Stem cell stories that caught our eye: new baldness treatments?, novel lung stem cells, and giraffe stem cells

Novel immune system/stem cell interaction may lead to better treatments for baldness. When one thinks of the immune system it’s usually in terms of the body’s ability to fight off a bad cold or flu virus. But a team of UCSF researchers this week report in Cell that a particular cell of the immune system is key to instructing stem cells to maintain hair growth. Their results suggest that the loss of these immune cells, called regulatory T cells (Tregs for short), may be the cause of baldness seen in alopecia areata, a common autoimmune disorder and may even play a role in male pattern baldness.

Alopecia, a common autoimmune disorder that causes baldness. Image: Shutterstock

While most cells of the immune system recognize and kill foreign or dysfunctional cells in our bodies, Tregs act to subdue those cells to avoid collateral damage to perfectly healthy cells. If Tregs become impaired, it can lead to autoimmune disorders in which the body attacks itself.

The UCSF team had previously shown that Tregs allow microorganisms that are beneficial to skin health in mice to avoid the grasp of the immune system. In follow up studies they intended to examine what happens to skin health when Treg cells were inhibited in the skin of the mice. The procedure required shaving away small patches of hair to allow observation of the skin. Over the course of the experiment, the scientists notice something very curious. Team lead Dr. Michael Rosenblum recalled what they saw in a UCSF press release:

“We quickly noticed that the shaved patches of hair never grew back, and we thought, ‘Hmm, now that’s interesting. We realized we had to delve into this further.”

That delving showed that Tregs are located next to hair follicle stem cells. And during the hair growth, the Tregs grow in number and surround the stem cells. Further examination, found that Tregs trigger the stem cells through direct cell to cell interactions. These mechanisms are different than those used for their immune system-inhibiting function.

With these new insights, Dr. Rosenblum hopes this new-found role for Tregs in hair growth may lead to better treatments for Alopecia, one of the most common forms of autoimmune disease.

Novel lung stem cells bring new insights into poorly understood chronic lung disease. Pulmonary fibrosis is a chronic lung disease that’s characterized by scarring and changes in the structure of tiny blood vessels, or microvessels, within lungs. This so-called “remodeling” of lung tissue hampers the transfer of oxygen from the lung to the blood leading to dangerous symptoms like shortness of breath. Unfortunately, the cause of most cases of pulmonary fibrosis is not understood.

This week, Vanderbilt University Medical Center researchers report in the Journal of Clinical Investigation the identification of a new type of lung stem cell that may play a role in lung remodeling.

Susan Majka and Christa Gaskill, and colleagues are studying certain lung stem cells that likely contribute to the pathobiology of chronic lung diseases.  Photo by: Susan Urmy

Up until now, the cells that make up the microvessels were thought to contribute to the detrimental changes to lung tissue in pulmonary fibrosis or other chronic lung diseases. But the Vanderbilt team wasn’t convinced since these microvessel cells were already fully matured and wouldn’t have the ability to carry out the lung remodeling functions.

They had previously isolated stem cells from both mouse and human lung tissue located near microvessels. In this study, they tracked these mesenchymal progenitor cells (MPCs) in normal and disease inducing scenarios. The team’s leader, Dr. Susan Majka, summarized the results of this part of the study in a press release:

“When these cells are abnormal, animals develop vasculopathy — a loss of structure in the microvessels and subsequently the lung. They lose the surfaces for gas exchange.”

The team went on to find differences in gene activity in MPCs from healthy versus diseased lungs. They hope to exploit these differences to identify molecules that would provide early warnings of the disease. Dr. Majka explains the importance of these “biomarkers”:

“With pulmonary vascular diseases, by the time a patient has symptoms, there’s already major damage to the microvasculature. Using new biomarkers to detect the disease before symptoms arise would allow for earlier treatment, which could be effective at decreasing progression or even reversing the disease process.”

The happy stem cell story of Mahali the giraffe. We leave you this week with a feel-good story about Mahali, a 14-year old giraffe at the Cheyenne Mountain Zoo in Colorado. Mahali had suffered from chronic arthritis in his front left leg. As a result, he could not move well and was kept isolated from his herd.

Giraffes at Cheyenne Mountain Zoo. Photo: Denver Post

The zoo’s head veterinarian, Dr. Liza Dadone, decided to try a stem cell therapy procedure to bring Mahali some relief and a better quality of life. It’s the first time such a treatment would be performed on a giraffe. With the help of doctors at Colorado State University’s James L. Voss Veterinary Teaching Hospital, 100 million stem cells grown from Mahali’s blood were injected into his arthritic leg.

Before treatment, thermograph shows inflammation (red/yellow) in Mahali’s left front foot (seen at far right of each image); after treatment inflammation resolved (blue/green). Photos: Cheyenne Mountain Zoo

In a written statement to the Colorado Gazette, Dr. Dadone summarized the positive outcome:

“Prior to the procedure, he was favoring his left front leg and would lift that foot off the ground almost once per minute. Since then, Mahali is no longer constantly lifting his left front leg off the ground and has resumed cooperating for hoof care. A few weeks ago, he returned to life with his herd, including yard access. On the thermogram, the marked inflammation up the leg has mostly resolved.”

Now, Dr. Dadone made sure to state that other treatments and medicine were given to Mahali in addition to the stem cell therapy. So, it’s not totally clear to what extent the stem cells contributed to Mahali’s recovery. Maybe future patients will receive stem cells alone to be sure. But for now, we’re just happy for Mahali’s new lease on life.

