Two reasons to remember June 19th

Today marks two significant events for the Black community. June 19th is celebrated as Juneteenth, the day when federal troops arrived in Galveston, Texas to ensure that the enslaved people there were free. That moment came two and a half years after President Abraham Lincoln signed the Emancipation Proclamation into law.

June 19th is also marked as World Sickle Cell Awareness Day. It’s an opportunity to raise awareness about a disease that affects around 100,000 Americans, most of them Black, and the impact it has on the whole family and entire communities.

Sickle cell disease (SCD) is an inherited blood disorder that is caused by a genetic mutation. Instead of red blood cells being smooth and round and flowing easily through arteries and veins, the cells are sickle shaped and brittle. They can clog up arteries and veins, cutting off blood to vital organs, causing intense pain, organ damage and leading to premature death.

SCD can be cured with a bone marrow transplant, but that’s a risky procedure and most people with SCD don’t have a good match. Medications can help keep it under control but cannot cure it. People with SCD live, on average, 30 years less than a healthy adult.

CIRM has invested almost $60 million in 13 different projects, including five clinical trials, to try and develop a cure for SCD. There are encouraging signs of progress. For example, in July of 2020, Evie Junior took part in a CIRM-funded clinical trial where his own blood stem cells were removed then, in the laboratory, were genetically modified to repair the genetic mutation that causes the disease. Those cells were returned to him, and the hope is they’ll create a sickle cell-free blood supply. Evie hasn’t had any crippling bouts of pain or had to go to the hospital since his treatment.

Evie Junior: Photo by Jaquell Chandler

CIRM has also entered into a unique partnership with the National Heart, Lung and Blood Institute (NHLBI) to co-fund cell and gene therapy programs under the NIH “Cure Sickle Cell” initiative.  The goal is to markedly accelerate the development of cell and gene therapies for SCD.

“There is a real need for a new approach to treating SCD and making life easier for people with SCD and their families,” says Adrienne Shapiro, the mother of a daughter with SCD and the co-founder of Axis Advocacy, a sickle cell advocacy and education organization. “Finding a cure for Sickle Cell would mean that people like my daughter would no longer have to live their life in short spurts, constantly having their hopes and dreams derailed by ER visits and hospital stays.  It would mean they get a chance to live a long life, a healthy life, a normal life.”

We will all keep working together to advance this research and develop a cure. Until then Juneteenth will be a reminder of the work that still lies ahead.

The bootcamp helping in the fight against rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Emil Kakkis at the Rare Entrepreneur Bootcamp

Imagine you or someone you love is diagnosed with a rare disease and then told, “There is no cure, there are no treatments and because it’s so rare no one is even doing any research into developing a treatment.” Sadly for millions of people that’s an all-too-common occurrence.

There are around 7,000 rare diseases affecting some 25-30 million Americans. Some of these are ultra-rare conditions where worldwide there may be only a few hundred people, or even a few dozen, diagnosed with it. And of all these rare diseases, only 5% have an approved therapy.

For the people struggling with a rare disease, finding a sense of hope in the face of all this can be challenging. Some say it feels as if they have been abandoned by the health care system. Others fight back, working to raise both awareness about the disease and funds to help support research to develop a treatment. But doing that without experience in the world of fund raising and drug development can pose a whole new series of challenges.

That’s where Ultragenyx comes into the picture. The company has a simple commitment to patients. “We aim to develop safe and effective treatments for many serious rare diseases as fast as we can, and we are committed to helping the whole rare disease community move forward by sharing our science and expertise to advance future development, whether by us or others.”

They live up to that commitment by hosting a Rare Entrepreneur Bootcamp. Every year they bring together a dozen or so patient or family organizations that are actively raising funds for a potential treatment approach and give them a 3-day crash course in what they’ll need to know to have a chance to succeed in rare disease drug development.

A panel discussion at the Rare Entrepreneur Bootcamp

Dr. Emil Kakkis, the founder of Ultragenyx, calls these advocates “warriors” because of all the battles they are going to face. He told them, “Get used to hearing no, because you are going to hear that a lot. But keep fighting because that’s the only way you get to ‘yes’.”

The bootcamp brings in experts to coach and advise the advocates on everything from presentation skills when pitching a potential investor, to how to collaborate with academic researchers, how to design a clinical trial, what they need to understand about manufacturing or intellectual property rights.

In a blog about the event, Arjun Natesan, vice president of Translational Research at Ultragenyx, wrote, “We are in a position to share what we’ve learned from bringing multiple drugs to market – and making the process easier for these organizations aligns with our goal of treating as many rare disease patients as possible. Our aim is to empower these organizations with guidance and tools and help facilitate their development of life-changing rare disease treatments.”

For the advocates it’s not just a chance to gain an understanding of the obstacles ahead and how to overcome them, it’s also a chance to create a sense of community. Meeting others who are fighting the same fight helps them realize they are not alone, that they are part of a bigger, albeit often invisible, community, working tirelessly to save the lives of their children or loved ones.  

CIRM also has a commitment to supporting the search for treatments for rare diseases. We are funding more than two dozen clinical trials, in addition to many earlier stage research projects, targeting rare conditions.

Stem cell agency invests in therapy using killer cells to target colorectal, breast and ovarian cancers

While there have been some encouraging advances in treating cancer in recent decades, there are still many cancers that either resist treatment or recur after treatment. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) approved investing in a therapy targeting some of these hard-to-treat tumors.

BioEclipse Therapeutics Inc. was awarded nearly $8M to test a therapy using immune cells loaded with a cancer-killing virus that targets cancer tissue but spares healthy tissue.

This is the 78th clinical trial funded directly by the Stem Cell Agency.

BioEclipse combines two approaches—an immune cell called a cytokine-induced killer (CIK) cell and a virus engineered to kill cancer cells called an oncolytic virus (OV)—to create what they call “a multi-mechanistic, targeted treatment.”

They will use the patient’s own immune cells and, in the lab, combine them with the OV. The cell/virus combination will then be administered back to the patient. The job of the CIK cells is to carry the virus to the tumors. The virus is designed to specifically attack and kill tumors and stimulate the patient’s immune system to attack the tumor cells. The goal is to eradicate the primary tumor and prevent relapse and recurrence.

“With the intent to develop this treatment for chemotherapy-resistant or refractory solid tumors—including colorectal cancer, triple negative breast cancer, ovarian cancer, gastric cancer, hepatocellular carcinoma, and osteosarcoma—it addresses a significant unmet medical need in fatal conditions for which there are limited treatment options,” says Dr. Maria T. Millan, President and CEO of CIRM.  

The CIRM Board also approved more than $18 million in funding four projects under the Translation Projects program. The goal of this program is to support promising regenerative medicine (stem cell-based or gene therapy) projects that accelerate completion of translational stage activities necessary for advancement to clinical study or broad end use.

The awards went to:

ApplicationTitleInstitutionAward Amount
TRAN1-133442Optogenetic therapy for treating retinitis pigmentosa and
other inherited retinal diseases  
  Paul Bresge Ray Therapeutics Inc.  $3,999,553  
TRAN3-13332Living Synthetic Vascular Grafts with Renewable Endothelium    Aijun Wang UC Davis  $3,112,567    
TRAN1-13370Next generation affinity-tuned CAR for prostate cancer    Preet Chaudhary University of Southern California  $5,805,144  
TRAN1-3345Autologous MPO Knock-Out Hematopoietic Stem and
Progenitor Cells for Pulmonary Arterial Hypertension  
  Don Kohn UC Los Angeles  $5,207,434  

Expanding CIRM’s Alpha Clinics Network to deliver transformative regenerative medicine treatments 

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Almost every day, we hear new reports from the thousands of regenerative medicine clinical trials globally sponsored by hundreds of companies and academic researchers. The California Institute for Regenerative Medicine (CIRM) is a leader in this space supporting some of the most advanced cell and gene therapy clinic trials for a variety of unmet medical needs. With all this current activity, it’s easy to forget that there were only a handful of clinical trials going on just seven years ago. 

A New System for Delivering Treatments 

In 2015, CIRM’s leadership recognized that we were on the cusp of introducing an array of new regenerative medicine clinical trials. However, there was one big concern—the existing clinical delivery systems had limited experience and capacity for managing these new and comparatively complex clinical trials. Cell and gene therapy regenerative medicine treatments require new systems for manufacturing, processing, and delivering treatments to patients.  

