is pretty grim, only between one and 10 percent. To address this devastating condition, the Board of the California Institute for Regenerative Medicine (CIRM) today voted to invest almost $12 million in a team from UCLA that is pioneering a combination therapy for NSCLC.

The team is using the patient’s own immune system where their dendritic cells – key cells in our immune system – are genetically modified to boost their ability to stimulate their native T cells – a type of white blood cell – to destroy cancer cells.  The investigators will combine this cell therapy with the FDA-approved therapy pembrolizumab (better known as Keytruda) a therapeutic that renders cancer cells more susceptible to clearance by the immune system.

“Lung cancer is a leading cause of cancer death for men and women, leading to 150,000 deaths each year and there is clearly a need for new and more effective treatments,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased to support this program that is exploring a combination immunotherapy with gene modified cell and antibody for one of the most extreme forms of lung cancer.”

Translation Awards

The CIRM Board also approved investing $14.15 million in four projects under its Translation Research Program. The goal of these awards is to support promising stem cell research and help it move out of the laboratory and into clinical trials in people.

Researchers at Stanford were awarded almost $6 million to help develop a treatment for urinary incontinence (UI). Despite being one of the most common indications for surgery in women, one third of elderly women continue to suffer from debilitating urinary incontinence because they are not candidates for surgery or because surgery fails to address their condition.

The Stanford team is developing an approach using the patient’s own cells to create smooth muscle cells that can replace those lost in UI. If this approach is successful, it provides a proof of concept for replacement of smooth muscle cells that could potentially address other conditions in the urinary tract and in the digestive tract.

Max BioPharma Inc. was awarded almost $1.7 million to test a therapy that targets stem cells in the skeleton, creating new bone forming cells and blocking the destruction of bone cells caused by osteoporosis.

In its application the company stressed the benefit this could have for California’s diverse population stating: “Our program has the potential to have a significant positive impact on the lives of patients with osteoporosis, especially in California where its unique demographics make it particularly vulnerable. Latinos are 31% more likely to have osteoporosis than Caucasians, and California has the largest Latino population in the US, accounting for 39% of its population.”

Application Title Institution CIRM funding
TRAN1-10958 Autologous iPSC-derived smooth muscle cell therapy for treatment of urinary incontinence

 

 

Stanford University

 

$5,977,155

 

TRAN2-10990 Development of a noninvasive prenatal test for beta-hemoglobinopathies for earlier stem cell therapeutic interventions

 

 

Children’s Hospital Oakland Research Institute

 

$1,721,606

 

TRAN1-10937 Therapeutic development of an oxysterol with bone anabolic and anti-resorptive properties for intervention in osteoporosis  

MAX BioPharma Inc.

 

$1,689,855

 

TRAN1-10995 Morphological and functional integration of stem cell derived retina organoid sheets into degenerating retina models

 

 

UC Irvine

 

$4,769,039

 

Stanford Scientist Sergiu Pasca Receives Prestigious Vilcek Prize for Stem Cell Research on Neuropsychiatric Disorders

Sergiu Pasca, Stanford University

Last month, we blogged about Stanford neuroscientist Sergiu Pasca and his interesting research using stem cells to model the human brain in 3D. This month we bring you an exciting update about Dr. Pasca and his work.

On February 1st, Pasca was awarded one of the 2018 Vilcek Prizes for Creative Promise in Biomedical Science. The Vilcek Foundation is a non-profit organization dedicated to raising awareness of the important contributions made by immigrants to American arts and sciences.

Pasca was born in Romania and got his medical degree there before moving to the US to pursue research at Stanford University in 2009. He is now an assistant professor of psychiatry and behavioral sciences at Stanford and has dedicated his lab’s research to understanding human brain development and neuropsychiatric disorders using 3D brain organoid cultures derived from pluripotent stem cells.

The Vilcek Foundation produced a fascinating video (below) featuring Pasca’s life journey and his current CIRM-funded research on Timothy Syndrome – a rare form of autism. In the video, Pasca describes how his lab’s insights into this rare psychiatric disorder will hopefully shed light on other neurological diseases. He shares his hope that his research will yield something that translates to the clinic.

The Vilcek Prize for Creative Promise in Biomedical Science comes with a $50,000 cash award. Pasca along with the other prize winners will be honored at a gala event in New York City in April 2018.

You can read more about Pasca’s prize winning research on the Vilcek website and in past CIRM blogs below.


Related Links: