Encouraging news for treatment targeting retinitis pigmentosa

While most people probably wouldn’t put 2020 in their list of favorite years, it’s certainly turning out to be a good one for jCyte. Earlier this year jCyte entered into a partnership with global ophthalmology company Santen Pharmaceuticals worth up to $252 million. Then earlier this week they announced some encouraging results from their Phase 2b clinical trial.

Let’s back up a bit and explain what jCyte does and why it’s so important. They have developed a therapy for retinitis pigmentosa (RP), a rare vision destroying disease that attacks the light sensitive cells at the back of the eye. People are often diagnosed when they are in their teens and most are legally blind by middle age. CIRM has supported this therapy from its early stages into clinical trials.

This latest clinical trial is one of the largest of its kind anywhere in the world. They enrolled 84 patients (although only 74 were included in the final analysis). The patients had vision measuring between 20/80 and 20/800. They were split into three groups: one group was given a sham or placebo treatment; one was given three million human retinal progenitor cells (hRPCs), the kind attacked by the disease; and one was given six million hRPCs.

jCyte CEO Paul Bresge

In an article in Endpoints News, jCyte’s CEO Paul Bresge said there was a very specific reason for this approach. “We did enroll a very wide patient population into our Phase IIb, including patients that had vision anywhere from 20/80 to 20/800, just to learn which patients would potentially be the best responders.”

The results showed that the treatment group experienced improved functional vision and greater clarity of vision compared to the sham or placebo group. Everyone had their vision measured at the start and again 12 months later. For the placebo group the mean change in their ability to read an eye chart (with glasses on) was an improvement of 2.81 letters; for the group that got three million hRPCs it was 2.96 letters, and for the group that got six million hRPCs it was 7.43 letters.

When they looked at a very specific subgroup of patients the improvement was even more dramatic, with the six million cell group experiencing an improvement of 16.27 letters.

Dr. Henry Klassen

Dr. Henry Klassen, one of the founders of jCyte, says the therapy works by preserving the remaining photoreceptors in the eye, and helping them bounce back.

“Typically, people think about the disease as a narrowing of this peripheral vision in a very nice granular way, but that’s actually not what happens. What happens in the disease is that patients lose like islands of vision. So, what we’re doing in our tests is actually measuring […] islands that the patients have at baseline, and then what we’re seeing after treatment is that the islands are expanding. It’s similar to the way that one would track, let’s say a tumor, in oncology of course we’re looking for the opposite effect. We’re looking for the islands of vision to expand.”

One patient did experience some serious side effects in the trial but they responded well to treatment.

The team now plan on carrying out a Phase 3 clinical trial starting next year. They hope that will provide enough evidence showing the treatment is both safe and effective to enable them to get approval from the US Food and Drug Administration to make it available to all who need it.

From bench to bedside – CIRM plays a vital role in accelerating science

Dr. Maria T. Millan, President & CEO of CIRM

The field of stem cell research and regenerative medicine has exploded in the last few years with new approaches to treat a wide array of diseases. Although these therapies are quite promising, they face many challenges in trying to bring them from the laboratory and into patients. But why is this? What can we do to ensure that these approaches are able to cross the finish line?

A new article published in Cell Stem Cell titled Translating Science into the Clinic: The Role of Funding Agencies takes a deeper dive into these questions and how agencies like CIRM play an active role in helping advance the science. The article was written by Dr. Maria T. Millan, President & CEO of CIRM, and Dr. Gil Sambrano, Vice President of Portfolio Development and Review at CIRM.

Although funding plays an essential role in accelerating science, it is not by itself sufficient. The article describes how CIRM has established internal processes and procedures that aim to help accelerate projects in the race to the finish line. We are going to highlight a few of these in this post, but you can read about them in full by clicking on the article link here.

One example of accelerating the most promising projects was making sure that they make important steps along the way. For potential translational awards, which “translate” basic research into clinical trials, this means having existing data to support a therapeutic approach. For pre-clinical and clinical awards, it means meeting with the Food and Drug Administration (FDA) and having an active investigational new drug (IND) approved or pre-IND, important steps that need to be taken before these treatments can be tested in humans. Both of these measures are meant to ensure that the award is successful and progress quickly.

Another important example is not just giving these projects the funding in its entirety upfront, rather, tying it to milestones that guide a project to successful completion. Through this process, projects funded by CIRM become focused on achieving clear measurable objectives, and activities that detract from those goals are not supported.

Aside from requirements and milestones tied to funding, there are other ways that CIRM helps bolster its projects.

One of these is an outreach project CIRM has implemented that identifies investigators and projects with the potential to enhance already existing projects. This increases the number of people applying to CIRM projects as well as the quality of the applications.

Another example is CIRM’s Industry Alliance Program, which facilitates partnerships between promising CIRM-funded projects and companies capable of bringing an approved therapy to market. The ultimate goal is to have therapies become available to patients, which is generally made possible through commercialization of a therapeutic product by a pharmaceutical or biotechnology company.

CIRM has also established advisory panels for its clinical and translational projects, referred to as CAPs and TAPs. They are composed of external scientific advisors with expertise that complements the project team, patient advocate advisors, and CIRM Science Officers. The advisory panel provides guidance and brings together all available resources to maximize the likelihood of achieving the project objective on an accelerated timeline.

Lastly, and most importantly, CIRM has included patient advocates and patient voices in the process to help keep the focus on patient needs. In order to accelerate therapies to the clinic, funders and scientists need input on what ultimately matters to patients. Investing effort and money on potential therapies that will have little value to patients is a delay on work that really matters. Even if there is not a cure for some of these diseases, making a significant improvement in quality of life could make a big difference to patients. There is no substitute to hearing directly from patients to understand their needs and to assess the balance of risk versus benefit. As much as science drives the process of bringing these therapies to light, patients ultimately determine its relevance.

‘A Tornado at the Front Door, a Tsunami at the Back Door’

CIRM funds a lot of research and all of it has life-saving potential. But every once in a while you come across a story about someone benefiting from CIRM-supported research that highlights why the work we do is so important. This story is about a brilliant researcher at UC San Diego developing a treatment for a really rare disease, one that was unlikely to get funding from a big pharmaceutical company because it offered little chance for a return on its investment. At CIRM we don’t have to worry about things like that. Stories like this are our return on investment.

Our thanks to our colleagues at UCSD News for allowing us to run this piece in full.

Jordan Janz and Dr. Stephanie Cherqui in her lab at the UC San Diego School of Medicine: Photo courtesy UC San Diego

====================================

By Heather Buschman, PhD

Born with a rare disease called cystinosis, 20-year-old Jordan Janz arrived at a crossroads: continue life as-is, toward a future most likely leading to kidney failure and an early death or become the first patient in the world to undergo a new gene-and-stem cell therapy developed over more than a decade by UC San Diego School of Medicine researchers

For the majority of Jordan Janz’s 20 years of life, most neighbors in his tiny Canadian town never knew he was sick. Janz snowboarded, hunted and fished. He hung with friends, often playing ice hockey video games. He worked in shipping and receiving for a company that makes oil pumps.

But there were times when Janz was younger that he vomited up to 13 times each day. He received a growth hormone injection every day for six years. He needed to swallow 56 pills every day just to manage his symptoms. And the medication required around-the-clock administration, which meant his mother or another family member had to get up with him every night.

“I was tired for school every day,” Janz said. “I was held back in second grade because I missed so much school. And because the medication had a bad odor to it, when I did go to school kids would ask, ‘What’s that smell?’ It was hard.”

Janz was born with cystinosis, a rare metabolic disorder that’s detected in approximately one in 100,000 live births worldwide. People with cystinosis inherit a mutation in the gene that encodes a protein called cystinosin. Cystinosin normally helps cells transport the amino acid cystine. Because cells in people with cystinosis don’t produce the cystinosin protein, cystine accumulates. Over the years, cystine crystals build up and begin to damage tissues and organs, from the kidneys and liver to muscles, eyes and brain. Numerous symptoms and adverse consequences result.

These days, Janz manages his condition. There’s a time-release version of the symptom-relieving medication now that allows him to go 12 hours between doses, allowing for a good night’s sleep. But there’s no stopping the relentless accumulation of cystine crystals, no cure for cystinosis.  

In October 2019, Janz became the first patient to receive treatment as part of a Phase I/II clinical trial to test the safety and efficacy of a unique gene therapy approach to treating cystinosis. The treatment was developed over more than a decade of research by Stephanie Cherqui, PhD, associate professor of pediatrics, and her team at University of California San Diego School of Medicine.

“The day they started looking for people for the trial, my mom picked up the phone, found a number for Dr. Cherqui, called her and put my name in as a candidate,” Janz said.

Janz’s mom, Barb Kulyk, has long followed Cherqui’s work. Like many parents of children with cystinosis, Kulyk has attended conferences, read up on research and met many other families, doctors and scientists working on the condition. Kulyk says she trusts Cherqui completely. But she was understandably nervous for her son to be the first person ever to undergo a completely new therapy.

“It’s like giving birth,” she said shortly before Janz received his gene therapy. “You’re really looking forward to the outcome, but dreading the process.”

The treatment

Cherqui’s gene therapy approach involves genetical modifying the patient’s own stem cells. To do this, her team obtained hematopoietic stem cells from Janz’s bone marrow. These stem cells are the precursors to all blood cells, including both red blood cells and immune cells. The scientists then re-engineered Janz’s stem cells in a lab using gene therapy techniques to introduce a normal version of the cystinosin gene. Lastly, they reinfused Janz with his own now-cystinosin-producing cells. The approach is akin to a bone marrow transplant — the patient is both donor and recipient.

“A bone marrow transplant can be very risky, especially when you take hematopoietic stem cells from a another person. In that case, there’s always the chance the donor’s immune cells will attack the recipient’s organs, so-called graft-versus-host disease,” Cherqui explained. “It’s a great advantage to use the patient’s own stem cells.”

As is the case for other bone marrow transplants, Janz’s gene-modified stem cells are expected to embed themselves in his bone marrow, where they should divide and differentiate to all types of blood cells. Those cells are then expected to circulate throughout his body and embed in his tissues and organs, where they should produce the normal cystinosin protein. Based on Cherqui’s preclinical data, she expects the cystinosin protein will be transferred to the surrounding diseased cells. At that point, Janz’s cells should finally be able to appropriately transport cystine for disposal — potentially alleviating his symptoms.

Before receiving his modified stem cells, Janz had to undergo chemotherapy to make space in his bone marrow for the new cells. Not unexpectedly, Janz experienced a handful of temporary chemotherapy-associated side-effects, including immune suppression, hair loss and fatigue. He also had mucositis, an inflammation of mucous membranes lining the digestive tract, which meant he couldn’t talk or eat much for a few days.

Now, only three months after his transfusion of engineered stem cells, Cherqui reports that Janz is making a good recovery, though it’s still too early to see a decrease in his cystinosis-related symptoms.

“I’ve been sleeping at least 10 hours a day for the last few weeks,” Janz said. “It’s crazy, but I know my body is just working hard to, I guess, create a new ‘me.’ So it’s no wonder I’m tired. But I’m feeling okay overall.

“One of the hardest parts for me is being inactive for so long. I’m not used to doing nothing all day. But I’m taking an online course while I wait for my immune system to rebuild. And I’m getting pretty good at video games.”

Like all Phase I/II clinical trials, the current study is designed to first test the safety and tolerability of the new treatment. Janz knows the treatment might not necessarily help him.

“When we started this trial, my mom explained it like this: ‘We have a tornado at the front door and a tsunami at the back door, and we have to pick one to go through. Neither will be any fun and we don’t know what’s going to happen, but you have to believe you will make it and go.

“So we weighed the pros and cons and, basically, if I don’t do this trial now, when I’m older I might not be healthy and strong enough for it. So I decided to go for it because, even if there are consequences from the chemotherapy, if it works I could live 20 years longer than I’m supposed to and be healthy for the rest of my life. That’s worth it.”

Besides the possible benefit to himself, Janz also sees his participation in the clinical trial as a way to contribute to the tight-knit community of families with children who have cystinosis.

“I’m willing to do if it helps the kids,” he said. “Somebody has to do it. I don’t have the money to donate to scientific conferences and stuff like that, but I can do this trial.”

The trial

If the treatment continues to meet certain criteria for safety and efficacy for Janz and one other participant after three months, two more adult participants will be enrolled. Three months after that, if the treatment continues to be safe and effective, the trial might enroll two adolescent participants. To participate in the clinical trial, individuals must meet specific eligibility requirements.

Later in the trial, Cherqui and team will begin measuring how well the treatment actually works. The specific objectives include assessing the degree to which gene-modified stem cells establish themselves in  bone marrow, how they affect cystine levels and cystine crystal counts in blood and tissues.

“This trial is the first to use gene-modified hematopoietic stem cell gene therapy to treat a multi-organ degenerative disorder for which the protein is anchored in the membrane of the lysosomes, as opposed to secreted enzymes,” Cherqui said. “We were amazed when we tested this approach in the mouse model of cystinosis — autologous stem cell transplantation reversed the disease. The tissues remained healthy, even the kidneys and the eyes.”

