Stem Cell Agency Invests $46 Million in New Education Program

CIRM Bridges students 2022. The CIRM Board approved funding for a program to help even more students advance a career in science.

The governing Board of the California Institute for Regenerative Medicine (CIRM) has approved $46,076,430 to invest in its newest education pillar- the COMPASS (Creating Opportunities through Mentorship and Partnership Across Stem cell Science) training program.

Education is at the core of CIRM’s mission of accelerating world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and world. And funding these additional programs is an important step in ensuring that California has a well-trained stem cell workforce.

The objective of COMPASS is to prepare a diverse cadre of undergraduate students for careers in regenerative medicine through combining hands-on research opportunities with strategic and structured mentorship experiences.

“Education and infrastructure are two funding pillars critical for creating the next generation of researchers and conducting stem cell based clinical trials,” says Jonathan Thomas, Ph.D., J.D., Chair of the CIRM Board. “The importance of these programs was acknowledged in Proposition 14 and we expect that they will continue to be important components of CIRM’s programs and strategic direction in the years to come.”

Most undergraduate research training programs, including those targeting students from underserved communities, target individuals with predefined academic credentials as well as a stated commitment towards graduate school, medical school, or faculty positions in academia. COMPASS will support the development and implementation of novel strategies to recognize and foster untapped talent that can lead to new and valuable perspectives that are specific to the challenges of regenerative medicine, and that will create new paths to a spectrum of careers that are not always apparent to students in the academic, undergraduate environment.

COMPASS will complement but not compete with CIRM’s Bridges program, a subset of which serve a different, but equally important population of undergraduate trainees; similarly, the program is unlikely to compete for the same pools of students that would be most likely to receive support through the major NIH Training Programs such as MARC and RISE.

Here are the 16 successful applicants.

Application numberTitlePrincipal InvestigatorAmount
EDUC5-13840  The COMPASS Scholars Program – Developing Today’s Untapped Talent into Tomorrow’s STEM Cell Researchers    John Matsui, University of California, Berkeley    $2,908,950
EDUC5-13634  COMPASS Undergraduate Program  Alice F Tarantal, University of California, Davis    $2,909,950  
EDUC5-13637  Research Mentorship Program in Regenerative Medicine Careers for a Diverse Undergraduate Student Body    Brian J. Cummings, University of California, Irvine    $2,729,900
EDUC5-13665  CIRM COMPASS Training Program (N-COMPASS)  Cindy S Malone, The University Corporation at California State University, Northridge    $2,909,700  
EDUC5-13817  COMPASS: Accelerating Stem Cell Research by Educating and Empowering New Stem Cell Researchers  Tracy L Johnson, University of California, Los Angeles    $2,910,000  
EDUC5-13744  Training and mentorship program in stem cell biology and engineering: A COMPASS for the future  Dennis Clegg, University of California, Santa Barbara    $2,746,000  
EDUC5-13636  Research Training and Mentorship Program to Inspire Diverse Undergraduates toward Regenerative Medicine
Careers (RAMP)
  Huinan Hannah Liu, The Regents of the University of California on behalf of its Riverside Campus    $2,910,000  
EDUC5-13679  Inclusive Pathways for a Stem Cell Scholar (iPSCs) Undergraduate Training Program    Lily Chen, San Francisco State University    $2,894,500
EDUC5-13733  A COMPASS to guide the growth of a diverse regenerative medicine workforce that represents California and benefits
the world
  Kristen OHalloran Cardinal, Cal Poly Corporation, an Auxiliary of California Polytechnic State University, San Luis Obispo    $2,887,939  
EDUC5-13619  Increase Diversity, Equity, and Advancement in Cell Based Manufacturing Sciences (IDEA-CBMS)  Michael Fino, MiraCosta College    $2,894,500  
EDUC5-13667  COMPASS Program for Southern California Hispanic Serving Institution  Bianca Romina Mothé, California State University San Marcos Corporation    $2,877,200  
EDUC5-13653  Student Pluripotency: Realizing Untapped Undergraduate Potential in Regenerative Medicine  Daniel Nickerson, California State University, San Bernardino    $2,909,853  
EDUC5-13647  COMPASS: an inclusive Pipeline for Research and Other Stem cell-based Professions in Regenerative medicine
(iPROSPR)  
  Alison Miyamoto, CSU Fullerton Auxiliary Services Corporation    $2,883,440
EDUC5-13686  Training Undergraduates in Stem Cell Engineering and Biology (TUSCEB)    Kara E McCloskey, University of California, Merced    $2,909,999
EDUC5-13853  COMPASS: Guiding Undergraduates to Careers in Regenerative Medicine    Senta Georgia, University of Southern California    $2,899,999
EDUC5-13910  IDEA-CBMS – Increase Diversity, Equity, and Advancement in Cell Based Manufacturing Sciences    James Dekloe, Solano Community College    $2,894,500

Life lessons learned in the CIRM summer intern program

SPARK poster session; Photo by Esteban Cortez

When I was in high school I spent my summers working in a shoe shop and playing soccer with my mates. It never occurred to me that I could do something really  worthwhile with that time. So, when I meet the high school students who took part in the California Institute for Regenerative Medicine’s SPARK program I realized I had wasted a lot of time.