In anticipation of the need for clinical bandwidth to support clinical trials, CIRM funded a network of California medical centers to develop teams dedicated to supporting regenerative medicine clinical trials. This network was called the Alpha Clinics Network

Since 2015, the Alpha Clinics Network has grown to include six academic medical centers in California. The Network has treated over a thousand patients in more than 100 clinical trials. CIRM frequently encounters companies and academic researchers that are specifically interested in bringing their research to California to be performed in the Alpha Clinics Network. These research sponsors cite expertise in manufacturing, process, delivery and regulatory compliance as the Networks value proposition. One sponsor summed it up by indicating there are “fewer protocol deviations (errors)” in the Alpha Clinics. 

Expanding the Alpha Clinics Network 

As we enter 2022 with CIRM’s new five year strategic plan, a major aim is to create a broad network of medical centers capable of supporting diverse patient participation in clinical trials.  

As a first step in this effort, CIRM recently announced $80 million in funding to expand the Alpha Clinics Network. This funding is intended to expand both the scale and scope of the Network. This funding will allow the scale to grow from six medical center to up to ten. Scale is important because as the number of clinical trials grow, there needs to be increased coordination and sharing of the workload. Alpha Clinic sites already collaborate to conduct individual clinical trials, and an expanded network will enable a greater number of trials to occur simultaneously. 

In addition, the Expansion Awards will enable the Network to expand the scope of its activities to address current needs of the field. These needs include new research platforms for conducting clinical trials. For example, sites are looking at integrating new types of genomic (DNA sequencing) tools to support improved diagnosis and treatment of patients.  

Also, CIRM is committed to funding research to treat neurological diseases. We anticipate network sites will develop advanced systems for delivering treatments to patients and evaluating the effectiveness of these treatments. In addition, sites will be developing training programs to address the growing workforce needs of the field of regenerative medicine. 

In 2015, CIRM invested in the Alpha Clinics Network which positioned California as a leader in supporting regenerative medicine clinical trials. In 2022, we will be expanding the Network with the aim of delivering transformative treatments to a diverse California and the world. The Network will fulfill this aim by expanding its reach in the state, developing advanced research planforms and technologies, and by training the next generations of researchers with the skills to deliver patient treatments. 

Watch a recording of our recent Alpha Clinics concept plan webinar: 

Reversing hearing loss through regenerative medicine

These images show cellular regeneration, in pink, in a preclinical model of sensorineural hearing loss. The control is on the left and the right has been treated. Image: Hinton AS, Yang-Hood A, Schrader AD, Loose C, Ohlemiller KK, McLean WJ.

Most of us know someone affected by hearing loss, but we may not fully realize the hardships that lack of hearing can bring. Hearing loss can lead to isolation, frustration, and a debilitating ringing in the ears known as tinnitus. It is also closely correlated with dementia. 

The biotechnology company Frequency Therapeutics is seeking to reverse hearing loss — not with hearing aids or implants, but with a new kind of regenerative therapy. The company uses small molecules to program progenitor cells, a descendant of stem cells in the inner ear, to create the tiny hair cells that allow us to hear. 

Progenitor cells generate hair cells when humans are in utero, but they become dormant before birth and never again turn into more specialized cells such as the hair cells of the cochlea. Humans are born with about 15,000 hair cells in each cochlea. Such cells die over time and never regenerate. 

These two images show that one of Frequency’s lead compounds, FREQ-162, drives progenitor cells to turn into oligodendrocytes. The control is on the left and the right has been treated. Image: Frequency Therapeutics

“Tissues throughout your body contain progenitor cells, so we see a huge range of applications,” says Frequency co-founder and Chief Scientific Officer Chris Loose Ph.D. “We believe this is the future of regenerative medicine.” 

In 2012, the research team was able to use small molecules to turn progenitor cells into thousands of hair cells in the lab. Harvard-MIT Health Sciences and Technology affiliate faculty member Jeff Karp says no one had ever produced such a large number of hair cells before. He still remembers looking at the results while visiting his family, including his father, who wears a hearing aid. 

“I looked at them and said, ‘I think we have a breakthrough,’” Karp says. “That’s the first and only time I’ve used that phrase.” 