Trial participants are closely monitored for the first 100 days after treatment, then tested again at six, nine, 12, 18 and 24 months post-gene therapy for a variety of factors, including vital signs, cystine levels in a number of organs, kidney function, hormone function and physical well-being.

“If successful in clinical trials, this approach could provide a one-time, lifelong therapy that may prevent the need for kidney transplantation and long-term complications caused by cystine buildup,” Cherqui said.

The future

For the trial participants, all of the pre-treatment tests, the treatment itself, and monitoring afterward means a lot of travel to and long stays in San Diego.

It’s tough on Kulyk and Janz. They have to fly in from Alberta, Canada and stay in a San Diego hotel for weeks at a time. Kulyk has two older adult children, as well as a 12-year-old and a seven-year-old at home. 

“I’ve missed a lot of things with my other kids, but none of them seem to hold any grudges,” she said. “They seem to be totally fine and accepting. They’re like, ‘We’re fine, mom. You go and take care of Jordan.’”

Janz is looking forward to getting back home to his friends, his dog and his job, which provided him with paid leave while he received treatment and recovers.

For Cherqui, the search for a cystinosis cure is more than just a scientific exercise. Cherqui began working on cystinosis as a graduate student more than 20 years ago. At the time, she said, it was simply a model in which to study genetics and gene therapy.

“When you read about cystinosis, it’s just words. You don’t put a face to it. But after I met all the families, met the kids, and now that I’ve seen many of them grow up, and some of them die of the disease — now it’s a personal fight, and they are my family too.”

Patients with cystinosis typically experience kidney failure in their 20s, requiring kidney dialysis or transplantation for survival. For those born with cystinosis who make it into adulthood, the average lifespan is approximately 28 years old.

“I’m optimistic about this trial because it’s something we’ve worked so hard for and now it’s actually happening, and these families have so much hope for a better treatment,” Cherqui said. “After all the years of painstaking laboratory research, we now need to move into the clinic. If this works, it will be wonderful. If it doesn’t, we will all be disappointed but a least we’ll be able to say we tried.”

Nancy Stack, who founded the Cystinosis Research Foundation after her own daughter, Natalie, was diagnosed with the disease, calls Cherqui “the rock star of our community.”

“She cares deeply about the patients and is always available to talk, to explain her work and to give us hope,” Stack said. “She said years ago that she would never give up until she found the cure — and now we are closer to a cure than ever before.” (Read more about Natalie here.)

In addition to cystinosis, Cherqui says this type of gene therapy approach could also lead to treatment advancements for other multi-organ degenerative disorders, such as Friedreich’s ataxia and Danon disease, as well as other kidney, genetic and systemic diseases similar to cystinosis.

While they wait for the long-term results of the treatment, Kulyk is cautiously hopeful.

“Moms are used to being able to fix everything for their children — kiss boo-boos make them better, make cupcakes for school, whip up Halloween costumes out of scraps, pull a coveted toy out of thin air when it has been sold out for months.

“But we have not been able to fix this, to take it away. I not only want this disease gone for my child, I want cystinosis to be nothing more than a memory for all the children and adults living with it. I know that even if and when Jordan is cured, there will still be so much work to do, in terms of regulatory approvals and insurance coverage.

“Having hope for your child’s disease to be cured is a slippery slope. We have all been there, held hope in our hands and had to let go. But, I find myself in a familiar place, holding onto hope again and this time I am not letting go.”

Video of Dr. Cherqui and Jordan Janz talking about the therapy

For more information about the Phase I/II clinical trial for cystinosis and to learn how to enroll, call 1-844-317-7836 or email alphastemcellclinic@ucsd.edu.

Cherqui’s research has been funded by the Cystinosis Research Foundation, California Institute for Regenerative Medicine (CIRM), and National Institutes of Health. She receives additional support from the Sanford Stem Cell Clinical Center and CIRM-funded Alpha Stem Cell Clinic at UC San Diego Health, and AVROBIO.

Time and money and advancing stem cell research

The human genome

Way back in the 1990’s scientists were hard at work decoding the human genome, trying to map and understand all the genes that make up people. At the time there was a sense of hope, a feeling that once we had decoded the genome, we’d have cures for all sorts of things by next Thursday. It didn’t quite turn out that way.

The same was true for stem cell research. In the early days there was a strong feeling that this was going to quite quickly produce new treatments and cures for diseases ranging from Parkinson’s and Alzheimer’s to heart disease and stroke. Although we have made tremendous strides we are still not where we hoped we’d be.

It’s a tough lesson to learn, but an important one: good scientific research moves at its own pace and pays little heed to our hopes or desires. It takes time, often a long time, and money, usually a lot of money, to develop new treatments for deadly diseases and disorders.

Many people, particularly those battling deadly diseases who are running out of time, are frustrated at the slow pace of stem cell research, at the years and years of work that it takes to get even the most promising therapy into a clinical trial where it can be tested in people. That’s understandable. If your life is on the line, it’s difficult to be told that you have to be patient. Time is a luxury many patients don’t have.

But that caution is necessary. The last thing we want to do is rush to test something in people that isn’t ready. And stem cells are a whole new way of treating disease, using cells that may stay in the body for years, so we really need to be sure we have done everything we can to ensure they are safe before delivering them to people.

The field of gene therapy was set back years after one young patient, Jesse Gelsinger, died as a result of an early experimental treatment. We don’t want the same to happen to stem cell research.

And yet progress is being made, albeit not as quickly as any of us would like. At the end of the first ten years of CIRM’s existence we had ten projects that we supported that were either in, or applying to be in, a clinical trial sanctioned by the US Food and Drug Administration (FDA). Five years later that number is 56.

Most of those are in Phase 1 or 2 clinical trials which means they are still trying to show they are both safe and effective enough to be made available to a wider group of people. However, some of our projects are in Phase 3, the last step before, hopefully, being given FDA approval to be made more widely available and – just as important – to be covered by insurance.

Other CIRM-funded projects have been given Regenerative Medicine Advanced Therapy (RMAT) designation by the FDA, a new program that allows projects that show they are safe and benefit patients in early stage clinical trials, to apply for priority review, meaning they could get approved faster than normal. Out of 40 RMAT designations awarded so far, six are for CIRM projects.

We are working hard to live up to our mission statement of accelerating stem cell treatments to patients with unmet medical needs. We have been fortunate in having $3 billion to spend on advancing this research in California; an amount no other US state, indeed few other countries, have been able to match. Yet even that amount is tiny compared to the impact that many of these diseases have. For example, the economic cost of treating diabetes in the US is a staggering $327 billion a year.

The simple truth is that unless we, as a nation, invest much more in scientific research, we are not going to be able to develop cures and new, more effective, treatments for a wide range of diseases.

Time and money are always going to be challenging when it comes to advancing stem cell research and bringing treatments to patients. With greater knowledge and understanding of stem cells and how best to use them we can speed up the timeline. But without money none of that can happen.

Our blog is just one of many covering the topic of “What are the hurdles impacting patient access to cell and gene therapies as part of Signal’s fourth annual blog carnival.

Regulated, reputable, and reliable – distinguishing legitimate clinical trials from predatory clinics

Here at CIRM, we get calls every day from patients asking us if there are any trials or therapies available to treat their illness or an illness affecting a loved one. Unfortunately, there are some predatory clinics that try to take advantage of this desperation by advertising unproven and unregulated treatments for a wide range of diseases such as Diabetes, Alzheimer’s, Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS).

A recent article in the Los Angeles Times describes how one of these predatory stem cell clinics is in a class action lawsuit related to false advertising of 100% patient satisfaction. Patients were led to believe that this percentage was related to the effectiveness of the treatment, when in fact it had to do with satisfaction related to hospitality, hotel stay, and customer service. These kinds of deceptive tactics are commonplace for sham clinics and are used to convince people to pay tens of thousands of dollars for sham treatments.

But how can a patient or loved one distinguish a legitimate clinical trial or treatment from those being offered by predatory clinics? We have established the “fundamental three R’s” to help in making this distinction.

REGULATED

The United States Food and Drug Administration (FDA) has a regulated process that it uses in evaluating potential treatments from researchers seeking approval to test these in a clinical trial setting.  This includes extensive reviews by scientific peers in the community that are well informed on specific disease areas. Those that adhere to these regulations get an FDA seal of approval and are subject to extensive oversight to protect patients participating in this trial. Additionally, these regulations ensure that the potential treatments are properly evaluated for effectiveness. The 55 clinical trials that we have currently funded as well as the clinical trials being conducted in our Alpha Stem Cell Clinic Network all have this FDA seal of approval. In contrast to this, the treatments offered at predatory clinics have not gone through the rigorous standards necessary to obtain FDA approval.

