Advancing stem cell research in many ways

Speakers at the Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

From Day One CIRM’s goal has been to advance stem cell research in California. We don’t do that just by funding the most promising research -though the 51 clinical trials we have funded to date clearly shows we do that rather well – but also by trying to bring the best minds in the field together to overcome problems.

Over the years we have held conferences, workshops and symposiums on everything from Parkinson’s disease, cerebral palsy and tissue engineering. Each one attracted the key players and stakeholders in the field, brainstorming ideas to get past obstacles and to explore new ways of developing therapies. It’s an attempt to get scientists, who would normally be rivals or competitors, to collaborate and partner together in finding the best way forward.

It’s not easy to do, and the results are not always obvious right away, but it is essential if we hope to live up to our mission of accelerating stem cell therapies to patients with unmet medical needs.

For example. This past week we helped organize two big events and were participants in another.

The first event we pulled together, in partnership with Cedars-Sinai Medical Center, was a workshop called “Brainstorm Neurodegeneration”. It brought together leaders in stem cell research, genomics, big data, patient advocacy and the Food and Drug Administration (FDA) to tackle some of the issues that have hampered progress in finding treatments for things like Parkinson’s, Alzheimer’s, ALS and Huntington’s disease.

We rather ambitiously subtitled the workshop “a cutting-edge meeting to disrupt the field” and while the two days of discussions didn’t resolve all the problems facing us it did produce some fascinating ideas and some tantalizing glimpses at ways to advance the field.

Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

Two days later we partnered with UC San Francisco to host the Fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium. This brought together the scientists who develop therapies, the doctors and nurses who deliver them, and the patients who are in need of them. The theme was “The Past, Present & Future of Regenerative Medicine” and included both a look at the initial discoveries in gene therapy that led us to where we are now as well as a look to the future when cellular therapies, we believe, will become a routine option for patients. 

Bringing these different groups together is important for us. We feel each has a key role to play in moving these projects and out of the lab and into clinical trials and that it is only by working together that they can succeed in producing the treatments and cures patients so desperately need.

Cierra Jackson: Photo by Marco Sanchez

As always it was the patients who surprised us. One, Cierra Danielle Jackson, talked about what it was like to be cured of her sickle cell disease. I think it’s fair to say that most in the audience expected Cierra to talk about her delight at no longer having the crippling and life-threatening condition. And she did. But she also talked about how hard it was adjusting to this new reality.

Cierra said sickle cell disease had been a part of her life for all her life, it shaped her daily life and her relationships with her family and many others. So, to suddenly have that no longer be a part of her caused a kind of identity crisis. Who was she now that she was no longer someone with sickle cell disease?

She talked about how people with most diseases were normal before they got sick, and will be normal after they are cured. But for people with sickle cell, being sick is all they have known. That was their normal. And now they have to adjust to a new normal.

It was a powerful reminder to everyone that in developing new treatments we have to consider the whole person, their psychological and emotional sides as well as the physical.

CIRM’s Dr. Maria Millan (right) at a panel presentation at the Stanford Drug Discovery Symposium. Panel from left to right are: James Doroshow, NCI; Sandy Weill, former CEO Citigroup; Allan Jones, CEO Allen Institute

And so on to the third event we were part of, the Stanford Drug Discovery Symposium. This was a high level, invitation-only scientific meeting that included some heavy hitters – such as Nobel Prize winners Paul Berg and  Randy Schekman, former FDA Commissioner Robert Califf. Over the course of two days they examined the role that philanthropy plays in advancing research, the increasingly important role of immunotherapy in battling diseases like cancer and how tools such as artificial intelligence and big data are shaping the future.

CIRM’s President and CEO, Dr. Maria Millan, was one of those invited to speak and she talked about how California’s investment in stem cell research is delivering Something Better than Hope – which by a happy coincidence is the title of our 2018 Annual Report. She highlighted some of the 51 clinical trials we have funded, and the lives that have been changed and saved by this research.

The presentations at these conferences and workshops are important, but so too are the conversations that happen outside the auditorium, over lunch or at coffee. Many great collaborations have happened when scientists get a chance to share ideas, or when researchers talk to patients about their ideas for a successful clinical trial.

It’s amazing what happens when you bring people together who might otherwise never have met. The ideas they come up with can change the world.

CIRM-funded therapy helps “bubble babies” lead a normal life

Ja’Ceon Golden; ‘cured” of SCID

At CIRM we are very cautious about using the “c” word. Saying someone has been “cured” is a powerful statement but one that loses its meaning when over used or used inappropriately. However, in the case of a new study from U.C. San Francisco and St. Jude Children’s Research Hospital in Memphis, saying “cure” is not just accurate, it’s a celebration of something that would have seemed impossible just a few years ago.