About the Clinical Trial 

Hair cells die off when exposed to loud noises or drugs including certain chemotherapies and antibiotics. Frequency’s drug candidate is designed to be injected into the ear to regenerate these cells within the cochlea. In clinical trials, the company has already improved people’s hearing as measured by tests of speech perception — the ability to understand speech and recognize words. 

In Frequency’s first clinical study, the company saw statistically significant improvements in speech perception in some participants after a single injection, with some responses lasting nearly two years. 

The company has dosed more than 200 patients to date and has seen clinically meaningful improvements in speech perception in three separate clinical studies. Another study failed to show improvements in hearing compared to the placebo group, but the company attributes that result to flaws in the design of the trial. 

Now Frequency is recruiting for a 124-person trial from which preliminary results should be available early next year. 

The company’s founders hope to solve a problem that impacts more than 40 million people in the U.S. and hundreds of millions more around the world. 

“Hearing is such an important sense; it connects people to their community and cultivates a sense of identity,” says Karp. “I think the potential to restore hearing will have enormous impact on society.” 

The founders believe their approach — injecting small molecules into the inner ear to turn progenitor cells into more specialized cells — offers advantages over gene therapies, which may rely on extracting a patient’s cells, programming them in a lab, and then delivering them to the right area. 

“Tissues throughout your body contain progenitor cells, so we see a huge range of applications,” Loose says. “We believe this is the future of regenerative medicine.” 

Read the source article here

Stem cell-derived retinal patch continues to show promising results two years post-implantation

Earlier this year we wrote about the promising results of a phase 1 clinical trial aimed at replacing the deteriorating cells in the retinas of people suffering from age-related macular degeneration- one of the leading causes of blindness worldwide for people over 50. Now there’s even more good news! Highlighted in a news story on the UC Santa Barbara (UCSB) website, researchers are continuing to make progress in their bid to secure approval from the Food and Drug Administration for the life-changing treatment.

Through the collaborative efforts of researchers at UCSB, University of Southern California and California Institute of Technology, a stem cell-derived implant using cells from a healthy donor was developed. The bioengineered implant, described as a scaffold, was then implanted under the retina of 16 participants. If the implant was to work, the new cells would then take up the functions of the old ones, and slow down or prevent further deterioration. In the best-case scenario, they could restore some lost vision.

The first sets of trials, funded by the California Institute for Regenerative Medicine (CIRM), concentrated on establishing the safety of the patch and collecting data on its effectiveness. Parting ways with old practices, the participants in the trial were given just two months of immunosuppressants whereas in the past, using donor cells meant that patients often had to be given long-term immunosuppression to stop their body’s immune system attacking and destroying the implanted cells. The team found that after two years, the presence of the patch hadn’t triggered other conditions associated with implantation, such as the formation of new blood vessels or scar tissue that could cause a detachment of the retina.

Even more importantly, they found no sign of inflammation that indicated an immune response to the foreign cells even after the patient was taken off immunosuppressants two months post-implantation. “What really makes us excited is that there is some strong evidence to show that the cells are still there two years after implantation and they’re still functional,” said Mohamed Faynus, a graduate student researcher in the lab of stem cell biologist Dennis O. Clegg at UCSB.

Having passed the initial phase, the team of researchers now hopes to begin phase 2 of the trial. This time, they are aiming to more specifically assesses the effectiveness of the patch in participants. Looking even farther ahead, the Clegg Lab and colleagues are also exploring combining multiple cell types on the patch to treat patients at varying stages of the disease.

In addition, there have also been improvements made to extend the shelf life of the patch. “Cryopreservation of the therapy significantly extends the product’s shelf-life and allows us to ship the implant on demand all over the world, thus making it more accessible to patients across the globe,” said Britney Pennington, a research scientist in the Clegg Lab.

First Patient Dosed in Phase 1 Clinical Trial for T1D

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

There’s some good news for a company and a therapeutic approach that CIRM has been supporting for many years.

In September 2018, CRISPR Theraputics and ViaCyte entered a partnership to discover, develop and market gene-edited stem cell-derived therapies to treat type 1 diabetes (T1D). Today, they may stand one step closer to their goal. 

Last week the companies jointly announced that they have dosed the first subject in the Phase 1 clinical trial of VCTX210 for the treatment of T1D. VCTX210 is an investigational stem cell-based therapy. It was developed combining CRISPR’s gene-editing technology with ViaCyte’s stem cell expertise to generate pancreatic beta cells that can evade the immune system.