REPUTABLE

We have partnered with reputable institutions to carry out the clinical trials we have funded and establish our Alpha Stem Cell Clinic Network. These are institutions that adhere to the highest scientific standards necessary to effectively evaluate potential treatments and communicate these results with extreme accuracy. These institutions have expert scientists, doctors, and nurses in the field and adhere to rigorous standards that have earned these institutions a positive reputation for carrying out their work.  The sites for the Alpha Stem Cell Clinic Network include City of Hope, UCSF, UC San Diego, UCLA, UC Davis, and UC Irvine.  In regards to the clinical trials we have directly funded, we have collaborated with other prestigious institutions such as Stanford and USC.  All these institutions have a reputation for being respected by established societies and other professionals in the field. The reputation that predatory clinics have garnered from patients, scientists, and established doctors has been a negative one. An article published in The New York Times has described the tactics used by these predatory clinics as unethical and their therapies have often been shown to be ineffective.

RELIABLE

The clinical trials we fund and those offered at our Alpha Stem Cell Clinic Network are reliable because they are trusted by patients, patient advocacy groups, and other experts in the field of regenerative medicine. A part of being reliable involves having extensive expertise and training to properly evaluate and administer treatments in a clinical trial setting. The doctors, nurses, and other experts involved in clinical trials given the go-ahead by the FDA have extensive training to carry out these trials.  These credentialed specialists are able to administer high quality clinical care to patients.  In a sharp contrast to this, an article published in Reuters showed that predatory clinics not only administer unapproved stem cell treatments to patients, but they use doctors that have not received training related to the services they provide.

Whenever you are looking at a potential clinical trial or treatment for yourself or a loved one, just remember the 3 R’s we have laid out in this blog.

Regulated, reputable, and reliable.

Breaking bad news to stem cell researchers

It’s never easy to tell someone that they are too late, that they missed the deadline. It’s particularly hard when you know that the person you are telling that to has spent years working on a project and now needs money to take it to the next level. But in science, as in life, it’s always better to tell people what they need to know rather than what they would like to hear.

And so, we have posted a notice on our website for researchers thinking about applying for funding that, except in a very few cases, they are too late, that there is no money available for new projects, whether it’s Discovery, Translational or Clinical.

Here’s that notice:

CIRM anticipates that the budget allocation of funds for new awards under the CIRM clinical program (CLIN1, CLIN2 and CLIN3) may be depleted within the next two to three months. CIRM will accept applications for the monthly deadline on June 28, 2019 but will suspend application submissions after that date until further notice. All applicants should note that the review of submitted applications may be halted at any point in the process if funds are depleted prior to completion of the 3-month review cycle. CIRM will notify applicants of such an occurrence. Therefore, submission and acceptance of an application to CIRM does not guarantee the availability of funds or completion of a review cycle.

The submission of applications for the CIRM/NHLBI Cure Sickle Cell Initiative (CLIN1 SCD, CLIN2 SCD) are unaffected and application submissions for this program will remain open.

We do, of course, have enough money set aside to continue funding all the projects our Board has already approved, but we don’t have money for new projects (except for some sickle cell disease projects).

In truth our funding has lasted a lot longer than anyone anticipated. When Proposition 71 was approved the plan was to give CIRM $300 million a year for ten years. That was back in 2004. So what happened?

Well, in the early years stem cell science was still very much in its infancy with most of the work being done at a basic or Discovery level. Those typically don’t require very large sums so we were able to fund many projects without hitting our $300m target. As the field progressed, however, more and more projects were at the clinical trial stage and those need multiple millions of dollars to be completed. So, the money went out faster.

To date we have funded 55 clinical trials and our early support has helped more than a dozen other projects get into clinical trials. This includes everything from cancer and stroke, to vision loss and diabetes. It’s a good start, but we feel there is so much more to do.

Followers of news about CIRM know there is talk about a possible ballot initiative next year that would provide another $5.5 billion in funding for us to help complete the mission we have started.

Over the years we have built a pipeline of promising projects and without continued support many of those projects face a difficult future. Funding at the federal level is under threat and without CIRM there will be a limited number of funding alternatives for them to turn to.

Telling researchers we don’t have any money to support their work is hard. Telling patients we don’t have any money to support work that could lead to new treatments for them, that’s hardest of all.

Rallying to support CIRM and stem cell research

Will CIRM be funding stem cell research after this year?

From even before we were created by the passage of Proposition 71 back in 2004, the voices of patients and patient advocates have been at the heart of CIRM’s existence. Today they are every bit as vital to the work we do, and even more essential if we are to be able to continue doing that work.  

In 2004, the patient advocate community recognized that the research we fund could help them or a loved one battling a deadly disease or disorder. And over the last 15 years that’s exactly what we have done, trying to live up to our mission of accelerating stem cell treatments to patients with unmet medical needs. And with 54 clinical trials already under our belt we have made a good start.  