Stem cell stories that caught our eye: spinal cord injury trial update, blood stem cells in lungs, and using parsley for stem cell therapies

More good news on a CIRM-funded trial for spinal cord injury. The results are now in for Asterias Biotherapeutics’ Phase 1/2a clinical trial testing a stem cell-based therapy for patients with spinal cord injury. They reported earlier this week that six out of six patients treated with 10 million AST-OPC1 cells, which are a type of brain cell called oligodendrocyte progenitor cells, showed improvements in their motor function. Previously, they had announced that five of the six patients had shown improvement with the jury still out on the sixth because that patient was treated later in the trial.

 In a news release, Dr. Edward Wirth, the Chief Medical officer at Asterias, highlighted these new and exciting results:

 “We are excited to see the sixth and final patient in the AIS-A 10 million cell cohort show upper extremity motor function improvement at 3 months and further improvement at 6 months, especially because this particular patient’s hand and arm function had actually been deteriorating prior to receiving treatment with AST-OPC1. We are very encouraged by the meaningful improvements in the use of arms and hands seen in the SciStar study to date since such gains can increase a patient’s ability to function independently following complete cervical spinal cord injuries.”

Overall, the trial suggests that AST-OPC1 treatment has the potential to improve motor function in patients with severe spinal cord injury. So far, the therapy has proven to be safe and likely effective in improving some motor function in patients although control studies will be needed to confirm that the cells are responsible for this improvement. Asterias plans to test a higher dose of 20 million cells in AIS-A patients later this year and test the 10 million cell dose in AIS-B patients that a less severe form of spinal cord injury.

 Steve Cartt, CEO of Asterias commented on their future plans:

 “These results are quite encouraging, and suggest that there are meaningful improvements in the recovery of functional ability in patients treated with the 10 million cell dose of AST-OPC1 versus spontaneous recovery rates observed in a closely matched untreated patient population. We look forward to reporting additional efficacy and safety data for this cohort, as well as for the currently-enrolling AIS-A 20 million cell and AIS-B 10 million cell cohorts, later this year.”

Lungs aren’t just for respiration. Biology textbooks may be in need of some serious rewrites based on a UCSF study published this week in Nature. The research suggests that the lungs are a major source of blood stem cells and platelet production. The long prevailing view has been that the bone marrow was primarily responsible for those functions.

The new discovery was made possible by using special microscopy that allowed the scientists to view the activity of individual cells within the blood vessels of a living mouse lung (watch the fascinating UCSF video below). The mice used in the experiments were genetically engineered so that their platelet-producing cells glowed green under the microscope. Platelets – cell fragments that clump up and stop bleeding – were known to be produced to some extent by the lungs but the UCSF team was shocked by their observations: the lungs accounted for half of all platelet production in these mice.

Follow up experiments examined the movement of blood cells between the lung and bone marrow. In one experiment, the researchers transplanted healthy lungs from the green-glowing mice into a mouse strain that lacked adequate blood stem cell production in the bone marrow. After the transplant, microscopy showed that the green fluorescent cells from the donor lung traveled to the host’s bone marrow and gave rise to platelets and several other cells of the immune system. Senior author Mark Looney talked about the novelty of these results in a university press release:

Mark Looney, MD

“To our knowledge this is the first description of blood progenitors resident in the lung, and it raises a lot of questions with clinical relevance for the millions of people who suffer from thrombocytopenia [low platelet count].”

If this newfound role of the lung is shown to exist in humans, it may provide new therapeutic approaches to restoring platelet and blood stem cell production seen in various diseases. And it will give lung transplants surgeons pause to consider what effects immune cells inside the donor lung might have on organ rejection.

Add a little vanilla to this stem cell therapy. Typically, the only connection between plants and stem cell clinical trials are the flowers that are given to the patient by friends and family. But research published this week in the Advanced Healthcare Materials journal aims to use plant husks as part of the cell therapy itself.

Though we tend to focus on the poking and prodding of stem cells when discussing the development of new therapies, an equally important consideration is the use of three-dimensional scaffolds. Stem cells tend to grow better and stay healthier when grown on these structures compared to the flat two-dimensional surface of a petri dish. Various methods of building scaffolds are under development such as 3D printing and designing molds using materials that aren’t harmful to human tissue.

Human fibroblast cells growing on decellularized parsley.
Image: Gianluca Fontana/UW-Madison

But in the current study, scientists at the University of Wisconsin-Madison took a creative approach to building scaffolds: they used the husks of parsley, vanilla and orchid plants. The researchers figured that millions of years of evolution almost always leads to form and function that is much more stable and efficient than anything humans can create. Lead author Gianluca Fontana explained in a university press release how the characteristics of plants lend themselves well to this type of bioengineering:

Gianluca Fontana, PhD

“Nature provides us with a tremendous reservoir of structures in plants. You can pick the structure you want.”

The technique relies on removing all the cells of the plant, leaving behind its outer layer which is mostly made of cellulose, long chains of sugars that make up plant cell walls. The resulting hollow, tubular husks have similar shapes to those found in human intestines, lungs and the bladder.

The researchers showed that human stem cells not only attach and grow onto the plant scaffolds but also organize themselves in alignment with the structures’ patterns. The function of human tissues rely on an organized arrangement of cells so it’s possible these plant scaffolds could be part of a tissue replacement cell product. Senior author William Murphy also points out that the scaffolds are easily altered:

William Murphy, PhD

“They are quite pliable. They can be easily cut, fashioned, rolled or stacked to form a range of different sizes and shapes.”