ViaCyte, a regenerative medicine company long backed by CIRM, has developed an implantable device which contains pancreatic endoderm cells that mature over a few months and turn into insulin-producing pancreatic islet cells, the kind destroyed by T1D. 

ViaCyte’s implantable stem cell pouch

Using CRISPR technology, the genetic code of the implanted cells is modified to create beta cells that avoid all recognition by the immune system. This collaboration aims to eliminate the requirement of patients taking daily immunosuppressants to stop the immune system from attacking the implanted cells. 

The first phase of the VCTX210 clinical trial will assess the safety, tolerability, and immune evasion in patients with T1D. 

“We are excited to work with CRISPR Therapeutics and ViaCyte to carry out this historic, first-in-human transplant of gene-edited, stem cell-derived pancreatic cells for the treatment of diabetes designed to eliminate the need for immune suppression,” said James Shapiro, a clinical investigator in the trial. “If this approach is successful, it will be a transformative treatment for patients with all insulin-requiring forms of diabetes.”

CIRM has been a big investor in ViaCyte’s work for many years and has invested more than $72 million in nine different awards.  

CIRM-funded stem cell clinical trial patients: Where are they now?

Ronnie with his parents Pawash Priyank and Upasana Thakur.

Since its launch in 2004, the California Institute for Regenerative Medicine (CIRM) has been a leader in growing the stem cell and regenerative medicine field while keeping the needs of patients at the core of its mission. 

To date, CIRM has:  

  • Advanced stem cell research and therapy development for more than 75 diseases. 
  • Funded 76 clinical trials with 3,200+ patients enrolled. 
  • Helped cure over 40 children of fatal immunological disorders with gene-modified cell therapies. 

One of these patients is Ronnie, who just days after being born was diagnosed with severe combined immunodeficiency (SCID), a rare immune disorder that is often fatal within two years. 

A recent photo of Ronnie enjoying a day at the beach.

Fortunately, doctors told his parents about a CIRM-funded clinical trial conducted by UC San Francisco and St. Jude Children’s Hospital. Doctors took some of Ronnie’s own blood stem cells and, in the lab, corrected the genetic mutation that caused the condition. They then gave him a mild dose of chemotherapy to clear space in his bone marrow for the corrected cells to be placed and to grow. Over the next few months, the blood stem cells created a new blood supply and repaired Ronnie’s immune system. He is now a happy, healthy four-year-old boy who loves going to school with other children. 

Evie Junior participated in a CIRM-funded clinical trial in 2020. Photo: Jaquell Chandler

Another patient, Evie Junior, is pioneering the search for a cure for sickle cell disease: a painful, life-threatening condition.  

In July of 2020, Evie took part in a CIRM-funded clinical trial where his own blood stem cells were genetically modified to overcome the disease-causing mutation. Those cells were returned to him, and the hope is they’ll create a sickle cell-free blood supply. Evie hasn’t had any crippling bouts of pain or had to go to the hospital since his treatment.

To demonstrate treatment efficacy, study investigators will continue to monitor the recovery of Evie, Ronnie, and others who participate in clinical trials. 

CIRM’s new strategic plan seeks to help real life patients like Ronnie and Evie by optimizing its clinical trial funding partnership model to advance more therapies to FDA for approval.  

In addition, CIRM will develop ways to overcome manufacturing hurdles for the delivery of regenerative medicine therapies and create Community Care Centers of Excellence that support diverse patient participation in the rapidly maturing regenerative medicine landscape. Stay tuned as we cover these goals here on The Stem Cellar. 

To learn more about CIRM’s approach to deliver real world solutions for patients, check out our new 5-year strategic plan.  

A CIRM-funded therapy for a deadly blood cancer gets approval for Phase 3 clinical trial

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Michael Wang, MD (right) of the Department of Lymphoma & Myeloma at MD Anderson Cancer Center will lead the Phase 3 clinical

Oncternal Therapeutics, Inc. is celebrating an encouraging milestone at the start of the new year following a successful End-of-Phase 2 meeting with the FDA. 

Specifically, the FDA agreed on key elements of the company’s potentially pivotal Phase 3 clinical trial of zilovertamab, which offers potential treatment advantages to patients suffering from relapsed or refractory mantle cell lymphoma (MCL). Zilovertamab (previously called cirmtuzumab because it was developed with CIRM fundingis the company’s investigational anti-ROR1 monoclonal antibody. 