But it’s just a start. We still have a lot to do. The problem is we are quickly running out of money. We expect to have enough money to fund new projects up to the end of this year. After that many great new ideas and promising projects won’t be able to apply to us for support. Some may get funding from other sources, but many won’t. We don’t want to let that happen.  

That’s why we are holding a Patient Advocate event next Tuesday, June 25th from 6-7pm in Petree Hall C., at the Los Angeles Convention Center at 1201 South Figueroa Street, LA 90015.

The event is open to everyone and it’s FREE. We have created an Eventbrite page where you can get all the details and RSVP if you are coming. And if you want to get there a little early that’s fine too, we’ll be there from 5pm onwards so you’ll have a chance to ask us any questions you might have beforehand.

It’s going to be an opportunity to learn about the real progress being made in stem cell research, thanks in no small part to CIRM’s funding. We’ll hear from the researchers who are saving lives and changing lives, and from the family of one baby alive today because of that work.

We will hear about the challenges facing CIRM and the field, but also about a possible new ballot initiative for next year that could help re-fund CIRM, giving us the opportunity to continue our work.

That’s where you, the patients and patient advocates and members of the public come in. Without you we wouldn’t be here. Without you we will disappear. Without us the field of stem cell research loses a vital source of support and funding, and potentially-life saving therapies fall by the wayside.  

We all have a huge stake in this. So we hope to see you next Tuesday, at the start of what may be the next chapter in the life of CIRM.  

Clinical trials: separating the wheat from the chaff

What do you do when the supposed solution to a problem actually turns out to be a part of the problem? That’s the situation facing people who want to direct patients to scientifically sound clinical trials. Turns out the site many were going to may be directing patients to therapies that are not only not scientifically sound, they may not even be safe.

The site in question is the www.clinicaltrials.gov website. That’s a list of all the clinical trials registered with the National Institutes of Health. In theory that should be a rock-solid list of trials that have been given the go-ahead by the Food and Drug Administration (FDA) to be tested in people. Unfortunately, the reality is very different. Many of the trials listed there have gone through the rigorous testing and approval process to earn the right to be tested in people. But some haven’t. And figuring out which is which is not easy.

The issue was highlighted by a terrific article on STAT News this week. The article’s title succinctly sums up the piece: “Stem cell clinics co-opt clinical-trials registry to market unproven therapies, critics say.”

The story highlights how clinics that are offering unproven and unapproved stem cell therapies can register their “clinical trial” on the site, even if they haven’t received FDA approval to carry out a clinical trial.

Leigh Turner, a bioethicist at the University of Minnesota and a long-time foe of these clinics, said:

“You can concoct this bogus appearance of science, call it a clinical study, recruit people to pay to participate in your study, and not only that: You can actually register on clinicaltrials.gov and have the federal government help you promote what you’re doing. That struck me as both dangerous and brilliant.”

At CIRM this is a problem we face almost every day. People call or email us asking for help finding a stem cell therapy for everything from cancer and autism to diabetes. If we are funding something or if there is one underway at one of our Alpha Stem Cell Clinics we can direct them to that particular trial. If not, the easiest thing would be to direct them to the clinicaltrials.gov site. But when you are not sure that all the programs listed are legitimate clinical trials, that’s not something we always feel comfortable doing.

As the STAT piece points out, some of the “trials” listed on the site are even being run by companies that the FDA is trying to shut down because of serious concerns about the “therapies” they are offering. One was for a Florida clinic that had blinded four people. Despite that, the clinic’s projects remain on the site where other patients can find them.

Being listed on clinicaltrials.gov gives clinics offering unproven therapies an air or legitimacy. So how can you spot a good trial from a bad one? It’s not always easy.

One red flag is if the trial is asking you to pay for the treatment. That’s considered unethical because it’s asking you to pay to be part of an experiment. Only a very few legitimate clinical trials ask patients to pay, and even then, only with permission from the FDA.

Another warning sign is anything that has a laundry list of things it can treat, everything from arthritis to Alzheimer’s. Well-designed clinical trials tend to be targeted at one condition not multiple ones.

We have put together some useful tools for patients considering taking part in a clinical trial. Here is a link to a video and infographic that tell people the questions they need to ask, and things they need to consider, before signing up for any clinical trial.