The research focuses on children with a specific form of Severe Combined Immunodeficiency (SCID) called X-Linked SCID. It’s also known as “bubble baby” disease because children born with this condition lack a functioning immune system, so even a simple infection could be fatal and in the past they were kept inside sterile plastic bubbles to protect them.

In this study, published in the New England Journal of Medicine, researchers took blood stem cells from the child and, in the lab, genetically re-engineered them to correct the defective gene, and then infused them back into the child. Over time they multiplied and created a new blood supply, one free of the defect, which helped repair the immune system.

In a news release Dr. Ewelina Mamcarz, the lead author of the study, announced that ten children have been treated with this method.

“These patients are toddlers now, who are responding to vaccinations and have immune systems to make all immune cells they need for protection from infections as they explore the world and live normal lives. This is a first for patients with SCID-X1.”

The ten children were treated at both St. Jude and at UCSF and CIRM funded the UCSF arm of the clinical trial.

The story, not surprisingly, got a lot of attention in the media including this fine piece by CNN.

Oh, and by the way we are also funding three other clinical trials targeting different forms of SCID. One with UCLA’s Don Kohn,  one with Stanford’s Judy Shizuru, and one with UCSF’s Mort Cowan

Rare Disease Day – fighting for awareness and hope

It’s hard thinking of something as rare when one in 20 people are at risk of experiencing it in their lifetime. But that’s the situation with rare diseases. There are more than 7,000 of them and each affects under 200,000 people. In some cases they may only affect a few hundred people. But for each person that disease, though rare, poses a real threat. And that’s why Rare Disease Day was created.

Rare Disease Day is held on the last day of February each year.  The goal is to raise awareness among the general public about the huge impact these diseases have on people’s lives. That impact is not just on the person with the disease but on the whole family who are often struggling just to get a diagnosis.

Every year groups around the world, from patients and patient advocacy organizations to researchers and policymakers, stage events to mark the day. This year there are more than 460 events being held in 96 countries, everywhere from Albania and Andora to Tunisia and Uruguay.

Here in the US many groups organize events at State Capitols to educate elected officials and policy makers about the particular needs of these communities and the promise that scientific research holds to combat these conditions. Others have auctions to raise funds for research or public debates to raise awareness.

Each event is unique in its own way because each represents many different diseases, many different needs, and many different stories. The goal of these events is to put a human face on each condition, to give it visibility, so that it is no longer something most people have never heard of, instead it becomes something that affects someone you may know or who reminds you of someone you know.

Here’s a video from Spain that does just that.

You can find a complete list of events being held around the world to mark Rare Disease Day.

At CIRM we feel a special link to this day. That’s because many of the diseases we fund research into are rare diseases such as severe combined immunodeficiency (SCID), and ALS or Lou Gehrig’s disease, and Sickle Cell Disease.

Evie Vaccaro, cured of SCID

These diseases affect relatively small numbers of patients so they often struggle to get funding for research. Because we do not have to worry about making a profit on any therapy we help develop we can focus our efforts on supporting those with unmet medical needs. And it’s paying off. Our support has already helped develop a therapy for SCID that has cured 40 children. We have two clinical trials underway for ALS or Lou Gehrig’s disease. We also have two clinical trials for Sickle Cell Disease and have reached a milestone agreement with the National Heart, Lung and Blood Institute (NHLBI) on a partnership to help develop a cure for this crippling and life-threatening disorder.

The hope is that events like Rare Disease Day let people know that even though they have a condition that affects very few, that they are not alone, but that they are part of a wider, global community, a community committed to working to find treatments and cures for all of them.

CIRM Invests in Chemotherapy-Free Approach to Rare But Deadly Childhood Disease

David Vetter, boy diagnosed with SCID

Imagine being told that your seemingly healthy newborn baby has a life-threatening disease. In a moment your whole world is turned upside down. That’s the reality for families with a child diagnosed with severe combined immunodeficiency (SCID). Children with SCID lack a functioning immune system so even a simple cold can prove fatal. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $3.7 million to develop a new approach that could help these children.

The funding will enable Stanford’s Dr. Judith Shizuru to complete an earlier CIRM-funded Phase 1 clinical trial using a chemotherapy-free transplant procedure for SCID.