For those not familiar with SPARK, it stands for Summer Program to Accelerate Regenerative Medicine Knowledge. It’s a summer program offering high school students a chance to work in a world-class stem cell and gene therapy research facility. The quality of the work they do is truly remarkable. By the end of the summer they are doing projects that many full-time researchers would be proud of.

As part of that program the students also must write blogs and post photos and videos to Instagram to chart their progress. The quality of that work is equally impressive. Last week we posted items about the two best blogs from the students. But there were so many other fine entries that we thought it would be worthwhile to highlight elements of those.

For instance, Ricardo Rodriguez at Charles R. Drew University had some interesting observations on life, even when it’s not always working out the way you planned:

Ricardo Rodriguez: Photo by Esteban Cortez

“Cancer is not life going wrong so much as it is life changing. If mutation is random, then so is life. That beautiful randomness that drives evolution and extinction, change and stagnation, life and death, and for you to think that that part of your body could be simple in any way, whether it be simply evil, simply inconvenient, simply structured, is simply hilarious. There is beauty in your body’s complexity, adaptability, and resilience, and these attributes are not barred from any part of your life.”

Mindy Rodriguez at Beckman City of Hope says she learned valuable lessons from working with mice, creatures she previously considered scary, dirty and vicious, but later came to like:

“The CIRM SPARK program reinforced the value of facing my fears by exploring the unknown and most importantly taught me to be comfortable with the uncomfortable. In both cases, I found that it is our response to fear that shapes who we are. We can either run away from the thing that scares us or take each moment as a learning opportunity, embracing change over comfort.”

Manvi Ketireddy at work at UC Davis

Manvi Ketireddy at UC Davis had a similar experience, learning to accept things not working out.

“A researcher must be persistent and have the ability to endure lots of failures. I think that is what I love about research: the slight possibility of discovery and answers amid constant defeat is one of the greatest challenges to exist. And boy, do I love challenges.”

Ameera Ali in the lab (fish not included)

Ameera Ali at Sanford Burnham Prebys says she had struggled for years to decide on a career direction, but the internship gave her a fresh perspective on it all.

“Growing up, I never really knew what I wanted to do for a living, and I think that’s because I wanted to do everything. In kindergarten I wanted to be a paleontologist. In 5th grade I wanted to be the CEO of The San Diego Union Tribune, and in 9th grade I wanted to be a physicist at NASA. By 10th grade I was having an existential crisis about what to do with my life, and so began the search for my purpose at the ripe old age of 15.

So now, writing this blog, I never thought I’d end up spending so much of my time in a room filled floor to ceiling with fish tanks. You might be wondering, how does one end up going from physicist to fish farmer? Well, I’m not completely sure to be honest, but it’s been a very fun and interesting experience nonetheless.”

She says by the end she says what initially felt like mundane chores were actually moments worth celebrating.

“These aquatic friends have taught me a lot of valuable life lessons, like being appreciative of the little things in life, caring for others and see things from a different perspective, and realizing that

working in a biology lab allows me to explore my passions, be creative, and be a mother to hundreds of fish children on the side.”

SPARK attracts students from all over California, and it’s that diversity that makes it so important.

Alexa Gastelum

My name is Alexa Gastelum and I am from a small border town called Calexico. It is located in the Imperial Valley around two hours away from San Diego. I found out about this Internship from my Math teacher and Mesa Coordinator. They discussed what it was about, and I immediately knew that I wanted to apply. I have always been interested in doing labs and researching so I knew that it would be the perfect opportunity for me. It is not normal to be presented with an opportunity like this from where I’m from because it is a small and low-income town. When I told my family about this internship they were very supportive. They agreed that I needed to apply for it since it was an extremely good opportunity. Even though I would need to spend my summer away from my hometown, they were okay with it because they knew that I could not miss out on the opportunity. I decided to write my personal statement on a disease that hit close to home with my family which was Alzheimer’s. It is a disease that runs in my family and my uncle passed from it. I believe that this is what sparked my interest because I wanted to understand how it worked and how it affects the brain.