So why does the NIH continue to allow these clinics to “advertise” their programs on its website? One reason is that the NIH simply doesn’t have the bandwidth to check every listing to make sure they are legit. They have tried to make things better by including a warning, stating:

“Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. Before participating in a study, talk to your health care provider and learn about the risks and potential benefits.”

The bottom line is that if you are in the market for a stem cell therapy you should approach it the way you would any potentially life-changing decision: caveat emptor, buyer beware.

CIRM-funded study helps unlock some of the genetic secrets behind macular degeneration

Retina affected by age-related macular degeneration

Age-related macular degeneration (AMD) is the leading cause of vision loss in people over 60. It affects 10 million Americans. That’s more than cataracts and glaucoma combined. The causes of AMD are not known but are believed to involve a mixture of hereditary and environmental factors. There is no treatment for it.

Now, in a CIRM-funded study, researchers at UC San Diego (UCSD) have used stem cells to help identify genetic elements that could provide some clues as to the cause, and maybe give some ideas on how to treat it.

Before we get into what the researchers did let’s take a look at what AMD does. At a basic level it attacks the retina, the thin layer of tissue that lines the back of the eye. The retina receives light, turns it into electrical signals and sends it to the brain which turns it into a visual image.

The disease destroys the macula, the part of the retina that controls our central vision. At first, sight becomes blurred or fuzzy but over time it progresses to the point where central vision is almost completely destroyed.

To try and understand why this happens the team at UCSD took skin samples from six people with AMD and, using the iPSC method, turned those cells into the kinds of cell found in the retina. Because these cells came from people who had AMD they now displayed the same characteristics as AMD-affected retinal cells. This allowed the researchers to create what is called a “disease-in-a-dish” model that allowed them to see, in real time, what is happening in AMD.

They were able to identify a genetic variant that reduces production of a protein called VEGFA, which is known to promote the growth of new blood vessels.

In a news release Kelly Frazer, director of the Institute for Genomic Medicine at UCSD and the lead author of the study, said the results were unexpected.

Kelly Frazer, PhD, UC San Diego

“We didn’t start with the VEGFA gene when we went looking for genetic causes of AMD. But we were surprised to find that with samples from just six people, this genetic variation clearly emerged as a causal factor.”

Frazer says this discovery, published in the journal Stem Cell Reports, could ultimately lead to new approaches to developing new treatments for AMD.

CIRM already funds one clinical trial-stage project targeting AMD.

The Past, the Present, and the Uncertain Future of Stem Cell Research

Ronnie, a boy who was born without a functioning immune system but who is thriving today because of CIRM funded research

When CIRM was created in 2004 the field of stem cell research was still very much in its infancy. Fast forward 15 years and it’s moving ahead at a rapid pace, probably faster than most scientists would have predicted. How fast? Find out for yourself at a free public event at UC San Diego on May 28th from 12.30 to 1.30p.

In the last 15 years CIRM has funded 53 clinical trials in everything from heart disease and stroke, to spinal cord injury, vision loss, sickle cell disease and HIV/AIDS.

UCSD was one of the first medical centers chosen to host a CIRM Alpha Stem Cell Clinic – a specialist center with the experience and expertise to deliver stem cell therapies to patients – and to date is running more than a dozen clinical trials for breast cancer, heart failure, leukemia and chronic lower back pain.

Clearly progress is being made. But the field is also facing some challenges. Funding at the federal level for stem cell research is under threat, and CIRM is entering what could be its final phase. We have enough money left to fund new projects through this year (and these are multi-year projects so they will run into 2021 or 2022) but unless there is a new round of funding we will slowly disappear. And with us, may also disappear the hopes of some of the most promising projects underway.

If CIRM goes, then projects that we have supported and nurtured through different phases of research may struggle to make it into a clinical trial because they can’t get the necessary funding.

Clearly this is a pivotal time in the field.

We will discuss all this, the past, the present and the uncertain future of stem cell research at the meeting at UC San Diego on May 28th. The doors will open at noon for registration (snacks and light refreshments will also be available) and the program runs from 12.30p to 1.30p.

The speakers are:

  • Dr. Catriona Jamieson, Director of the UC San Diego Health CIRM Alpha Stem Cell Clinic and Sanford Stem Cell Clinical Center.
  • Dr. Maria Millan, President and CEO of CIRM
  • Dr. David Higgins, CIRM Board member and Patient Advocate for Parkinson’s Disease.

And of course, we want to hear from you, so we’ll leave plenty of time for questions.

Free parking is available.

Go here for more information about the event and how you can register

Free free to share this with anyone you think might be interested in joining us and we look forward to seeing you there.