And the fact these scaffolds are natural products that are cheap to manufacture makes this a project well worth watching.

Raising awareness about Rare Disease Day

rare-disease-day-logo

One of the goals we set ourselves at CIRM in our 2016 Strategic Plan was to fund 50 new clinical trials over the next five years, including ten rare or orphan diseases. Since then we have funded 13 new clinical trials including four targeting rare diseases (retinitis pigmentosa, severe combined immunodeficiency, ALS or Lou Gehrig’s disease, and Duchenne’s Muscular Dystrophy). It’s a good start but clearly, with almost 7,000 rare diseases, this is just the tip of the iceberg. There is still so much work to do.

And all around the world people are doing that work. Today we have asked Emily Walsh, the Community Outreach Director at the Mesothelioma Cancer Alliance,  to write about the efforts underway to raise awareness about rare diseases, and to raise funds for research to develop new treatments for them.

“February 28th marks the annual worldwide event for Rare Disease Day. This is a day dedicated to raising awareness for rare diseases that affect people all over the world. The campaign works to target the general public as well as policy makers in hopes of bringing attention to diseases that receive little attention and funding. For the year 2017 it was decided that the focus would fall on “research,” with the slogan, “With research, possibilities are limitless.”

Getting involved for Rare Disease Day means taking this message and spreading it far and wide. Awareness for rare diseases is extremely important, especially among researchers, universities, students, companies, policy makers, and clinicians. It has long been known that the best advocates for rare diseases are the patients themselves. They use their specific perspectives to raise their voice, share their story, and shed light on the areas where additional funding and research are most necessary.

To see how you can help support the Rare Disease Day efforts this year, click here.

Groups like the Mesothelioma Cancer Alliance and the Mesothelioma Group are adding their voices to the cause to raise awareness about mesothelioma cancer, a rare form of cancer caused by exposure and inhalation of airborne asbestos fibers

Rare diseases affect 300 million people worldwide, but only 5% of them have an FDA approved treatment or cure. Malignant mesothelioma is among the 95 percent that doesn’t have a treatment or cure.

Asbestos has been used throughout history in building materials because of its fire retardant properties. Having a home with asbestos insulation, ceiling tiles, and roof shingles meant that the house was safer. However, it was found that once asbestos crumbled and became powder-like, the tiny fibers could become airborne and be inhaled and lodge themselves in lung tissue causing mesothelioma. The late stage discovery of mesothelioma is often what causes it to have such a high mortality rate. Symptoms can have a very sudden onset, even though the person may have been exposed decades prior.

Right now, treatment for mesothelioma includes the usual combination of chemotherapy, radiation, and surgery, but researchers are looking at other approaches to see if they can be more effective or can help in conjunction with the standard methods. For example one drug, Defactinib, has shown some promise in inhibiting the growth and spread of cancer stem cells – these are stem cells that can evade chemotherapy and cause patients to relapse.”

Some people might ask why spend limited resources on something that affects so few people. But the lessons we learn in developing treatments for a rare disease can often lead us to treatments for diseases that affect many millions of people.

But numbers aside, there is no hierarchy of need, no scale to say the suffering of people with Huntington’s disease is any greater or less than that of people with Alzheimer’s. We are not in the business of making value judgements about who has the greatest need. We are in the business of accelerating treatments to patients with unmet medical needs. And those suffering from rare disease are very clearly  people in need.

 


Related Links:

Cured by Stem Cells

cirm-2016-annual-report-web-12

To get anywhere you need a good map, and you need to check it constantly to make sure you are still on the right path and haven’t strayed off course. A year ago the CIRM Board gave us a map, a Strategic Plan, that laid out our course for the next five years. Our Annual Report for 2016, now online, is our way of checking that we are still on the right path.

I think, without wishing to boast, that it’s safe to say not only are we on target, but we might even be a little bit ahead of schedule.

The Annual Report is chock full of facts and figures but at the heart of it are the stories of the people who are the focus of all that we do, the patients. We profile six patients and one patient advocate, each of whom has an extraordinary story to tell, and each of whom exemplifies the importance of the work we support.

brenden_stories_of_hope

Brenden Whittaker: Cured

Two stand out for one simple reason, they were both cured of life-threatening conditions. Now, cured is not a word we use lightly. The stem cell field has been rife with hyperbole over the years so we are always very cautious in the way we talk about the impact of treatments. But in these two cases there is no need to hold back: Evangelina Padilla Vaccaro and Brenden Whittaker have been cured.

evangelina

Evangelina: Cured

 

In the coming weeks we’ll feature our conversations with all those profiled in the Annual Report, giving you a better idea of the impact the stem cell treatments have had on their lives and the lives of their family. But today we just wanted to give a broad overview of the Annual Report.

The Strategic Plan was very specific in the goals it laid out for us. As an agency we had six big goals, but each Team within the agency, and each individual within those teams had their own goals. They were our own mini-maps if you like, to help us keep track of where we were individually, knowing that every time an individual met a goal they helped the Team get closer to meeting its goals.

As you read through the report you’ll see we did a pretty good job of meeting our targets. In fact, we missed only one and we’re hoping to make up for that early in 2017.

But good as 2016 was, we know that to truly fulfill our mission of accelerating treatments to patients with unmet medical needs we are going to have do equally well, if not even better, in 2017.

That work starts today.

 

Stem cell heroes: patients who had life-saving, life-changing treatments inspire CIRM Board

 

It’s not an easy thing to bring an entire Board of Directors to tears, but four extraordinary people and their families managed to do just that at the last CIRM Board meeting of 2016.

The four are patients who have undergone life-saving or life-changing stem cell therapies that were funded by our agency. The patients and their families shared their stories with the Board as part of CIRM President & CEO Randy Mill’s preview of our Annual Report, a look back at our achievements over the last year.

The four included:

jake_javier_stories_of_hope

Jake Javier, whose life changed in a heartbeat the day before he graduated high school, when he dove into a swimming pool and suffered a spinal cord injury that left him paralyzed from the chest down. A stem cell transplant is giving him hope he may regain the use of his arms and hands.

 

 

karl

Karl Trede who had just recovered from one life-threatening disease when he was diagnosed with lung cancer, and became the first person ever treated with a new anti-tumor therapy that helped hold the disease at bay.

 

brenden_stories_of_hopeBrenden Whittaker, born with a rare immune disorder that left his body unable to fight off bacterial or fungal infections. Repeated infections cost Brenden part of his lung and liver and almost killed him. A stem cell treatment that gave him a healthy immune system cured him.

 

 

evangelinaEvangelina Padilla Vaccaro was born with severe combined immunodeficiency (SCID), also known as “bubbly baby” disease, which left her unable to fight off infections. Her future looked grim until she got a stem cell transplant that gave her a new blood system and a healthy immune system. Today, she is cured.

 

 

Normally CIRM Board meetings are filled with important, albeit often dry, matters such as approving new intellectual property regulations or a new research concept plan. But it’s one thing to vote to approve a clinical trial, and a very different thing to see the people whose lives you have helped change by funding that trial.

You cannot help but be deeply moved when you hear a mother share her biggest fear that her daughter would never live long enough to go to kindergarten and is now delighted to see her lead a normal life; or hear a young man who wondered if he would make it to his 24th birthday now planning to go to college to be a doctor

When you know you played a role in making these dreams happen, it’s impossible not to be inspired, and doubly determined to do everything possible to ensure many others like them have a similar chance at life.

You can read more about these four patients in our new Stories of Hope: The CIRM Stem Cell Four feature on the CIRM website. Additionally, here is a video of those four extraordinary people and their families telling their stories:

We will have more extraordinary stories to share with you when we publish our Annual Report on January 1st. 2016 was a big year for CIRM. We are determined to make 2017 even bigger.

Stem cell stories that caught our eye: insights into stem cell biology through telomeres, reprogramming and lung disease

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Telomeres and stem cell stability: too much of a good thing

Just like those plastic tips at the end of shoelaces (fun fact: they’re called aglets), telomeres form a protective cap on the end of chromosomes. Because of the way DNA replication works, the telomeres shorten each time a cell divides. Trim away enough of the telomere over time and, like a frayed shoelace, the chromosomes become unstable and an easy target for damage which eventually leads to cell death.

telomere_caps

Telomeres (white dots) form a protective cap on chromsomes (gray). (Wikimedia) 

Stem cells are unique in that they contain an enzyme called telomerase that lengthens telomeres. Telomerase activity and telomere lengthening are critical for a stem cell’s ability to maintain virtually limitless cell divisions. So you’d assume the longer the telomere, the more stable the cell. But Salk Institute scientists reported this week that too much telomere can be just as bad, if not worse, than too little.

The CIRM-funded work, which was published in Nature Structural & Molecular Biology, used genetic engineering to artificially vary telomerase activity in human embryonic stem cells. Cells with low telomerase activity had shorter telomeres and died. This result wasn’t a surprise since the short telomeres-cell death observation has been well documented. Based on those results, the team was expecting cells with boosted telomerase activity and, in turn, extended telomeres would be especially stable. But that’s not what happened as senior author Jan Karlseder mentioned in a Salk press release:

“We were surprised to find that forcing cells to generate really long telomeres caused telomeric fragility, which can lead to initiation of cancer. These experiments question the generally accepted notion that artificially increasing telomeres could lengthen life or improve the health of an organism.”

The researchers also examined induced pluripotent stem (iPS) cells in the study and found that the cells contain “footprints” of telomere trimming. So the team is in a position to study how a cell’s telomere history relates to how well it can be reprogrammed into iPS cells. First author Teresa Rivera pointed out the big picture significance of this finding:

“Stem cell reprogramming is a major scientific breakthrough, but the methods are still being perfected. Understanding how telomere length is regulated is an important step toward realizing the promise of stem cell therapies and regenerative medicine.”

jan-karlseder_teresa-rivera-garcia0x8c7144w

Jan Karlseder and Teresa Rivera

Lego set of gene activators takes trial and error out of cellular reprogramming

To convert one cell type into another, stem cell researchers rely on educated guesses and a lot of trial and error. In fact, that’s how Shinya Yamanaka identified the four Yamanaka Factors which, when inserted into a skin cell, reprogram it into the embryonic stem cell-like state of an iPS cell. That ground-breaking discovery ten years ago has opened the way for researchers worldwide to specialize iPS cells into all sorts of cell types from nerve cells to liver cells. While some cell types are easy to generate this way, others are much more difficult.

Reporting this week in PNAS, a University of Wisconsin–Madison research team has developed a nifty systematic, high-throughput method for identifying the factors necessary to convert a cell from one type to another. Their strategy promises to free researchers from the costly and time consuming trial and error approach still in use today.

The centerpiece of their method is artificial transcription factors (ATFs). Now, natural transcription factors – Yamanaka’s Factors are examples – are proteins that bind DNA and activate or silence genes. Their impact on gene activity, in turn, can have a cascading effects on other genes and proteins ultimately causing, say a stem cell, to start making muscle proteins and turn into a muscle cell.

Transcription factors are very modular proteins – one part is responsible for binding DNA, another part for affecting gene activity and other parts that bind to other proteins. The ATFs generated in this study are like lego versions of natural transcription factors – each are constructed from combinations of different transcription factor parts. The team made nearly 3 million different ATFs.

As a proof of principle, the researchers tried reproducing Yamanaka’s original, groundbreaking iPS cell experiment. They inserted the ATFs into skin cells that already had 3 of the 4 Yamanaka factors, they left out Oct4. They successfully generated iPS with this approach and then went back and studied the makeup of the ATFs that had caused cells to reprogram into iPS cells. Senior author Aseem Ansari gave a great analogy in a university press release:

“Imagine you have millions of keys and only a unique key or combination of keys can turn a motor on. We test all those keys in parallel and when we see the motor fire up, we go back to see exactly which key switched it on.”

atf_ips_cells

Micrograph of induced pluripotent stem cells generated from artificial transcription factors. The cells express green fluorescent protein after a key gene known as Oct4 is activated. (ASUKA EGUCHI/UW-MADISON)

The analysis showed that these ATFs had stimulated gene activity cascades which didn’t directly involve Oct4 but yet ultimately activated it. This finding is important because it suggests that future cell conversion experiments could uncover some not so obvious cell fate pathways. Ansari explains this point further:

“It’s a way to induce cell fate conversions without having to know what genes might be important because we are able to test so many by using an unbiased library of molecules that can search nearly every corner of the genome.”

This sort of brute force method to accelerate research discoveries is music to our ears at CIRM because it ultimately could lead to therapies faster.

Search for clues to treat deadly lung disease

When researchers don’t understand what causes a particular disease, a typical strategy is to compare gene activity in diseased vs healthy cells and identify important differences. Those differences may lead to potential paths to developing a therapy. That’s the approach a collaborative team from Cincinnati Children’s Hospital and Cedars-Sinai Medical took to tackle idiopathic pulmonary fibrosis (IPF).

IPF is a chronic lung disease which causes scarring, or fibrosis, in the air sacs of the lung. This is the spot where oxygen is taken up by tiny blood vessels that surround the air sacs. With fibrosis, the air sacs stiffen and thicken and as a result less oxygen gets diffused into the blood and starves the body of oxygen.  IPF can lead to death within 2 to 5 years after diagnosis. Unfortunately, no cures exist and the cause is unknown, or idiopathic.

(Wikimedia)

(Wikimedia)

The transfer of oxygen from air sacs to blood vessels is an intricate one with many cell types involved. So pinpointing what goes wrong in IPF at a cellular and molecular level has proved difficult. In the current study, the scientists, for the first time, collected gene sequencing data from single cells from healthy and diseased lungs. This way, a precise cell by cell analysis of gene activity was possible.

One set of gene activity patterns found in healthy sample were connected to proper formation of a particular type of air sac cell called the aveolar type 2 lung cell. Other gene patterns were linked to abnormal IPF cell types. With this data in hand, the researchers can further investigate the role of these genes in IPF which may open up new therapy approaches to this deadly disease.

The study funded in part by CIRM was published this week in Journal of Clinical Investigation Insight and a press release about the study was picked up by PR Newswire.

Failed stem cells may cause deadly lung disease

pf

Breathing is something we take for granted. It’s automatic. We don’t need to think about it. But for people with pulmonary fibrosis, breathing is something that is always on their minds.

Pulmonary fibrosis (PF) is a disease where the tissue in your lungs becomes thick and stiff, even scarred, making it difficult to breathe. It can be a frightening experience; and it doesn’t just affect your lungs.

Because your lungs don’t work properly they aren’t able to move as much oxygen as you need into your bloodstream, and that can have an impact on all your other organs, such as your brain and heart. There are some treatments but no cures, in large part because we didn’t know the cause of the disease. Many patients with PF live only 3-5 years after diagnosis.

Now a new CIRM-funded study from researchers at Cedars-Sinai has uncovered clues as to the cause of the disease, and that in turn could pave the way to new treatments.

The study, published in the journal Nature, found that a class of stem cells in the lung, called AEC2s, are responsible for helping repair damage caused by things such as pollution or infection. People who have PF have far fewer of these AEC2 cells, and those cells also had a much lower concentration of a chemical substance called hyaluronan, which is essential for repair damaged tissue.

They tested this theory with laboratory mice and found that by removing hyaluronan the mice developed thick scarring in their lungs.

In a news release from Cedars-Sinai Carol Liang, the study’s first author, said knowing the cause of the problem may help identify potential solutions:

“These findings are the first published evidence that idiopathic pulmonary fibrosis is primarily a disease of AEC2 stem cell failure. In further studies, we will explore how the loss of hyaluronan promotes fibrosis and how it might be restored to cell surfaces. These endeavors could lead to new therapeutic approaches.”

Knowing that a problem with AEC2 cells causes PF means the researchers can now start testing different medications to see which ones might help boost production of replacement AEC2 cells, or help protect those still functioning.

Stem cell agency funds clinical trials in three life-threatening conditions

strategy-wide

A year ago the CIRM Board unanimously approved a new Strategic Plan for the stem cell agency. In the plan are some rather ambitious goals, including funding ten new clinical trials in 2016. For much of the last year that has looked very ambitious indeed. But today the Board took a big step towards reaching that goal, approving three clinical trials focused on some deadly or life-threatening conditions.

The first is Forty Seven Inc.’s work targeting colorectal cancer, using a monoclonal antibody that can strip away the cancer cells ability to evade  the immune system. The immune system can then attack the cancer. But just in case that’s not enough they’re going to hit the tumor from another side with an anti-cancer drug called cetuximab. It’s hoped this one-two punch combination will get rid of the cancer.

Finding something to help the estimated 49,000 people who die of colorectal cancer in the U.S. every year would be no small achievement. The CIRM Board thought this looked so promising they awarded Forty Seven Inc. $10.2 million to carry out a clinical trial to test if this approach is safe. We funded a similar approach by researchers at Stanford targeting solid tumors in the lung and that is showing encouraging results.

Our Board also awarded $7.35 million to a team at Cedars-Sinai in Los Angeles that is using stem cells to treat pulmonary hypertension, a form of high blood pressure in the lungs. This can have a devastating, life-changing impact on a person leaving them constantly short of breath, dizzy and feeling exhausted. Ultimately it can lead to heart failure.

The team at Cedars-Sinai will use cells called cardiospheres, derived from heart stem cells, to reduce inflammation in the arteries and reduce blood pressure. CIRM is funding another project by this team using a similar  approach to treat people who have suffered a heart attack. This work showed such promise in its Phase 1 trial it’s now in a larger Phase 2 clinical trial.

The largest award, worth $20 million, went to target one of the rarest diseases. A team from UCLA, led by Don Kohn, is focusing on Adenosine Deaminase Severe Combined Immune Deficiency (ADA-SCID), which is a rare form of a rare disease. Children born with this have no functioning immune system. It is often fatal in the first few years of life.

The UCLA team will take the patient’s own blood stem cells, genetically modify them to fix the mutation that is causing the problem, then return them to the patient to create a new healthy blood and immune system. The team have successfully used this approach in curing 23 SCID children in the last few years – we blogged about it here – and now they have FDA approval to move this modified approach into a Phase 2 clinical trial.

So why is CIRM putting money into projects that it has either already funded in earlier clinical trials or that have already shown to be effective? There are a number of reasons. First, our mission is to accelerate stem cell treatments to patients with unmet medical needs. Each of the diseases funded today represent an unmet medical need. Secondly, if something appears to be working for one problem why not try it on another similar one – provided the scientific rationale and evidence shows it is appropriate of course.

As Randy Mills, our President and CEO, said in a news release:

“Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can. These are very different projects, but they all share the same goal, accelerating treatments to patients with unmet medical needs.”

We are trying to create a pipeline of projects that are all moving towards the same goal, clinical trials in people. Pipelines can be horizontal as well as vertical. So we don’t really care if the pipeline moves projects up or sideways as long as they succeed in moving treatments to patients. And I’m guessing that patients who get treatments that change their lives don’t particularly

Stem cell stories that caught our eye: 3D mini-lungs, Parkinson’s culprit, Motherless babies!

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Mimicking human air sacs –  a new lab tool for studying respiratory disease
Studying a flat lawn of cells in a petri dish is so old fashioned these days. The current trend is to use stem cells to create mini-organs called organoids that more closely mimic the actual three dimensional structures that you would find in the human body. We’ve written about the creation of mini-brains, livers, pituitary glands and several other organoids. Now, a UCLA research team has added lung organoids to the list.

bioengineeredlung-liketissue_mid

3-D bioengineered lung-like tissue (left) resembles adult human lung (right).
Image credit: UCLA Broad Stem Cell Research Center

Reported yesterday in Stem Cells Translational Medicine, the CIRM-funded study describes the technique of nudging lung stem cells, collected from patients’ lung tissue, to self-assemble into 3D structures that resemble air sacs found in the human lung. This technique will surely usher in a better understanding of idiopathic pulmonary fibrosis, a disease that causes scarring of the lungs, leading to shortness of breath and depriving the organs of oxygen. The cause of the disease isn’t known in most cases and, sadly, people usually die within five years of their initial diagnosis.

One of the main challenges in the lab has been reproducing the tale tell scarring seen in this chronic lung disease. When lung cells are taken from pulmonary fibrosis patients and grown as a flat layer, the cells look healthy. But with this novel lung organoid technique, the researchers were able to manipulate the cells to develop the types of scars seen in actual diseased lungs. Better yet, the methodology is very straight-forward, as Dan Wilkinson described in a university press release:

“The technique is very simple. We can make thousands of reproducible pieces of tissue that resemble lung and contain patient-specific cells.”

Now the researchers are in a position to better understand the cellular and molecular basis of the disease and to test out possible treatments that would work best in each individual.

A common thread running through all Parkinson’s cases
The cause of Parkinson’s disease seems straight-forward enough: nerve cells that produce dopamine – a chemical signal that helps generate smooth body movements – progressively die leading to body stiffness, uncontrollable shaking in the limbs and weakened coordination, just to name a few symptoms.

But the underlying genetics of Parkinson’s is anything but simple. Mutations in several genes are associated with family histories of the disease while other mutations in other genes are known to indirectly increase the risk of developing Parkinson’s. These familial forms of Parkinson’s, however, only make up about 15% of all cases; the remaining are so-called sporadic, meaning there’s no obvious family history. So, treating Parkinson’s disease involves treating each of its many forms. But in a CIRM-funded study, published late last week in Cell Stem Cell, Stanford researchers reported on a common thread that appears to run through all forms of Parkinson’s disease.

The team focused on a known mutation in the LRRK2 gene, found in about 1 out of 20 cases of familial Parkinson’s and which pops up in 1 out of 50 cases of sporadic Parkinson’s. The link between LRRK2 and Parkinson’s had not been understood. The Stanford researchers found it plays an important role in the maintenance of mitochondria, structures that produce a cell’s energy needs.

constellation-the-morning-star

Oh, not that Miro’. We’re talking about the protein Miro!
(Image: www.joan-miro.net)

When mitochondria become damaged or old they begin spewing out molecules that are toxic to the cell. In response, the cell gobbles up these mitochondria but only after the LRRK protein interacts with and removes a protein called Miro which normally anchors the mitochondria to the cell’s internal structures. The mutated form of LRRK2 doesn’t interact with Miro very well and, as a result, Miro holds on to the toxic mitochondria which in turn are not dismantled as rapidly.

You’d think this mechanism of action would to be specific to the LRRK2-mutant Parkinson’s but to the scientists’ pleasant surprise, it wasn’t. They discovered this result by creating induced pluripotent stem cells from skin samples collected from twenty different subjects:  four healthy subjects; five with the sporadic Parkinson’s; six with familial Parkinson’s from LRRK2 mutations and five with familial patients from other mutations. The iPS cells were grown into dopamine-producing nerve cells, the kind that die off in Parkinson’s disease. With these cells in hand, they observed the impact of intentionally damaging the mitochondria.

As expected, this damage to the nerve cells from the healthy subjects led to the breakdown of Miro which in turn allowed the detachment and degradation of mitochondria. Also as expected, the nerve cells from patients with the LRRK2 mutant showed delays in the release and degradation of mitochondria. But when the team looked at the other Parkinson’s nerve cells not associated with the LRRK2 mutant, they found the same delay in the release of Miro and degradation of mitochondria.

This result points to Miro as a common player in all forms of Parkinson’s. Xinnan Wang, the team’s leader, spoke about the exciting implications of these findings in a university press release:

viewimage

Xinnan Wang

“Existing drugs for Parkinson’s largely work by supplying precursors that faltering dopaminergic nerve cells can easily convert to dopamine. But that doesn’t prevent those cells from dying, and once they’ve died you can’t bring them back. Measuring Miro levels in skin fibroblasts from people at risk of Parkinson’s might someday prove beneficial in getting an accurate, early diagnosis. And medicines that lower Miro levels could prove beneficial in treating the disease.” 

A cautionary tale about science communication
What to leave in, what to leave out: it’s the continual dilemma (I must add a fun dilemma) for a science writer. When writing for a general audience, if you describe a research report in too much detail you’re likely to quickly lose your reader. But not adding enough detail can lead the reader to draw conclusions that aren’t accurate. And just a like a game of telephone, as the story is passed along from one source to another, the resulting storyline has little resemblance to the original research.

Research published this week in Nature Communications provides a case in point. Many of news outlets that picked up the research story which involved the successful production of mouse pups from mixing sperm with an novel type of egg cell that had been induced to divide before fertilization. The resulting headlines suggested that scientists had identified an end run around the need for a female’s egg to produce offspring. Based on a quick glance at these condensed summaries of the research report, you’d think motherless babies were just around the corner.

Gretchen Vogel at Science Magazine wrote a terrific autopsy of this news story, describing in five steps how it took on a life of its own. It’s a humorous (I personally LOL’d when I read it) yet serious cautionary tale of how science communication can go awry. I highly recommended the short piece. For a sneak peek, here’s her “five easy steps to create a tabloid science headline”:

  1. vogel_

    Gretchen Vogel

    Take one jargon-filled paper title: “Mice produced by mitotic reprogramming of sperm injected into haploid parthenogenotes

  2. Distill its research into more accessible language. Text of Nature Communications press release: Mouse sperm injected into a modified, inactive embryo can generate healthy offspring, shows a paper in Nature CommunicationsAnd add a lively headline: “Mouse sperm generate viable offspring without fertilization in an egg
  3. Enlist an organization to invite London writers to a press briefing with paper’s authors.
    Headline of Science Media Centre press release: “Making embryos from a non-egg cell
  4. Have same group distribute a laudatory quote from well-known and respected scientist: 
    “[It’s] a technical tour de force.”
  5. Bake for 24 hours and present without additional reporting. Headline in The Telegraph: “Motherless babies possible as scientists create live offspring without need for female egg,” and in The Guardian: “Skin cells might be used instead of eggs to make embryos, scientists say.”

 

CIRM Scholar Spotlight: Matt Donne on Lung Stem Cells

CIRM has funded a number of educational and research training programs over the past ten years to give younger students and graduate/postdoc scholars the opportunity to explore stem cell science.

Two of the main programs we support are the Bridges and the CIRM Scholars Training Program. These programs fund future scientists from an undergraduate to postdoctoral level with a goal of creating “training programs that will significantly enhance the technical skills, knowledge, and experience of a diverse cohort of… trainees in the development of stem cell based therapies.”

The Stem Cellar team was interested to hear from Bridges and CIRM scholars themselves about their experience with these programs, how their careers have benefited from CIRM funding, and what research accomplishments they have under their belt. We were able to track some of these scholars down, and will be publishing a series of interview-style blogs featuring them over the next few months.

Matt Donne

Matt Donne

We start off with a Matt Donne, a PhD student at the University of California, San Francisco (UCSF) in the Developmental and Stem Cell Biology graduate program. Matt is a talented scientist and has a pretty cool story about his research training path. I sat down with Matt to ask him a few questions.


Q: Tell us how you got into a Stem Cell graduate program at UCSF.