Dr. Judy Shizuru: Photo courtesy Stanford University

The goal of the project is to replace SCID patients’ dysfunctional immune cells with healthy ones using a safer form of bone marrow transplant (BMT). Current BMT procedures use toxic chemotherapy to make space in the bone marrow for the healthy transplanted stem cells to take root and multiply. The Stanford team is testing a safe, non-toxic monoclonal antibody that targets and removes the defective blood forming stem cellsin order to promote the engraftment of the transplanted stem cells in the patient. 

The funding is contingent on Dr. Shizuru raising $1.7 million in co-funding by May 1 of this year. 

“This research highlights two of the things CIRM was created to do,” says Maria T. Millan, MD, President & CEO of CIRM. “We fund projects affecting small numbers of patients, something many organizations or companies aren’t willing to do, and we follow those projects from the bench to the bedside, supporting them every step along the way.”

Early testing has shown promise in helping patients and it’s hoped that if this approach is successful in children with SCID it may also open up similar BMT therapies for patients with other auto-immune diseases such as multiple sclerosis, lupus or diabetes.

71 for Proposition 71

Proposition 71 is the state ballot initiative that created California’s Stem Cell Agency. This month, the Agency reached another milestone when the 71st clinical trial was initiated in the CIRM Alpha Stem Cell Clinics (ASCC) Network. The ASCC Network deploys specialized teams of doctors, nurses and laboratory technicians to conduct stem cell clinical trials at leading California Medical Centers.

StateClinics_Image_CMYK

These teams work with academic and industry partners to support patient-centered for over 40 distinct diseases including:

  • Amyotrophic Lateral Sclerosis (ALS)
  • Brain Injury & Stroke
  • Cancer at Multiple Sites
  • Diabetes Type 1
  • Eye Disease / Blindness Heart Failure
  • HIV / AIDS
  • Kidney Failure
  • Severe Combined Immunodeficiency (SCID)
  • Sickle Cell Anemia
  • Spinal Cord Injury

These clinical trials have treated over 400 patients and counting. The Alpha Stem Cell Clinics are part of CIRM’s Strategic Infrastructure. The Strategic Infrastructure program which was developed to support the growth of stem cell / regenerative medicine in California. A comprehensive update of CIRM’s Infrastructure Program was provided to our Board, the ICOC.

CIRM’s infrastructure catalyzes stem cell / regenerative medicine by providing resources to all qualified researchers and organizations requiring specialized expertise. For example, the Alpha Clinics Network is supporting clinical trials from around the world.

Many of these trials are sponsored by commercial companies that have no CIRM funding. To date, the ASCC Network has over $27 million in contracts with outside sponsors. These contracts serve to leverage CIRMs investment and provide the Network’s medical centers with a diverse portfolio of clinical trials to address patients’’ unmet medical needs.

Alpha Clinics – Key Performance Metrics

  • 70+ Clinical Trials
  • 400+ Patients Treated
  • 40+ Disease Indications
  • Over $27 million in contracts with commercial sponsors

The CIRM Alpha Stem Cell Clinics and broader Infrastructure Programs are supporting stem cell research and regenerative medicine at every level, from laboratory research to product manufacturing to delivery to patients. This infrastructure has emerged to make California the world leader in regenerative medicine. It all started because California’s residents supported a ballot measure and today we have 71 clinical trials for 71.

 

 

Mustang Bio picks up CIRM supported ‘bubble boy’ gene therapy

dna-1903318_1280

SCID refers to a group of rare diseases caused by mutations in genes that play a role in the development and function of immune cells. (Darwin Laganzon)

When babies are born they’re somewhat protected from infections through antibodies that were transferred to them in the womb. However, as time passes and immune systems develop their bodies start to learn how to combat infections on their own. For some children this process is seamless, but for others, it can be a sensitive time when parents learn about immune problems that haven’t resolved normally in the first months of life.

For starters, the immune system has many parts and symptoms of immune deficiency can depend on what part of the immune system is affected. These deficiencies can range from mild to aggressive and even life-threatening. One example of a life-threatening immune problem is severe combined immunodeficiency (SCID). Last year a CIRM-funded clinical trial run by St. Jude Children’s Research Hospital and UC San Francisco saved the life of a little boy named Ronnie who suffered from SCID. Based on the success of this approach a company named Mustang Bio just licensed a gene therapy from St. Jude Children’s Research Hospital for X-linked severe combined immunodeficiency (X-SCID), also called “bubble boy” syndrome. This agreement adds a rare disease gene therapy to Mustang’s pipeline, which is focused on fighting various cancers using CAR-T treatments.

DSC_4079

Photo Credit: Pawash Priyank of Ronnie Priyank

In most cases, unless SCID patients receive immune-restoring treatments—such as transplants of blood-forming stem cells, enzyme therapy, or gene therapy—the condition is fatal, usually in the first year or two of life, according to the National Institute of Allergy and Infectious Diseases.

St. Jude’s treatment entails administering a low dose of the cancer drug busulfan before reinfusing a patients with their own stem cells that have been gene-modified. It’s currently in a pair of Phase 1/2 trials in infants under age 2 and in children over the age of 2. Eight patients under 2 have been treated so far, with six of them “[achieving] reconstituted immune systems within three to four months following treatment,” according to the company.

“Our therapy has been well tolerated thus far, and none of the infants required any blood product support after low dose of busulfan,” said Ewelina Mamcarz, M.D., an assistant member at St. Jude who led the study, in a release. “Most importantly, we observe recovery of all cells of the immune system, which is truly an achievement over prior gene therapy trials, where B cell reconstitution did not occur, and patients required intravenous immunoglobulin for life.”

Mustang and St. Jude haven’t disclosed financial terms of their agreement. They believe there may be as many as 1,500 patients in the U.S. and a similar number in Europe with X-linked SCID for whom donor bone marrow or blood stem cell transplants simply aren’t enough. They feel these patients could be eligible for their lentiviral gene therapy.

“We are thrilled to announce the expansion of our pipeline into gene therapy for patients with X-SCID, a natural fit for our Worcester, Massachusetts, cell processing facility,” said Mustang CEO Manny Litchman, M.D., in a statement.

Mustang and St. Jude will advance the program through ongoing phase 1/2 trials, with the goal of providing long-term treatment to the more than 80% of infants who lack fully matched bone marrow transplant donors. Through their partnership they hope to help the small number of patients who continue to have significant impairment of immunity.

Video: Behind the scenes of a life-saving gene therapy stem cell treatment

“We were so desperate. When we heard about this treatment were willing to do anything to come here.”

In the above quote from Zahraa El Kerdi, “here” refers to UCLA, a world away from her hometown in Lebanon. In September 2015, Zahree gave birth to a son, Hussein, who appeared perfectly healthy. But by six months, he was barely clinging to life due to an inherited blood disorder, ADA-SCID, also called Bubble Baby disease. The disorder left Hussein without a functioning immune system so even a common cold could prove deadly. In fact, SCID babies rarely survive past one year of age. Up until now, no treatment options existed for the disease.

But Zahraa and her husband Ali heard about a CIRM-funded clinical trial, led by Donald Kohn, M.D. at UCLA, that could modify Hussein’s blood stem cells to fix the gene problem that’s causing his disease. The El Kerdi’s 7500-mile journey to save Hussein’s life is captured in a wonderful, five-minute video produced by UCLA’s Broad Stem Cell Research Center.

With before and after scenes of Hussein’s treatment as well as animation describing how the therapy works, the short documentary is equal parts heart wrenching, uplifting and educational. Basically, what I’m trying to say is, it’s a must-see and available to view above.

The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

Stem Cell Agency’s supporting role in advancing research for rare diseases

Orchard

The recent agreement transferring GSK’s rare disease gene therapies to Orchard Therapeutics was good news for both companies and for the patients who are hoping this research could lead to new treatments, even cures, for some rare diseases. It was also good news for CIRM, which played a key role in helping Orchard grow to the point where this deal was possible.

In a news releaseMaria Millan, CIRM’s President & CEO, said:

“At CIRM, our value proposition is centered around our ability to advance the field of regenerative medicine in many different ways. Our funding and partnership has enabled the smooth transfer of Dr. Kohn’s technology from the academic to the industry setting while conducting this important pivotal clinical trial. With our help, Orchard was able to attract more outside investment and now it is able to grow its pipeline utilizing this platform gene therapy approach.”

Under the deal, GSK not only transfers its rare disease gene therapy portfolio to Orchard, it also becomes a shareholder in the company with a 19.9 percent equity stake. GSK is also eligible to receive royalties and commercial milestone payments. This agreement is both a recognition of Orchard’s expertise in this area, and the financial potential of developing treatments for rare conditions.

Dr. Millan says it’s further proof that the agency’s impact on the field of regenerative medicine extends far beyond the funding it offers companies like Orchard.

“Accelerating stem cell therapies to patients with unmet medical needs involves a lot more than just funding research; it involves supporting the research at every stage and creating partnerships to help it fulfill its potential. We invest when others are not ready to take a chance on a promising but early stage project. That early support not only helps the scientists get the data they need to show their work has potential, but it also takes some of the risk out of investments by venture capitalists or larger pharmaceutical companies.”

CIRM’s early support helped UCLA’s Don Kohn, MD, develop a stem cell therapy for severe combined immunodeficiency (SCID). This therapy is now Orchard’s lead program in ADA-SCID, OTL-101.

Sohel Talib, CIRM’s Associate Director Therapeutics and Industry Alliance, says this approach has transformed the lives of dozens of children born with this usually fatal immune disorder.

“This gene correction approach for severe combined immunodeficiency (SCID) has already transformed the lives of dozens of children treated in early trials and CIRM is pleased to be a partner on the confirmatory trial for this transformative treatment for patients born with this fatal immune disorder.”

Dr. Donald B. Kohn UCLA MIMG BSCRC Faculty 180118Dr. Kohn, now a member of Orchard’s scientific advisory board, said:

“CIRM funding has been essential to the overall success of my work, supporting me in navigating the complex regulatory steps of drug development, including interactions with FDA and toxicology studies that enhanced and helped drive the ADA-SCID clinical trial.”

CIRM funding has allowed Orchard Therapeutics to expand its technical operations footprint in California, which now includes facilities in Foster City and Menlo Park, bringing new jobs and generating taxes for the state and local community.

Mark Rothera, Orchard’s President and CEO, commented:

“The partnership with CIRM has been an important catalyst in the continued growth of Orchard Therapeutics as a leading company transforming the lives of patients with rare diseases through innovative gene therapies. The funding and advice from CIRM allowed Orchard to accelerate the development of OTL-101 and to build a manufacturing platform to support our development pipeline which includes 5 clinical and additional preclinical programs for potentially transformative gene therapies”.

Since CIRM was created by the voters of California the Agency has been able to use its support for research to leverage an additional $1.9 billion in funds for California. That money comes in the form of co-funding from companies to support their own projects, partnerships between outside investors or industry groups with CIRM-funded companies to help advance research, and additional funding that companies are able to attract to a project because of CIRM funding.

Therapies Targeting Cancer, Deadly Immune Disorder and Life-Threatening Blood Condition Get Almost $32 Million Boost from CIRM Board

An innovative therapy that uses a patient’s own immune system to attack cancer stem cells is one of three new clinical trials approved for funding by CIRM’s Governing Board.

Researchers at the Stanford University School of Medicine were awarded $11.9 million to test their Chimeric Antigen Receptor (CAR) T Cell Therapy in patients with B cell leukemias who have relapsed or are not responding after standard treatments, such as chemotherapy.CDR774647-750Researchers take a patient’s own T cells (a type of immune cell) and genetically re-engineer them to recognize two target proteins on the surface of cancer cells, triggering their destruction. In addition, some of the T cells will form memory stem cells that will survive for years and continue to survey the body, killing any new or surviving cancer cells.

MariaMillan-085_600px

Maria T. Millan

“When a patient is told that their cancer has returned it can be devastating news,” says Maria T. Millan, MD, President & CEO of CIRM. “CAR T cell therapy is an exciting and promising new approach that offers us a way to help patients fight back against a relapse, using their own cells to target and destroy the cancer.”

 

 

Sangamo-logoThe CIRM Board also approved $8 million for Sangamo Therapeutics, Inc. to test a new therapy for beta-thalassemia, a severe form of anemia (lack of healthy red blood cells) caused by mutations in the beta hemoglobin gene. Patients with this genetic disorder require frequent blood transfusions for survival and have a life expectancy of only 30-50 years. The Sangamo team will take a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), turn on a different hemoglobin gene (gamma hemoglobin) that can functionally substitute for the mutant gene. The modified blood stem cells will be given back to the patient, where they will give rise to functional red blood cells, and potentially eliminate the need for chronic transfusions and its associated complications.

UCSFvs1_bl_a_master_brand@2xThe third clinical trial approved is a $12 million grant to UC San Francisco for a treatment to restore the defective immune system of children born with severe combined immunodeficiency (SCID), a genetic blood disorder in which even a mild infection can be fatal. This condition is also called “bubble baby disease” because in the past children were kept inside sterile plastic bubbles to protect them from infection. This trial will focus on SCID patients who have mutations in a gene called Artemis, the most difficult form of SCID to treat using a standard bone marrow transplant from a healthy donor. The team will genetically modify the patient’s own blood stem cells with a functional copy of Artemis, with the goal of creating a functional immune system.

CIRM has funded two other clinical trials targeting different approaches to different forms of SCID. In one, carried out by UCLA and Orchard Therapeutics, 50 children have been treated and all 50 are considered functionally cured.

This brings the number of clinical trials funded by CIRM to 48, 42 of which are active. There are 11 other projects in the clinical trial stage where CIRM funded the early stage research.