At the SPARK event Alexa told me her grandmother was so proud of her for being accepted at the program that she was going around town telling everyone about it. Her grandmother, and all the other grandmothers and mothers and fathers, had every reason to be proud of these students. They are remarkable young people and we look forward to following their careers in the years to come.

Learning life lessons in the lab

Rohan Upadhyay, CIRM SPARK student 2021

One of the most amazing parts of an amazing job is getting to know the students who take part in CIRM’s SPARK (Summer Program to Accelerate Regenerative Medicine Knowledge) program. It’s an internship giving high school students, that reflect the diversity of California, a chance to work in a world-class stem cell research facility.

This year because of the pandemic I didn’t get a chance to meet them in person but reading the blogs they wrote about their experiences I feel as if I know them anyway.

The blogs were fun, creative, engaging and dealt with many issues, as well as stem cell and gene therapy research.

A common theme was how hard the students, many of whom knew little about stem cells before they started, had to work just to understand all the scientific jargon.

Areana Ramirez, who did her internship at UC Davis summed it up nicely when she wrote:

“Despite the struggles of taking over an hour to read a scientific article and researching what every other word meant, it was rewarding to know that all of the strain I had put on my brain was going toward a larger understanding of what it means to help others. I may not know everything about osteogenic differentiation or the polyamine pathway, but I do know the adversities that patients with Snyder-Robinson are facing and the work that is being done to help them. I do know how hard each one of our mentors are working to find new cures and are coming up with innovating ideas that will only help humankind.”

Lauren Ginn at City of Hope had the same experience, but said it taught her a valuable lesson:

“Make no mistake, searching for answers through research can sometimes feel like shooting arrows at a bulls-eye out of sight. Nonetheless, what CIRM SPARK has taught me is the potential for exploration that lies in the unknown. This internship showed me that there is so much more to science than the facts printed in textbooks.”

Rohan Upadhyay at UC Davis discovered that even when something doesn’t work out, you can still learn a lot:

“I asked my mentor (Gerhard Bauer) about what he thought had occurred. But unlike the textbooks there was no obvious answer. My mentor and I could only speculate what had occurred. It was at this point that I realized the true nature of research: every research project leads to more questions that need to be answered. As a result there is no endpoint to research. Instead there are only new beginnings.”

Melanie Nguyen, also at UC Davis, wrote her blog as a poem. But she saved the best part for the prose at the end:

“Like a hematopoietic stem cell, I have learned that I am able to pursue my different interests, to be multi-potential. One can indulge in the joys of biology while simultaneously live out their dreams of being an amateur poet. I choose it all. Similarly, a bone marrow stem cell can become whatever it may please—red, white, platelet. It’s ability to divide and differentiate is the source of its ingenuity. I view myself in the same light. Whether I can influence others with research, words, or stories, I know that with each route I will be able to make change in personalized ways.”

For Lizbeth Bonilla, at Stanford, her experiences transcended the personal and took on an even bigger significance:

“As a first-generation Mexican American, my family was thrilled about this internship and opportunity especially knowing it came from a prestigious institution. Unfortunately there is very little to no representation in our community in regards to the S.T.E.M. field. Our dreams of education and prosperity for the future have to be compromised because of the lack of support and resources. To maintain pride in our culture, we focus on work ethics and family, hoping it will be the next generations’ time to bring successful opportunities home. However, while this is a hope widely shared the effort to have it realized is often limited to men. A Latina woman’s success and interest in education are still celebrated, but not expected. As a first-generation Latina, I want to prove that I can have a career and hopefully contribute to raising the next leading generation, not with the hope that dreams are possible but to be living proof that they are.”

Reading the blogs it was sometimes easy to forget these are 16 and 17 year old students. They write with creativity, humor, thoughtfulness and maturity. They learned a lot about stem cell research over the summer. But I think they also learned a lot more about who they are as individuals and what they can achieve.

SPARKing the genius of the next generation of scientists

Dr. Kelly Shepard, SPARK program director

After almost 18 months – and counting – that have put us all to the test, made us wear masks, work from home, limit contact with all but the closest of family and friends it’s a wonderful thing to be able to get a glimpse of the future and feel that we are in good hands.

That’s how it felt this week when we held our SPARK conference. SPARK stands for Summer Program to Accelerate Regenerative Medicine Knowledge. The program helps high school students, that reflect the diversity of California, to take part in summer research at various institutions with a stem cell, gene therapy, or regenerative medicine focus. 

We hope the experience will inspire these students to become the next generation of scientists. Many of the students are first generation Americans, many also come from families with limited resources and without our help might not be able to afford an internship like this.

As part of the program we ask the students to not only do stem cell research and prepare a poster of their work, we also ask them to blog about it. And the blogs they write are things of beauty.