MD: I was fortunate to have Dr. Carmen Domingo from San Francisco State support my application into the CIRM Bridges Program. I’d been working for Dr. Susan Fisher at UCSF for a couple of years and realized that I wanted to get a PhD and go to UCSF. I thought the best way to do that was improve my GPA and get a masters degree in stem cell biology. I applied to the CIRM program at SF State, and was accepted.

The Bridges Program has been a great feeder platform to get students more science experience exposure than they would have otherwise received, and prepares them well to move on to competitive graduate schools.

After receiving my Masters degree, I was admitted into the first year of the Developmental and Stem Cell Biology program at UCSF. When the opportunity to apply for a training grant from CIRM came about between my first and second year of at UCSF, I knew I had to give it a chance and apply. With the help of my mentor, Dr. Jason Rock, I wrote a solid proposal and was awarded the fellowship.

While at SF State, Carmen was extremely supportive and always available for her students. Since then, many of us still keep in touch and more have joined the UCSF graduate school community.

Q: Can you describe your graduate research?

MD: The field of regenerative medicine is searching for ways to allow us to repair injuries similar to how the Marvel Comic Wolverine can repair his wounds in the movies. One interesting fact which has been known for several decades, but has not been able to be investigated more deeply until now, is the innate ability for the adult lung to regrow lost lung tissue without any sort of intervention. My thesis focuses on defining the molecular mechanisms and stem cell niches that allow for this normal, healthy adult lung tissue growth. The working hypothesis is if we can understand what makes a cell undergo healthy tissue proliferation and differentiation, we could stimulate this response to cure individuals who suffer from diseases such as chronic obstructive pulmonary disease (COPD). Similarly, if we understand how a cell decides to respond in a diseased way, we could stop or revert the disease process from occurring.

One of the models we use in our lab is a “pneumosphere” culture. We essentially grow alveoli, which are the site of gas exchange in the lung, in a dish to attempt to understand how specific alveolar stem cells signal and interact with one another. This information will teach us how these cells behave so we can in turn either promote a healthy response to injury or, potentially, stop the progression of unhealthy cell responses. The technique of growing alveoli in a dish allows us to cut down on the “noise” and focus on major cellular pathways, which we can then more selectively apply to our mouse model systems.

Pneumospheres. (Photo by Matt Donne)

Pneumospheres or “lung cells in a dish”. (Photo by Matt Donne)

Lung cells.

Lung pneumospheres under a microscope. (Photo by Matt Donne)

We are now in the process of submitting a paper demonstrating some of the molecular players that are involved in this regenerative lung response. Hopefully the reviewers will think our paper is as awesome we as believe it to be.

Q: How has being a CIRM scholar benefited your graduate research career?

MD: Starting in my second year at UCSF, I was awarded the CIRM fellowship. I think it helped the lab to have the majority of my stipend covered through the CIRM fellowship, and personally I was very excited about the $5,000 discretionary budget. These monies allowed me to go to conferences every year for the past three years, and also have helped to support the costs of my experiments.

The first conference I attended was a Gordon Conference in Italy on Developmental Biology. There I was able to learn more about the field and also make friends with many professors, students, and postdocs from around the world. Last year, I went to my first lung-specific conference, and attended again this year. That has been one of the highlights of my PhD career. While there, one is able to speak and interact with professors whose names are seen in many textbooks and published papers. I never thought I would be able to so casually interact with them and develop relationships. Since then, I have been able to work on small collaborations with professors from across the US.

It was great that I could go to these conferences and establish important relationships with professors without being a major financial burden to my Professor. Plus, it has been hugely beneficial for my career as I now have professors whom I can reach out to as I look towards my future as a scientist.

Q: What other benefits did the CIRM scholars program provide you?

MD: Dr. Susan Fisher has been in charge of the CIRM program at UCSF. She organized lunch-time research talks that involved both academic as well as non-academic leaders in the field. I enjoyed the extra exposure to new fields of stem cell biology as well as the ability to learn more about the start-up and non-academic world. There are not many programs that offer this type of experience, and I felt fortunate to be a part of it. Also, the free lunches on occasion were a nice perk for a grad student living in San Francisco!

I attended the CIRM organized conferences whenever they happened. It’s always great presenting at or attending poster sessions at these events, seeing familiar faces and meeting new people. I took full advantage of the learning and networking that CIRM allowed me to do. The CIRM elevator pitch competition was really cool too. I didn’t win, came in third, but I enjoyed the challenge of trying to break down my thesis project into a digestible one-minute pitch.

Q: Where do you see the field of lung biology and regenerative medicine heading?

MD: My take away from the research conferences I have attended with the help of CIRM-funding is that we are in a very exciting time for lung stem cell research. The field overall is still young, but there are many labs across the world now working on a “lung mapping project” to better define stem cell populations in the lung. I see this research in the future translating in to regenerative therapies by which diseased cells/tissue will be targeted to actually stop the disease progression, and in turn possibly repair and regenerate healthy new tissue. This research has wide reaching implications as it has the potential to help everyone from a premature baby more quickly develop mature healthy lungs, to adults suffering from COPD brought on by environmental factors, such as air pollution. As many scientists are often quoted, “This is a very exciting time for our field.”

Q: What are your future plans?

MD: I expect to graduate in about a year’s time. In the future, I want to pursue a career focusing on the social impact of science. I aspire to be someone like UCSF’s former chancellor Dr. Susan Desmond-Hellmand. It’s really cool to go from someone who was the president of product development at Genentech, to chancellor at UCSF, to now president of the Bill and Melinda Gates Foundation. Bringing science to impact society in that way is what I hope to do with my future.


Related links: