Funding a Clinical Trial for a Functional Cure for HIV

The use of antiretroviral drugs has turned HIV/AIDS from a fatal disease to one that can, in many cases in the US, be controlled. But these drugs are not a cure. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) voted to approve investing $6.85 million in a therapy that aims to cure the disease.

This is the 82nd clinical trial funded by CIRM.

There are approximately 38 million people worldwide living with HIV/AIDS. And each year there are an estimated 1.5 million new cases. The vast majority of those living with HIV do not have access to the life-saving antiretroviral medications that can keep the virus under control. People who do have access to the medications face long-term complications from them including heart disease, bone, liver and kidney problems, and changes in metabolism.

The antiretroviral medications are effective at reducing the viral load in people with HIV, but they don’t eliminate it. That’s because the virus that causes AIDS can integrate its DNA into long-living cells in the body and remain dormant. When people stop taking their medications the virus is able to rekindle and spread throughout the body.

Dr. William Kennedy and the team at Excision Bio Therapeutics have developed a therapeutic candidate called EBT-101. This is the first clinical study using the CRISPR-based platform for genome editing and excision of the latent form of HIV-1, the most common form of the virus that causes AIDS in the US and Europe. The goal is to eliminate or sufficiently reduce the hidden reservoirs of virus in the body to the point where the individual is effectively cured.

“To date only a handful of people have been cured of HIV/AIDS, so this proposal of using gene editing to eliminate the virus could be transformative,” says Dr. Maria Millan, President and CEO of CIRM. “In California alone there are almost 140,000 people living with HIV. HIV infection continues to disproportionately impact marginalized populations, many of whom are unable to access the medications that keep the virus under control. A functional cure for HIV would have an enormous impact on these communities, and others around the world.”

In a news release announcing they had dosed the first patient, Daniel Dornbusch, CEO of Excision, called it a landmark moment. “It is the first time a CRISPR-based therapy targeting an infectious disease has been administered to a patient and is expected to enable the first ever clinical assessment of a multiplexed, in vivo gene editing approach. We were able to reach this watershed moment thanks to years of innovative work by leading scientists and physicians, to whom we are immensely grateful. With this achievement, Excision has taken a major step forward in developing a one-time treatment that could transform the HIV pandemic by freeing affected people from life-long disease management and the stigma of disease.”

The Excision Bio Therapeutics team also scored high on their plan for Diversity, Equity and Inclusion. Reviewers praised them for adding on a partnering organization to provide commitments to serve underserved populations, and to engaging a community advisory board to help guide their patient recruitment.

CIRM has already invested almost $81 million in 20 projects targeting HIV/AIDS, including four clinical trials.

Fast Track Designation for a therapy making transplants safer for children with a fatal immune disorder

Bone marrow transplant

For children born with severe combined immunodeficiency (SCID) life can be very challenging. SCID means they have no functioning immune system, so even a simple infection can prove life threatening. Left untreated, children with SCID often die in the first few years of life.

There are stem cell/gene therapies funded by the California Institute for Regenerative Medicine (CIRM), such as ones at UCLA and UCSF/St. Judes, but an alternative method of treating, and even curing the condition, is a bone marrow or hematopoietic stem cell transplant (HCT). This replaces the child’s blood supply with one that is free of the SCID mutation, which helps restore their immune system.

However, current HCT methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

To change that, Dr. Judy Shizuru at Stanford University, with CIRM funding, developed an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells, creating the room needed to transplant new, healthy cells. The goal was to make stem cell transplants safer and more effective for the treatment of many life-threatening blood disorders.

That approach, JSP191, is now being championed by Jasper Therapeutics and they just got some very good news from the Food and Drug Administration (FDA). The FDA has granted JSP191 Fast Track Designation, which can speed up the review of therapies designed to treat serious conditions and fill unmet medical needs.

In a news release, Ronald Martell, President and CEO of Jasper Therapeutics, said this is good news for the company and patients: “This new Fast Track designation recognizes the potential role of JSP191 in improving clinical outcomes for these patients and will allow us to more closely work with the FDA in the upcoming months to determine a path toward a Biologics License Application (BLA) submission.”

Getting a BLA means Jasper will be able to market the antibody in the US and make it available to all those who need it.

This is the third boost from the FDA for Jasper. Previously the agency granted JSP191 both Orphan and Rare Pediatric Disease designations. Orphan drug designation qualifies sponsors for incentives such as tax credits for clinical trials. Rare Pediatric Disease designation means that if the FDA does eventually approve JSP191, then Jasper can apply to receive a priority review of an application to use the product for a different disease, such as someone who is getting a bone marrow transplant for sickle cell disease or severe auto immune diseases.

The race to cure sickle cell disease

September is National Sickle Cell Awareness Month, a time to refocus our efforts to find new treatments, even a cure, for people with sickle cell disease. Until we get those, CIRM remains committed to doing everything we can to reduce the stigma and bias that surrounds it.

Sickle cell disease (SCD) is a rare, inherited blood disorder in which normally smooth and round red blood cells may become sickle-shaped and harden. These blood cells can clump together and clog up arteries, causing severe and unpredictable bouts of pain, organ damage, vision loss and blindness, strokes and premature death.

There is a cure, a bone marrow transplant from someone who is both a perfect match and doesn’t carry the SCD trait. However, few patients are able to find that perfect match and even if they do the procedure carries risks.

That’s why the California Institute for Regenerative Medicine (CIRM) has invested almost $60 million in 14 projects, including five clinical trials targeting the disease. It’s also why we are partnering with the National Heart, Lung and Blood Institute (NHLBI) in their Cure Sickle Cell Initiative (CureSCi).

As part of the events around National Sickle Cell Awareness Month the NHLBI is launching the Gene Therapy to Reduce All Sickle Pain (GRASP) Trial and hosting a special Journeys in Mental Health Webinar on September 27th

The GRASP Trial is a Phase 2 trial that will take place at various locations throughout the country.  It’s a collaboration between the NHLBI and CIRM. Researchers are testing whether a gene therapy approach can improve or eliminate sickle cell pain episodes.  

Shortly after being born, babies stop producing blood containing oxygen-rich fetal hemoglobin and instead produce blood with the adult hemoglobin protein. For children with sickle cell disease, the transition from the fetal to the adult form of hemoglobin marks the onset of anemia and the painful symptoms of the disorder.

Scientists previously discovered that the BCL11A gene helps to control fetal hemoglobin and that decreasing the expression of this gene can increase the amount of fetal hemoglobin while at the same time reducing the amount of sickle hemoglobin in blood.  This could result in boosting the production of normal shaped red blood cells with a goal of curing or reducing the severity of sickle cell disease.   

The approach used in this trial is similar to a bone marrow transplant, but instead of using donor stem cells, this uses the patient’s own blood stem cells with new genetic information that instructs red blood cells to silence the expression of the BCL11A gene. This approach is still being studied to make sure that it is safe and effective, but it potentially has the advantage of eliminating some of the risks of other therapies. 

In this trial, patients will have to spend some time in an inpatient unit as they undergo chemotherapy to kill some bone marrow blood stem cells and create room for the new, gene-modified cells to take root.

The trial is based on a successful pilot/phase 1 study which showed it to be both safe and effective in the initial 10 patients enrolled in the trial.

For more information about the trial, including inclusion/exclusion criteria and trial locations, please visit the CureSCi GRASP trial page.

Nancy Rene, a sickle cell disease patient advocate, says while clinical trials like this are obviously important, there’s another aspect of the treatment of people with the disease that is still too often overlooked.

“As much as I applaud CIRM for the work they are doing to find a therapy or cure for Sickle Cell, I am often dismayed by the huge gulf between research protocols and general medical practice. For every story I hear about promising research, there is often another sad tale about a sickle cell patient receiving inadequate care. This shouldn’t be an either/or proposition. Let’s continue to support ground-breaking research while we expand education and training for medical professionals in evidenced based treatment. I look forward to the day when sickle cell patients receive the kind of treatment they need to lead healthy, pain-free lives.”

Stem Cell Agency Expands Industry Alliance Program to  Accelerate Therapies

An ever-growing array of academic and industry resources are required to rapidly translate scientific discoveries and emerging technologies toward safe and effective regenerative medicine therapies for patients. To help, the California Institute for Regenerative Medicine (CIRM) is creating a network of Industry Resource Partners (IRP) that will make its unique resources available to help accelerate the progression of CIRM-funded Discovery, Translational and Clinical stage research projects toward transformative regenerative medicine therapies for rare and prevalent diseases.

The Industry Resource Partners will offer their services, technologies and expertise to CIRM-funded projects in a cost-effective, stage-appropriate and consistent manner.

For example, Novo Nordisk is making research-grade vials of its Good Manufacturing Practice (GMP)-grade human embryonic stem cell line available for CIRM Discovery Quest stage research projects at no cost. Having access to clinically compatible pluripotent stem cell lines such as this one will help CIRM researchers accelerate the translation of their therapeutic discoveries toward clinical use. Researchers will also have future access to Novo Nordisk’s GMP seed stock as well as opportunities for partnering with Novo Nordisk.

“CIRM is a lender of first resort, supporting projects in the very early stages, long before they are able to attract outside investment,” says Shyam Patel, PhD, the Director of Business Development at CIRM. “With the launch of this program we hope to create a force-multiplier effect by bringing in industry partners who have the resources, experience and expertise to help further accelerate CIRM-funded regenerative medicine research projects.”

This new network builds on work CIRM started in 2018 with the Industry Alliance Program (IAP). The goal of the IAP was to partner researchers and industry to help accelerate the most promising stem cell, gene and regenerative medicine therapy programs to commercialization. Four of the members of the IAP are also founding members or the IRP.

In addition to Novo Nordisk, the IRP includes:

ElevateBio is providing access to high quality, well-characterized induced pluripotent stem cell (iPSC) lines to CIRM Discovery Quest stage research projects for product development in regenerative medicine. CIRM awardees will also have access to ElevateBio’s viral vector technologies, process development, analytical development, and GMP manufacturing services.

Bayer is offering to support the cell therapy process development and GMP manufacturing needs of CIRM Translational and Clinical awardees at its newly built Berkeley facilities. The partnered projects will have access to Bayer’s cell therapy manufacturing facilities, equipment, resources and expertise. Bayer is also open to partnering from fee-based-services to full business development and licensing opportunities. 

Resilience is providing access to its GMP manufacturing services for CIRM Translational and Clinical Stage projects. In addition to providing access to its cell therapy manufacturing services and partnering opportunities, Resilience will provide project consultation that could aid CIRM applicants in drafting manufacturing plans and budgets for CIRM applications.

“These partnerships are an important step forward in helping advance not only individual projects but also the field as a whole,” says Dr. Maria T. Millan, President and CEO of CIRM. “One of the biggest challenges facing regenerative medicine right now involves manufacturing. Providing researchers with access to high quality starting materials and advanced manufacturing capabilities is going to be essential in helping these projects maintain high quality standards and comply with the regulatory frameworks needed to bring these therapies to patients.”

While the IRP Network will offer its services to CIRM grantees there is no obligation or requirement that any CIRM awardee take advantage of these services.

The present and future of regenerative medicine

One of the great pleasures of my job is getting to meet the high school students who take part in our SPARK or Summer Internship to Accelerate Regenerative Medicine Knowledge program. It’s a summer internship for high school students where they get to spend a couple of months working in a world class stem cell and gene therapy research facility. The students, many of whom go into the program knowing very little about stem cells, blossom and produce work that is quite extraordinary.

One such student is Tan Ieng Huang, who came to the US from China for high school. During her internship at U.C. San Francisco she got to work in the lab of Dr. Arnold Kriegstein. He is the Founding Director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at the University of California, San Francisco. Not only did she work in his lab, she took the time to do an interview with him about his work and his thoughts on the field.

It’s a fascinating interview and shows the creativity of our SPARK students. You will be seeing many other examples of that creativity in the coming weeks. But for now, enjoy the interview with someone who is a huge presence in the field today, by someone who may well be a huge presence in the not too distant future.

‘a tête-à-tête with Prof. Arnold Kriegstein’

The Kriegstein lab team: Photo courtesy UCSF

Prof. Arnold Kriegstein is the Founding Director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at the University of California, San Francisco. Prof. Kriegstein is also the Co-Founder and Scientific Advisor of Neurona Therapeutics which seeks to provide effective and safe cell therapies for chronic brain disorder. A Clinician by training, Prof. Kriegstein has been fascinated by the intricate workings of the human brain. His laboratory focuses on understanding the transcriptional and signaling networks active during brain development, the diversity of neuronal cell types, and their fate potential. For a long time, he has been interested in harnessing this potential for translational and therapeutic intervention.

During my SEP internship I had the opportunity to work in the Kriegstein lab. I was in complete awe. I am fascinated by the brain. During the course of two months, I interacted with Prof. Kriegstein regularly, in lab meetings and found his ideas deeply insightful. Here’s presenting some excerpts from some of our discussions, so that it reaches many more people seeking inspiration!

Tan Ieng Huang (TH): Can you share a little bit about your career journey as a scientist?

Prof. Arnold Kriegstein (AK): I wanted to be a doctor when I was very young, but in high school I started having some hands-on research experience. I just loved working in the lab. From then on, I was thinking of combining those interests and an MD/PhD turned out to be an ideal course for me. That was how I started, and then I became interested in the nervous system. Also, when I was in high school, I spent some time one summer at Rockefeller University working on a project that involved operant conditioning in rodents and I was fascinated by behavior and the role of the brain in learning and memory. That happened early on, and turned into an interest in cortical development and with time, that became my career.

TH: What was your inspiration growing up, what made you take up medicine as a career?

AK: That is a little hard to say, I have an identical twin brother. He and I used to always share activities, do things together. And early on we actually became eagle scouts, sort of a boy scout activity in a way. In order to become an eagle scout without having to go through prior steps, we applied to a special program that the scouts had, which allowed us to shadow physicians in a local hospital. I remember doing that at a very young age. It was a bit ironic, because one of the evenings, they showed us films of eye surgery, and my brother actually fainted when they made an incision in the eye. The reason it makes me laugh now is because my brother became an eye surgeon many years later. But I remember our early experience, we both became very fascinated by medicine and medical research.

Tan Ieng and Dr. Arnold Kriegstein at UCSF

TH: What inspired you to start the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research Institute?

AK: My interest in brain development over the years became focused on earlier stages of development and eventually Neurogenesis, you know, how neurons are actually generated during early stages of in utero brain development. In the course of doing that we discovered that the radial glial cells, which have been thought for decades to simply guide neurons as they migrate, turned out to actually be the neural stem cells, they were making the neurons and also guiding them toward the cortex. So, they were really these master cells that had huge importance and are now referred to as neural stem cells. But at that time, it was really before the stem cell field took off. But because we studied neurogenesis, because I made some contributions to understanding how the brain develops from those precursors or progenitor cells, when the field of stem cells developed, it was very simple for me to identify as someone who studied neural stem cells. I became a neural stem cell scientist. I started a neural stem cell program at Columbia University when I was a Professor there and raised 15 million dollars to seed the program and hired new scientists. It was shortly after that I was approached to join UCSF as the founder of a new stem cell program. And it was much broader than the nervous system; it was a program that covered all the different tissues and organ systems.

TH: Can you tell us a little bit about how stem cell research is contributing to the treatment of diseases? How far along are we in terms of treatments?

AK: It’s taken decades, but things are really starting to reach the clinic now. The original work was basic discovery done in research laboratories, now things are moving towards the clinic. It’s a really very exciting time. Initially the promise of stem cell science was called Regenerative medicine, the idea of replacing injured or worn-out tissues or structures with new cells and new tissues, new organs, the form of regeneration was made possible by understanding that there are stem cells that can be tweaked to actually help make new cells and tissues. Very exciting process, but in fact the main progress so far hasn’t been replacing worn out tissues and injured cells, but rather understanding diseases using human based model of disease. That’s largely because of the advent of induced pluripotent stem cells, a way of using stem cells to make neurons or heart cells or liver cells in the laboratory, and study them both in normal conditions during development and in disease states. Those platforms which are relatively easy to make now and are pretty common all over the world allow us to study human cells rather than animal cells, and the hope is that by doing that we will be able to produce conventional drugs and treatments that work much better than ones we had in the past, because they will be tested in actual human cells rather than animal cells.

TH: That is a great progress and we have started using human models because even though there are similarities with animal models, there are still many species-specific differences, right?

AK: Absolutely, in fact, one of the big problems now in Big Pharma, you know the drug companies, is that they invest millions and sometimes hundreds of millions of dollars in research programs that are based on successes in treating mice, but patients don’t respond the same way. So the hope is that by starting with a treatment that works on human cells it might be more likely that the treatment will work on human patients.

TH: What are your thoughts on the current challenges and future of stem cell research?