Mantle cell lymphoma is an aggressive form of blood cancer that develops when white blood cells, which are a key component of our immune system and help fight infections, grow out of control. 

The California Institute for Regenerative Medicine (CIRM) funded an earlier-stage trial conducted by Oncternal Therapeutics in collaboration with UC San Diego. 

The Phase 3 clinical trial will be led by Dr. Michael Wang, of the Department of Lymphoma & Myeloma at MD Anderson Cancer Center. The trial will randomize patients with relapsed or refractory MCL who have experienced stable disease or a partial response after receiving four months of oral ibrutinib therapy to receive either blinded zilovertamab or placebo. All patients will continue receiving oral ibrutinib.  

The study (ZILO-301) will be conducted internationally in at least 50 centers experienced in treating MCL, and is expected to begin in the second quarter of 2022.  

The researchers hope the treatment will lead to progression-free survival for patients getting zilovertamab and that this will lead to FDA approval of the therapy. 

The company is also planning to conduct study ZILO-302, an open-label companion study of zilovertamab plus ibrutinib for patients who have progressive disease during the initial four months of ibrutinib monotherapy from Study ZILO-301. 

Read the full release of the study here and be sure to follow the Stem Cellar blog for more updates on the clinical trial.  

Lack of diversity leaves cloud hanging over asthma drug study

Asthma spacer, photo courtesy Wiki Media Creative Commons

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

If you want to know if a new drug or therapy is going to work in the people it affects the most you need to test the drug or therapy in the people most affected by the disease. That would seem blindingly obvious, wouldn’t it? Apparently not.

Case in point. A new asthma medication, one that seemingly shows real promise in reducing attacks in children, was tested on an almost entirely white patient population, even though Black and Puerto Rican children are far more likely to suffer from asthma.

The study enrolled more than 400 children, between the ages of 6 and 11, with moderate to serious uncontrolled asthma and treated them with a medication called Dupixent. The results, published in the New England Journal of Medicine, were impressive. Children given Dupixent had an average drop in severe asthma attacks of 65 percent compared to children given a placebo.

The only problem is 90 percent of the children in the study were white. Why is that a problem? Because, according to the Asthma and Allergy Foundation of America, only 9.5 percent of white children have asthma, compared to 24 percent of Puerto Rican children and 18 percent of Black children. So, the groups most likely to suffer from the disease were disproportionately excluded from a study about a treatment for the disease.

Some people might think, “So what! If the medication works for one kid it will work for another, what does race have to do with it?” Quite a lot actually.

A study in the Journal of Allergy and Clinical Immunology concluded that: “Race/ethnicity modified the association between total IgE (an antibody in the blood that is a marker for asthma) and asthma exacerbations. Elevated IgE level was associated with worse asthma outcomes in Puerto Ricans… Our findings suggest that eligibility for asthma biologic therapies differs across pediatric racial/ethnic populations.”

The article concluded by calling for “more studies in diverse populations for equitable treatment of minority patients with asthma.” Something that clearly didn’t happen in the Dupixent study.

While that’s more than disappointing, it’s not surprising. A recent study of vaccine clinical trials in JAMA Network Open found that:

  • Overall, white individuals made up almost 80 percent of people enrolled.
  • Black individuals were represented only 10.6 percent of the time.
  • Latino participants were represented just 11.6 percent of the time. 

Additionally, in pediatric trials, Black participants were represented just over 10 percent of the time and Latino participants were represented 22.5 percent of the time. The study concluded by saying that “diversity enrollment targets are needed for vaccine trials in the US.”

I would expand on that, saying they are needed for all clinical trials. That’s one of the many reasons why we at the California Institute for Regenerative Medicine (CIRM) are making Diversity, Equity and Inclusion an important part of everything we do, such as requiring all applicants to have a written DEI plan if they want funding from us. Dr. Maria Millan, our President and CEO, recently co-authored an article in Nature Cell Biology, driving home the need for greater diversity in basic science and research in general.

DEI has become an important part of the conversation this past year. But the Dupixent trial shows that if we are truly serious about making it part of what we do, we have to stop talking and start acting.