It’s hard to pick winners from so many fine writers, but in the end a team of CIRMites managed to identify a few we thought really stood out. First was Hassan Samiullah who spent his internship at Cedars-Sinai. Hassan wrote three blogs charting his journey at the research facility, working with mice and a deadly brain cancer. This is part of one of his entries.

“When many of us think of scientists, we think of crazy people performing crazy procedures in a lab. While I won’t try refuting the first part, the crazy procedures can actually be very consequential to society at large. What is now common knowledge was once found in the discussion section of a research paper. The therapies we will use to treat cancer tomorrow are being tested in labs today, even if they’re being injected into mice brains.” 

We liked his writing because he explained complex science clearly, with humor and obvious delight that he got to work in a research facility with “real” scientists. Crazy or otherwise. Here is his final blog which, I think, reflects the skill and creativity he brought to the task.

I’m almost at the end of my 7.5-week internship at Cedars-Sinai through the CIRM SPARK program. Looking back at the whole experience, I don’t think I’ve ever been through anything that’s required as much critical thinking.

I remember seeing pX330-dual-U6-Pten-Cdkn2a-Ex2-chimeric-BB-CBh-espCas9, and not having the slightest idea of what any of it meant. Sure, I understood the basics of what I was told: it’s a plasmid that can be transfected into mice brains to model glioblastoma tumors. But what do any of those strings of letters and numbers have to do with that? Well, I saw “Pten” and read it aloud: “P-t-e-n.” After I spelled it out like a kindergartener, I finally made a realization. p10 is a gene—specifically a tumor suppressor gene. I figured that the two jumbles of letters and numbers to the right must also be genes. Sure enough, the plasmid contains three mutated genes that get incorporated into a mouse’s genome, eventually leading to cancer. We didn’t actually end up using this model, however. Part of being in science is procedures not working out as expected.

Resilience is key.

When I found out that the image analysis software I was supposed to use didn’t support the type of data collection I needed to perform, I had to burn a little midnight oil to count the cells of interest manually. It proved to be well worth the effort: we found that mice tumors treated with radiation saw increased interactions between immune cells and endogenous (brain-resident) stem cells, even though they had fewer cells from the original tumor (difference wasn’t statistically significant due to an outlier in the control group). This is an important finding because it may explain the common narrative of glioblastoma: many patients see their tumors recede but suffer an aggressive relapse. This relapse may be due to immune cells’ interacting with stem cells to make them resistant to future treatments.

Understanding stem cells are so critical to cancer research, just as they are to many other fields of research. It is critical for everyone involved in science, medicine, healthcare, and policymaking to recognize and act on the potential of the regenerative medicine field to dramatically improve the quality of life for so many people.

This is just the beginning of my journey in science! I really look forward to seeing what’s next.

We look forward to it too Hassan.

Hassan wasn’t the only one we singled out for praise. Sheila Teker spent her summer at Children’s Hospital Oakland Research Institute. She says her internship didn’t get off to a very encouraging start.

“When the CHORI security guard implied that “kids aren’t allowed” on my first day–likely assuming I was a 10-year-old smuggling myself into a highly professional laboratory – I’d also personally doubted my presence there. Being 16, I wasn’t sure I’d fit in with others in such an intimidating environment; and never did I think, applying for this program, that I could be working with stem cells. I’d heard about stem cells in the news, science classes, and the like, but even doing any cell culturing at all seemed inaccessible to me. At my age, I’d become accustomed to and discouraged by rejection since I was perceived as “too young” for anything.”

Over the course of the summer Sheila showed that while you might question her age, no one should ever question her talent and determination.  

Finally, we thought Alvin Cheng of Stanford also deserved recognition for his fine writing, starting with a really fun way to introduce his research into lower back pain.

“Perhaps a corpse would be reanimated”, Mary Shelley wrote her in 1831 edition of “Frankenstein”. Decades prior, Luigi Galvani discovered with his wife how a dead frog’s leg could twitch when an electric spark was induced. ‘Galvanism’ became the scientific basis behind the infamous novel and bioelectricity.”

While many of the students had to do their research remotely this year, that did not stop them doing amazing work. And working remotely might actually be good training for the future. CIRM’s Dr. Kelly Shepard, the Associate Director of Discovery and Translation and who runs the SPARK program, pointed out to the students that scientists now do research on the international space station from their labs here on earth, so the skills these SPARK students learned this past summer might prove invaluable in years to come.

Regardless of where they work, we see great things in the futures of these young scientists.

Byron’s story

Bryon Jenkin’s is one of the people we profiled in our recent 18 Month Report. The theme of the report is “Perseverance” and Byron certainly epitomizes that. This is his story.

Photo of Byron Jenkins – hand on the plane – in his Navy fighter pilot days

A former Navy flight officer and accomplished athlete Byron Jenkins learned in June 2013 that he had multiple myeloma, an incurable blood cancer, and that it was eating through his bones. After five years of, chemotherapy, radiation, immunotherapy, and experimental procedures, he found himself bed ridden, exhausted, barely able to move. Byron says: “I was alive, but I wasn’t living.” 

Byron in the hospital

As the treatments lost their ability to hold the cancer at bay, Byron’s wife, family and close friends had made preparations for his seemingly inevitable demise. 

Then Byron took part in a CIRM-funded CAR-T clinical trial for a treatment developed by Poseida Therapeutics. The team used Byron’s own immune system cells, re-engineered in the lab, to recognize the cancer and to fight back. Within two weeks Byron was feeling so much better he was able to stop taking all of his medications. “I haven’t taken so much as an aspirin since then.”  

Two years later he is once again able to enjoy a full, active life with his family; biking, hiking and skiing with his wife and kids. He is back working full-time and only checks in with his oncologist once in a while.

Byron taking a selfie with his family

Byron says despite his ordeal he never lost faith, that the love of his family helped give him the strength to continue to fight. “Hope kept me going through this long arduous process. This is the first treatment to give me a continued normal life. CAR-T was the answer to my prayers.”

Byron: Photo courtesy Miranda Drummond of Catherine Rae Photography

Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

Bridges to the Future: 10 Years and Counting!

Bridges conference 2019

When Californians voted for Proposition 71 in 2004, they were investing in hope… the hope that unraveling the mysteries of stem cells could lead to new types of treatments and perhaps one day, even cures for some of the most devastating illnesses and injuries known to mankind. Making this hope a reality, however, requires much more than scientific discovery, it requires a dedicated and skilled work force that can recognize and tackle the challenges that come with such an ambitious dream.

To jump start the nascent stem cell/regenerative medicine community in California, CIRM began offering Training Grants to major research and medical institutions to attract talented PhD students and postdoctoral fellows into the field. A few years later, a second type of training program was born to attract a different, yet equally important cadre of professionals – the undergraduate, Bachelors and Master’s level scientists who are the bread and butter of any successful research endeavor.

Bridges students

Over the past 10 years, CIRM has supported 16 of these programs, which have proven to be among the most popular and successful CIRM initiatives to date. As of 2019, the Bridges programs have trained well over 1400 scientists, about half of whom are working full time in research positions at biotechnology companies or academic laboratories, and another third of whom went on to enroll in a graduate or professional school.

Today, there are 14 active Bridges Programs around the state, each with unique attributes, but all sharing the core elements of stem cell-based coursework, hands-on-training through internships at world-class laboratories or biotechnology companies, and formal activities involving patient engagement and community outreach. Every year, the programs produce up to 140 well-rounded, highly skilled individuals that are ready to hit the ground running.

Poster presentations at the Bridges conference

Each July, the most recent cohort of Bridges trainees gather for an Annual Conference to share their research outcomes, network with their peers, and learn more about the current opportunities and challenges facing the regenerative medicine community.

This year, the 10th Annual Bridges Conference was held in San Mateo, CA and included inspiring talks from scientists performing cutting edge research and running some of the first FDA-approved stem-cell based clinical trials in the state.

Anna Simos

Perhaps the biggest highlights were hearing the real-life stories of brave individuals like Anna Simos, whose experience with life-threatening complications from diabetes inspired her life’s work of providing hope and education to those facing similar challenges.

Byron Jenkins

Equally moving was the testimonial of Byron Jenkins, a multiple myeloma patient who received an experimental new CAR-T therapy in a CIRM-supported clinical trial sponsored by Poseida Therapeutics.

Ronnie Kashyup with parents Upasana and Pawash

Last but not least, little Ronnie Kashyup, recently cured of Bubble Baby Disease through another CIRM-funded clinical trial, charmed all attendees with his larger-than-life personality while his father, Pawash Priyank, shared the story of Ronnie’s diagnosis and treatment.

In the video segments to follow:

CIRM Bridges student Sneha Santosh at San Jose State University discusses the role CIRM plays in bridging together the patient advocates with the groundbreaking research conducted by scientists.

Samori Dobson and Esther Nair, CIRM Bridges students at California State University, San Marcos, briefly discuss the positive impact that the program has had on their lives.

Below are some pictures form the 10th Annual Bridges Conference in San Mateo, CA.

For more information about CIRM Bridges Programs, see the following link and video below:

CIRM-funded internship programs

Headline: Stem Cell Roundup: Here are some stem cell stories that caught our eye this past week.

In search of a miracle

Jordan and mother

Luane Beck holds Jordan in the emergency room while he suffers a prolonged seizure. Jordan’s seizures sometimes occur one after another with no break, and they can be deadly without emergency care. Photo courtesy San Francisco Chronicle’s Kim Clark

One of the toughest parts of my job is getting daily calls and emails from people desperate for a stem cell treatment or cure for themselves or a loved one and having to tell them that I don’t know of any. You can hear in their voice, read it in their emails, how hard it is for them to see someone they love in pain or distress and not be able to help them.

I know that many of those people may think about turning to one of the many stem cell clinics, here in the US and in Mexico and other countries, that are offering unproven and unapproved therapies. These clinics are offering desperate people a sense of hope, even if there is no evidence that the therapies they provide are either safe or effective.

And these “therapies” come with a big cost, both emotional and financial.

The San Francisco Chronicle this week launched the first in a series of stories they are doing about stem cells and stem cell research, the progress being made and the problems the field still faces.

One of the biggest problems, are clinics that offer hope, at a steep price, but no evidence to show that hope is justified. The first piece in the Chronicle series is a powerful, heart breaking story of one mother’s love for her son and her determination to do all she can to help him, and the difficult, almost impossible choices she has to make along the way.

It’s called: In search of a miracle.

A little turbulence, and a French press-like device, can help boost blood platelet production

Every year more than 21 million units of blood are transfused into people in the US. It’s a simple, life-saving procedure. One of the most important elements in transfusions are  platelets, the cells that stop bleeding and have other healing properties. Platelets, however, have a very short shelf life and so there is a constant need to get more from donors. Now a new study from Japan may help fix that problem.

Platelets are small cells that break off much larger cells called megakaryocytes. Scientists at the Center for iPS Cell Research and Application (CiRA) created billions of megakaryocytes using iPS technology (which turns ordinary cells into any other kind of cell in the body) and then placed them in a bioreactor. The bioreactor then pushed the cells up and down – much like you push down on a French press coffee maker – which helped promote the generation of platelets.

In their study, published in the journal Cell, they report they were able to generate 100 billion platelets, enough to be able to treat patients.

In a news release, CiRA Professor Koji Eto said they have shown this works in mice and now they want to see if it also works in people:

“Our goal is to produce platelets in the lab to replace human donors.”

Stem Cell Photo of the Week 

Photo Jul 11, 6 00 19 PM

Students at the CIRM Bridges program practice their “elevator pitch”. Photo Kyle Chesser

This week we held our annual CIRM Bridges to Stem Cell Research conference in Newport Beach. The Bridges program provides paid internships for undergraduate and masters-level students, a chance to work in a world-class stem cell research facility and get the experience needed to pursue a career in science. The program is training the next generation of stem cell scientists to fill jobs in California’s growing stem cell research sector.

This year we got the students to practice an “elevator Pitch”, a 30 second explanation, in plain English, of what they do, why they do it and why people should care. It’s a fun exercise but also an important one. We want scientists to be able to explain to the public what they are doing and why it’s important. After all, the people of California are supporting this work so they have a right to know, in language they can understand, how their money is changing the face of medicine.

Crossing the Grad School Bridge of Self and Scientific Discovery

Since 2010, the CIRM Bridges Program has provided paid stem cell research internships to students at California colleges and universities that don’t have major stem cell research programs. In order to keep in touch with these interns, The Stem Cellar has an ongoing CIRM Scholars blog series, inviting alumni from our training programs to reflect on the importance of their internships, to update readers on their career path and to give career advice to the current interns.

The blog below, written by Mimi Krutein from the 2011 Bridges program at Cal State University San Marcos, is based on a presentation she gave in late July at the 2017 Annual CIRM Bridges Trainee Meeting in San Diego. 

Mimi Krutein

The science graduate school experience is not at all what I was expecting. I imagined it as a mentally stimulating flurry of discoveries and training; before I started I pictured a cross between Harry Potter and The Magic School Bus.  What I got, and what most graduate students get, is a vaguely escorted slog into a land of uncertainty and imposter syndrome, sprinkled with fleeting moments of clarity and excitement.  But don’t get me wrong; it is worth it.

My personal road to graduate school was quite unorthodox.  I entered California State University San Marcos (CSUSM) as a nursing major, because I had a genuine interest in medicine and was fascinated by the complexity of the human body.

 It also didn’t require calculus level math, so I was sold.
I generally enjoyed my courses but everything changed for me when I took microbiology.  It was my first introduction to basic science.  Disease mechanisms of microorganisms blew my mind, sparked my curiosity, and catalyzed a shift in focus that never readjusted.