AK: I think this is an absolute revolution in modern medicine, the advent of two things that are happening right now, first the use of induced pluripotent stem cells, the ability to make pluripotent cells from adult tissue or cells from an individual allows us to use models of diseases that I mentioned earlier from actual patients. That’s one major advance. And the other is gene editing, and the combination of gene editing and cell-based discovery science allows us to think of engineering cells in ways that can make them much more effective as a form of cell therapy and those cell therapies have enormous promise. Right now, they are being used to treat cancer, but in the future, they might be able to treat heart attack, dementia, neurodegenerative diseases, ALS, Parkinson’s disease, a huge list of disorders that are untreatable right now or incurable. They might be approached by the combination of cell-based models, cell therapies, and gene editing.

TH: I know there are still some challenges right now, like gene editing has some ethical issues because people don’t know if there can be side effects after the gene editing, what are your thoughts?

AK: You know, like many other technologies there are uncertainties, and there are some issues. Some of the problems are off-target effects, that is you try to make a change in one particular gene, and while doing that you might change other genes in unexpected ways and cause complications. But we are understanding that more and more now and can make much more precise gene editing changes in just individual genes without affecting unanticipated areas of the genome. And then there are also the problems of how to gene-edit cells in a safe way. There are certain viral factors that can be used to introduce the gene editing apparatus into a cell, and sometimes if you are doing that in a patient, you can also have unwanted side effects from the vectors that you are using, often they are modified viral vectors. So, things get complicated very quickly when you start trying to treat patients, but I think these are all tractable problems and I think in time they will all be solved. It will be a terrific, very promising future when it comes to treating patients who are currently untreatable.

TH: Do you have any advice for students who want to get into this field?

AK: Yes, I think it’s actually never been a better time and I am amazed by the technologies that are available now. Gene editing that I mentioned before but also single cell approaches, the use of single cell multiomics revealing gene expression in individual cells, the molecular understanding of how individual cells are formed, how they are shaped, how they change from one stage to another, how they can be forced into different fates. It allows you to envision true Regenerative medicine, improving health by healing or replacing injured or diseased tissues. I think this is becoming possible now, so it’s a very exciting time. Anyone who has an interest in stem cell biology or new ways of treating diseases, should think about getting into a laboratory or a clinical setting. I think this time is more exciting than it’s ever been.

TH: So excited to hear that, because in school we have limited access to the current knowledge, the state-of-art. I want to know what motivates you every day to do Research and contribute to this field?

AK: Well, you know that I have been an MD/PhD, as I mentioned before, in a way, there are two different reward systems at play. In terms of the PhD and the science, it’s the discovery part that is so exciting. Going in every day and thinking that you might learn something that no one has ever known before and have a new insight into a mechanism of how something happens, why it happens. Those kinds of new insights are terrifically satisfying, very exciting. On the MD side, the ability to help patients and improve peoples’ lives is a terrific motivator. I always wanted to do that, was very driven to become a Neurologist and treat both adult and pediatric patients with neurological problems. In the last decade or so, I’ve not been treating patients so much, and have focused on the lab, but we have been moving some of our discoveries from the laboratory into the clinic. We have just started a clinical trial, of a new cell-based therapy for epilepsy in Neurona Therapeutics, which is really exciting. I am hoping it will help the patients but it’s also a chance to actually see something that started out as a project in the laboratory become translated into a therapy for patients, so that’s an achievement that has really combined my two interests, basic science, and clinical medicine. It’s a little late in life but not too late, so I’m very excited about that.

Tan Ieng Huang, Kriegstein Lab, SEP Intern, CIRM Spark Program 2022

Using stem cells and smart machines to warn of heart problems

Despite advances in treatments in recent years heart disease remains the leading cause of death in the US. It accounts for one in three deaths in this country, and many people are not even aware they have a problem until they have a heart attack.

One of the early warning signs of danger is a heart arrhythmia; that’s when electrical signals that control the hearts beating don’t work properly and can result in the heart beating too fast, too slow, or irregularly. However, predicting who is at risk of these arrhythmias is difficult. Now new research may have found a way to change that.

A research team at the Institute of Molecular and Cell Biology in Singapore combined stem cells with machine learning, and developed a way to predict arrhythmias, with a high degree of accuracy.

The team used stem cells to create different batches of cardiomyocytes or heart muscle cells. Some of these batches were healthy heart cells, but some had arrhythmias caused by different problems such as a genetic disorder or drug induced.

They then trained a machine learning program to use videos to scan the 3,000 different groups of cells. By studying the different beating patterns of the cells, and then using the levels of calcium in the cells, the machine was able to predict, with 90 percent accuracy, which cells were most likely to experience arrhythmias.

The researchers say their approach is faster, simpler and more accurate than current methods of trying to predict who is at risk for arrhythmias and could have a big impact on our ability to intervene before the individual suffers a fatal heart attack.

The research was published in the journal Stem Cell Reports.

The California Institute for Regenerative Medicine has invested more than $180 million in more than 80 different projects, including four clinical trials, targeting heart disease.

A big deal for type 1 diabetes

It’s not often you get excited talking about company mergers, but a deal announced today is something worth getting excited about, particularly if you have type 1 diabetes (T1D).  

Today Vertex announced it was buying ViaCyte for $320 million in cash. Why is that important? Because both companies are working on developing stem cell therapies for people with type 1 diabetes, so combining the two may help speed up that work. 

Now, in the interests of full disclosure the California Institute for Regenerative Medicine (CIRM) has been supporting ViaCyte’s work for some years now, investing in nine different research programs, including two clinical trials with the company.  

ViaCyte has been developing an implantable device which contains pancreatic endoderm cells that mature over a few months and turn into insulin-producing pancreatic islet cells, the kind destroyed by T1D.  

Vertex is taking a slightly different approach, manufacturing synthetic islet cells which are then injected into the patient.  

In a news release both companies said the deal – which is slated to be completed later this year – would help speed up that work.:  

“VX-880 has successfully demonstrated clinical proof of concept in T1D, and the acquisition of ViaCyte will accelerate our goal of transforming, if not curing T1D by expanding our capabilities and bringing additional tools, technologies and assets to our current stem cell-based programs,” said Reshma Kewalramani, M.D., Chief Executive Officer and President of Vertex.  

“ViaCyte’s commitment to finding a functional cure for T1D is shared by Vertex, and this acquisition will allow Vertex to deploy ViaCyte’s tools, technologies and assets toward the development of Vertex’s multiple cell replacement therapy approaches designed to reduce the burden of millions of people living with T1D worldwide,” said Michael Yang, President and Chief Executive Officer of ViaCyte.  

Dr. Maria Millan, CIRM’s President and CEO, says it’s always gratifying to see a project we have supported continue to progress.

“We are delighted at the news that Vertex and ViaCyte are combining their experience, expertise and resources in working to develop a stem cell therapy for type 1 diabetes. At CIRM we pride ourselves on helping de-risk projects, giving promising research the support it needs to attract outside investment. We have been big supporters of ViaCyte’s work over many years. That support has been vital in helping lead to this deal. We believe this is good news for both companies and hope it will ultimately be even better news for everyone with type 1 diabetes.”

First patient dosed in clinical trial for a drug-resistant form of epilepsy

Tablet BM47753. Neo-Babylonian Period. Courtesy of the British Museum, London.

Epilepsy seems to have been a problem for people for as long as people have been around. The first recorded mention of it is on a 4000-year-old Akkadian tablet found in Mesopotamia (modern day Iraq). The tablet includes a description of a person with “his neck turning left, hands and feet are tense, and his eyes wide open, and from his mouth froth is flowing without him having any consciousness.”

Despite that long history, effective treatments for epilepsy were a long time coming. It wasn’t till the middle of the 19th century that physicians started using bromides to help people with the condition, but they also came with some nasty side effects, including depression, weakness, fatigue, lethargy, and coma.

Fast forward 150 years or so and we are now, hopefully, entering a new era. This week, Neurona Therapeutics announced they had dosed the first patient in their first-in-human clinical trial formesial temporal lobe epilepsy (MTLE), the most common form of focal epilepsy in adults. The trial specifically targets people who have a drug-resistant form of MTLE.

Neurona has developed a therapy called NRTX-1001, consisting of a specialized type of neuronal or brain cell derived from embryonic stem cells.  These cells are injected into the brain in the area affected by the seizures where they release a neurotransmitter or chemical messenger that will block the signals in the brain causing the epileptic seizures. Pre-clinical testing suggests a single dose of NRTX-1001 may have a long-lasting ability to suppress seizures.

A new approach is very much needed because current therapies for drug-resistant epilepsy are only partially effective and have serious drawbacks. One treatment that can significantly reduce seizure frequency is the removal of the affected part of the brain, however this can cause serious, irreversible damage, such as impacting memory, mood and vision.

CIRM has a vested interest in seeing this therapy succeed. We have invested more than $14 million over four different awards, in helping this research progress from a basic or Discovery level through to the current clinical trial.

In a news release, two key figures in administering the first dose to a patient said this was an important step forward. 

Harish Babu, M.D., Ph.D., assistant professor of neurosurgery at SUNY Upstate Medical University said: “Neurona’s regenerative cell therapy approach has the potential to provide a single-administration, non-destructive alternative for the treatment of drug-resistant focal epilepsy. Currently, people with mesial temporal lobe epilepsy who are not responsive to anti-seizure medications have few options, such as an invasive surgery that removes or destroys the affected brain tissue.”

Robert Beach, M.D., Ph.D. professor of neurology at SUNY Upstate Medical University added: “The objective of NRTX-1001 is to add cells that have the potential to repair the circuits that are damaged in epilepsy and thus reduce seizure activity.”

There is a huge unmet medical need for an effective, long-term therapy. Right now, it’s estimated that three million Americans have epilepsy, and 25 to 35 percent live with ongoing seizures despite dozens of approved drugs on the market.

If this therapy works it might mean that 4,000 year old tablet will become a medical footnote, rather than a reminder that we still have work to do.

Creating a ‘bespoke’ approach to rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Up until recently the word “bespoke” meant just one thing to me, a hand-made suit, customized and fitted to you. There’s a street in London, Saville Row, that specializes in these suits. They’re gorgeous. They’re also very expensive and so I thought I’d never have a bespoke anything.

I was wrong. Because CIRM is now part of a bespoke arrangement. It has nothing to do with suits, it’s far more important than that. This bespoke group is aiming to create tailor-made gene therapies for rare diseases.

It’s called the Bespoke Gene Therapy Consortium (BGTC). Before we go any further I should warn you there’s a lot of acronyms heading your way. The BGTC is part of the Accelerating Medicines Partnership® (AMP®) program. This is a public-private partnership between the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA), and multiple public and private organizations, such as CIRM.

The program is managed by the Foundation for the NIH (FNIH) and it aims to develop platforms and standards that will speed the development and delivery of customized or ‘bespoke’ gene therapies that could treat the millions of people affected by rare diseases.

Why is it necessary? Well, it’s estimated that there are around 7,000 rare diseases and these affect between 25-30 million Americans. Some of these diseases affect only a few hundred, or even a few dozen people. With so few people they almost always struggle to raise the funds needed to do research to find an effective therapy. However, many of these rare diseases are linked to a mutation or defect in a single gene, which means they could potentially be treated by highly customizable, “bespoke” gene therapy approaches.

Right now, individual disease programs tend to try individual approaches to developing a treatment. That’s time consuming and expensive. The newly formed BGTC believes that if we create a standardized approach, we could develop a template that can be widely used to develop bespoke gene therapies quickly, more efficiently and less expensively for a wide array of rare diseases.

“At CIRM we have funded several projects using gene therapy to help treat, and even cure, people with rare diseases such as severe combined immunodeficiency,” says Dr. Maria T. Millan, the President and CEO of CIRM. “But even an agency with our resources can only do so much. This agreement with the Bespoke Gene Therapy Consortium will enable us to be part of a bigger partnership, one that can advance the field, overcome obstacles and lead to breakthroughs for many rare diseases.”

With gene therapy the goal is to identify the genetic defect that is causing the disease and then deliver a normal copy of the gene to the right tissues and organs in the body, replacing or correcting the mutation that caused the problem. But what is the best way to deliver that gene? 

The BGTC’s is focusing on using an adeno-associated virus (AAV) as a delivery vehicle. This approach has already proven effective in Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and spinal muscular atrophy. The consortium will test several different approaches using AAV gene therapies starting with basic research and supporting those all the way to clinical trials. The knowledge gained from this collaborative approach, including developing ways to manufacture these AAVs and creating a standard regulatory approach, will help build a template that can then be used for other rare diseases to copy.

As part of the consortium CIRM will identify specific rare disease gene therapy research programs in California that are eligible to be part of the AMP BGTC. CIRM funding can then support the IND-enabling research, manufacturing and clinical trial activities of these programs.

“This knowledge network/consortium model fits in perfectly with our mission of accelerating transformative regenerative medicine treatments to a diverse California and world,” says Dr. Millan. “It is impossible for small, often isolated, groups of patients around the world to fund research that will help them. But pooling our resources, our skills and knowledge with the consortium means the work we support here may ultimately benefit people everywhere.”

The long road to developing a therapy for epilepsy

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Good science takes time. That’s an important guiding phrase for researchers looking to develop new therapies. But it’s also a frustrating reality for patients who are waiting for something to help them now.

That point was driven home last week when the governing board of the California Institute for Regenerative Medicine (CIRM) voted to invest almost $8 million to test a new approach to treating a drug-resistant form of epilepsy. This approach holds a lot of promise but getting to this point has not been easy or quick.

Epilepsy is one of the most common neurological disorders in the US, affecting more than three million people. More than one third of those people have a form of epilepsy that doesn’t respond to current medications, so the only options are surgery or using lasers (LITT) to remove the affected part of the brain. Not surprisingly this can cause serious, irreversible damage, such as effects on memory, mood and vision. Equally unsurprising, because of those impacts many people are reluctant to go that route.

Now a company called Neurona Therapeutics has developed a new approach called NRTX-1001. This consists of a specialized type of neuronal or brain cell that is derived from embryonic stem cells (hESCs).  These neuronal cells are injected into the brain in the area affected by the seizures where they release a neurotransmitter or chemical messenger that will block the signals in the brain causing the epileptic seizures. Pre-clinical testing suggests a single dose of NRTX-1001 may have a long-lasting ability to suppress seizures.

Cory Nicholas, PhD, the Co-Founder and CEO of Neurona says this approach will be tested on people with drug-resistant temporal lobe epilepsy, the most common form of epilepsy.

“To our knowledge, NRTX-1001 is the first human cell therapy to enter clinical trials for epilepsy. This cell therapy has the potential to provide a less invasive, non-tissue destructive, regenerative alternative for people with chronic focal seizures.” 

“Epilepsy patient advocates and clinicians have said that such a regenerative cell therapy could represent a first option that, if successful, could obviate the need for lobectomy/LITT. And for those not eligible for lobectomy/LITT, cell therapy could provide the only option to potentially achieve seizure-freedom.”

Nicholas says this work didn’t happen overnight. “This effort to develop regenerative cell therapy for epilepsy officially began in the early 2000’s from the laboratories of John Rubenstein, MD, PhD, Arturo Alvarez-Buylla, PhD, and Arnold Kriegstein, MD, PhD, at UC San Francisco. They were among the first to understand how specialized inhibitory nerve cells, called interneurons, develop from neural stem cells in our forebrain before birth. Subsequently, they pioneered the extraction and use of these cells as a cell therapy in preclinical models.”

Over the years the group working on this approach expanded, later becoming Neurona Therapeutics, and CIRM supported that work with several awards.

“CIRM provided the necessary funds and expertise to help translate our discoveries toward the clinic using human embryonic stem cell (hESC) technology to generate a sustainable supply of interneuron cells for further evaluation. Truly, CIRM has been the essential catalyst in accelerating this important research from bench to bedside.”

Nicholas says its immensely gratifying to be part of this work, and to know that if it succeeds it will be life-altering, even life-saving, for so many people.

“It is difficult to reflect back with all the work that is happening at present on the first-in-human trial, but it is always emotional for me to think about our amazing team: Neurona employees, CIRM staff, clinicians, professors, trainees, collaborators, and investors; who have worked tirelessly in contributing to the advancement of this therapeutic mission. I am deeply humbled by the opportunity to be part of this innovative, rigorous, and compassionate effort, and by the responsibility to the brave patients participating in the study. We remain steadfast in our commitment to patient safety and cautiously optimistic that NRTX-1001 cell therapy will improve quality of life for people living with chronic focal epilepsy. Moreover, we are sincerely thankful to Californians for their commitment to CIRM’s vision, and we are proud to be a part of this groundbreaking initiative that has put our state at the forefront, dedicated to fulfilling the promise of regenerative medicine.”