It was then I decided to add a biology minor to feed the beast, but didn’t have the confidence to switch majors completely.  The pre-nursing program actually advised me not to add the minor; my grades at that point were good but not stellar, and they thought that the new load would be too difficult.  That summer I formally applied to the CSUSM nursing program and was rejected, missing the cutoff by one point.  Chalking it up to fate, I turned gracefully on my heels and belly flopped into a molecular biology major with open arms, calculus and all.

A few semesters passed and I desperately craved more lab time so I applied to 12 summer undergraduate research programs and was swiftly rejected due to lack of experience.  The only position I was offered was a 100-hour, unpaid internship at a tiny biotech composed of 5 people, where we utilized bioluminescent phytoplankton to monitor water toxicity.  Then I joined the only research lab at CSUSM with an opening, and under Dr. Betsy Read I studied the metabolic pathways of the model organism Emiliania huxleyi, also a phytoplankton.

As much as I loved the lab and industry training I was receiving, I wanted to integrate my fascination of human medicine with my passion for laboratory science.  Betsy pulled me into her office one day and asked the very obtuse question “what do you want to do in science?”  To her surprise –and slight disappointment I’m sure- I told her that I didn’t want to stay in phytoplankton, but rather explore medically relevant research, and study human disease.  Happily she lit up and frantically told me about the CIRM Bridges internship that would be perfect, the caveat being that applications were due that very day.  I received a 24-hour extension, and was later accepted for the 2011 program.

I was equal parts inspired and terrified
For my CIRM internship I joined Tobin Dickerson’s lab in the department of chemistry at The Scripps Research Institute.  I received excellent one-on-one training in a small lab studying highly infectious agents, primarily botulinum toxin.  Now, botulinum toxin has an extremely simple mechanism of action, however, it is also the most potent neurotoxin known to man.  Approximately 1 gram of aerosolized toxin can kill 1 million people; and the bacteria that produces it, Clostridium botulinum, is relatively easy to propagate, making it a potential bioterrorist agent.

iPSC-derived motor neurons. Image courtesey of Mimi Kreitin/The Scripps Research Institute

For this reason, The Department of Defense gave us a grant to pursue high-throughput screening of small molecule inhibitors that could block the effects of this toxin.  I assisted in the screening and follow up tests on individual inhibitors.  At the same time, I established a robust method for generating motor neurons from human embryonic and induced pluripotent stem cells.  This work provided us with a virtually endless pool of boltulinum-sensitive cells for the use of cellular studies with prospective inhibitors found in our initial screens.  Deriving the neurons from stem cells also eliminated the need for expensive and tiresome motor neuron harvests from animals.  The cells I produced in the lab presented as bonafide motor neurons because they produced an appropriate dose response to live toxin.

I finally felt like a real scientist
After my internship, I was formally hired by the lab as a part time technician while I finished my last year of classes as CSUSM.  My two years of work in the lab resulted in three publications, one of which was accepted for the cover of ACS Combinatorial Science.  More importantly though, the years I spent in the Dickerson lab provided room for me to grow into myself as a scientist, receive unparalleled training, and gain perspective on what it meant to be in the thick of academic research.

After many discussions with my peers and mentors, I decided graduate school, ideally a PhD track, was the next step for my scientific career.  I knew I loved research, but I wanted to learn how to think, how to approach unanswered questions in a productive manner.  I wanted to be trained by everyone who could provide me with knowledge.

I was just plain hungry.
And like most 20-somethings on the edge of graduation, my passion was mixed in equal parts with indecisiveness.  I really didn’t know what I wanted to study, but I knew I wanted to utilize my stem cell training, and I knew what made my mind light up; I was -and still am- fascinated by how diseases work on a cellular and molecular level.  So, after months of searching, digging, and crosschecking, I applied to a dozen translational research programs across the US.

And then the news arrived
While running late to a class, I got the acceptance email from my dream school; the University of Washington. After reading the subject line I was frozen with disbelief, I called my mom, forgot where I was going and took a stroll the other direction until I realized I had a test waiting for me.  It never occurred to me that I could actually do this for real.

My first day of grad school was one I will never forget.  After a lukewarm five minutes of awkwardly chatting with my new postdoc lab members, we go out to get coffee and I proceed to faceplant in the middle of a puddle-filled crosswalk directly in front of a truck.  I skinned my knee and sliced my hand open, but magically managed to keep my coffee upright.  Understandably, my newly acquired lab members didn’t let me touch anything of real importance for 2 weeks.  Even after being considered a ‘seasoned’ graduate student I still knock over racks of pipette tips or spill liters of E. coli cultures on my new jeans.  Such is the grad school life.  Part of me hopes once I earn those fancy three letters after my name, I’ll evolve to the perfect scientist, but I won’t bet on it.

To those of you considering graduate school
I’ll end with these parting thoughts. Obviously, I’m still not on the other end of this whole grad school thing, but I can tell you from the four years I’ve spent doing this so far, there has been no experience more rewarding and humbling than pursuing a PhD.  If you find yourself interested in taking the leap in a similar direction, know that if you choose this path, it’s a marathon, not a sprint so take care of yourself through the process.  Maintain a strong support system, both for your personal and professional well-being.  Foster relationships with your peers to gain strength in numbers and build mentorships with individuals you admire to perpetuate curiosity.  Choose your home lab thoughtfully; the Principal Investigator to Student dynamic is the cornerstone of the graduate school experience; you can’t be on different pages with the lab’s leader and expect to write the same story.

Imposter syndrome is the greatest barrier to your success
I spent 22 years wholeheartedly believing I couldn’t do the thing I’m currently doing, and I’ll tell you guys a secret, some days I still feel that way. But it’s vital to recognize that you are worthy of success and not defined by your failures.  Lastly, find humor where you can and stay hungry for opportunities that you believe are just outside of your reach. And stay hungry for knowledge, it’s one of few things that doesn’t expire.

Bridging the divide: stem cell students helping families with rare diseases become partners in research

Bridges & Rare Science

CIRM’s Bridges students and Rare Science’s families with rare diseases

Sometimes it’s the simplest things that make the biggest impact. For example, introducing a scientist to a patient can help them drive stem cell research forward faster than either one could do on their own.

Want proof? This year, students in CIRM’s Bridges to Stem Cell Research and Therapy program at California State University (CSU) San Marcos teamed up with parents of children with rare diseases, and the partnerships had a profound impact on all of them, one we hope might produce some long-term benefits.

Christina Waters, who helped create the partnerships, calls it “science with love.”

“We wanted to change the conversation and have researchers and families communicate, making families equal stakeholders in the research. The students bonded with the families and I truly feel that we made a difference in the lives of future researchers, in knowing how much their work can make a life changing impact on the lives of patients’ families who now have hope.”

The CIRM Bridges program helps prepare California’s undergraduate and master’s graduate students for highly productive careers in stem cell research. Students get a paid internship where they get hands-on training and education in stem cell research. They also work with patients and take part in outreach activities so they get an understanding of research that extends beyond the lab.

That’s where Christina Waters comes in. Christina is the founder of Rare Science, a non-profit group focused on rare diseases in children – we blogged about her work here – and she teamed up with CSU San Marcos to partner their Bridges students with five patient families with different rare diseases.

Cutting edge science

One of those families was Aaron Harding’s. Aaron’s son Jaxon has SYNGAP, a genetic disorder that can cause seizures, mental retardation, speech problems and autistic-like behavior. Two of the Bridges students who were doing their internship at ThermoFisher Scientific, Uju Nwizu and Emily Asbury, were given the task of using the gene-editing tool CRISPR Cas9 to help develop a deeper understanding of SYNGAP.

The students say it was an amazing experience:

Uju: “It had a huge impact on me. Every time I thought about SYNGAP I saw Jaxon’s face. This motivated me a lot.”

Emily: “People who work in labs everyday are most often working out the minutiae of research. They don’t often get a chance to see how their research can change or save the lives of real people. Meeting patients is so motivating because afterwards you aren’t just studying a mechanism, you now have a friend with the disease, so you can’t help but be personally invested in the search for a treatment.”

Emily and Uju are working to create iPSCs (induced pluripotent stem cells) that have the SYNGAP mutation. They hope these can be used to study the disease in greater depth and, maybe one day, lead to treatments for some of the symptoms.

Aaron says for families like his, knowing there are scientists working on his child’s disorder is a source of comfort, and hope:

“Personalizing diseases by connecting scientists with those they seek to impact is so important. Emily and Uju took this opportunity and ran with it, and that says a lot about them, and the team at ThermoFisher, taking on an exploring the unknown. That attitude is the heart of a scientist.”

Hearing stories like this is very gratifying, not just for the students and families involved, but for everyone here at CIRM. When we created the Bridges program our goal was to help students get the skills and experience needed to pursue a career in science. Thanks to the people at CSU San Marcos and Rare Science these students got a whole lot more.

Christina Waters: “We learned, we shared hope, we celebrated the courage of our families and the commitment of the students. It takes a village, and it is all of us working together that will make great changes for kids with rare diseases.”

For Uju and Emily, their experience in the Bridges program has made them doubly certain they want to pursue a career in science.

Uju: “I love stem cells and the promise they hold. After this program I hope to be part of a team that is committed to accelerating new stem cell therapies for rare and chronic diseases.”

Emily: “I’ve learned that I love research. After I finish my bachelor’s degree at CSU San Marcos I plan to pursue a graduate degree in molecular or cellular biology.”