Stem Cell Stories That Caught our Eye: Stem Cell Therapies for Stroke and Duchenne Muscular Dystrophy Patients

With the Thanksgiving holiday behind us, we’re back to the grind at CIRM. Here are two exciting CIRM-funded stem cell stories that happened while you were away.

Stanford Scientists Are Treating Stroke Patients with Stem Cells

Smithsonian Magazine featured the work of a CIRM-funded scientist in their December Magazine issue. The article, “A Neurosurgeon’s Remarkable Plan to Treat Stroke Victims with Stem Cells”, features Dr. Gary Steinberg, who is the Chair of Neurosurgery at Stanford Medical Center and the founder of the Stanford Stroke Center.

Gary Steinberg (Photo by Jonathan Sprague)

The brain and its 100 billion cells need blood, which carries oxygen and nutrients, to function. When that blood supply is cut off, brain cells start to die and patients experience a stroke. Stroke can happen in one of two ways: either by blood clots that block the arteries and blood vessels that send blood to the brain or by blood vessels that burst within the brain itself. Symptoms experienced by stroke victims vary based on the severity of the stroke, but often patients report experiencing numbness or paralysis in their limbs or face, difficulty walking, talking and understanding.

Steinberg and his team at Stanford are developing a stem cell treatment to help stroke patients. Steinberg believes that not all brain cells die during a stroke, but rather some brain cells become “dormant” and stop functioning instead. By transplanting stem cells derived from donated bone marrow into the brains of stroke patients, Steinberg thinks he can wake up these dormant cells much like how the prince wakens Sleeping Beauty from her century of enchanted sleep.

Basically, the transplanted cells act like a defibrillator for the dormant cells in the stroke-damaged area of the brain. Steinberg thinks that the transplanted cells secrete proteins that signal dormant brain cells to wake up and start functioning normally again, and that they also trigger a “helpful immune response” that prompts the brain to repair itself.

Sonia has seen first hand how a stroke can rob you of even your most basic abilities.

Steinberg tested this stem cell treatment in a small clinical trial back in 2013. 18 patients were treated and many of them showed improvements in their symptoms. The Smithsonian piece mentions a particular patient who had a remarkable response to the treatment. Sonia Olea Coontz, at age 32, suffered a stroke that robbed her of most of her speech and her ability to use her right arm and leg. After receiving Steinberg’s stem cell treatment, Sonia rapidly improved and was able to raise her arm above her head and gained most of her speech back. You can read more about her experience in our Stories of Hope.

In collaboration with a company called SanBio, Steinberg’s team is now testing this stem cell therapy in 156 stroke patients in a CIRM-funded phase 2 clinical trial. The trial will help answer the question of whether this treatment is safe and also effective in a larger group of patients.

The Smithsonian article, which I highly recommend reading, shared Steinberg’s future aspirations to pursue stem cell therapies for traumatic brain and spinal cord injuries as well as neurodegenerative diseases like Alzheimer’s, Parkinson’s and ALS.

 

Capricor Approved to Launch New Clinical Trial for Duchenne Muscular Dystrophy

On Wednesday, Capricor Therapeutics achieved an exciting milestone for its leading candidate CAP-1002 – a stem cell-based therapy developed to treat boys and young men with a muscle-wasting disease called Duchenne muscular dystrophy (DMD).

The Los Angeles-based company announced that it received approval from the US Food and Drug Administration (FDA) for their investigational new drug (IND) application to launch a new clinical trial called HOPE II that’s testing repeated doses of CAP-1002 cells in DMD patients. The cells are derived from donated heart tissue and are believed to release regenerative factors that strengthen heart and other muscle function in DMD patients.

Capricor is currently conducting a Phase 2 trial, called HOPE-1, that’s testing a single dose of CAP-1002 cells in 24 DMD patients. CIRM is funding this trial and you can learn more about it on our clinical dashboard website and watch a video interview we did with a young man who participated in the trial.

Earlier this year, the company shared encouraging, positive results from the HOPE-1 trial suggesting that the therapy was improving some heart function and upper limb movement six months after treatment and was well-tolerated in patients. The goal of the new trial will be to determine whether giving patients repeated doses of the cell therapy over time will extend the benefits in upper limb movement in DMD patients.

In a news release, Capricor President and CEO Dr. Linda Marbán shared her company’s excitement for the launch of their new trial and what this treatment could mean for DMD patients,

Linda Marban, CEO of Capricor Therapeutics

“The FDA’s clearance of this IND upon its initial submission is a significant step forward in our development of CAP-1002. While there are many clinical initiatives in Duchenne muscular dystrophy, this is one of the very few to focus on non-ambulant patients. These boys and young men are looking to maintain what function they have in their arms and hands and, based on our previous study, we think CAP-1002 may be able to do exactly that.”

Advertisements

Giving thanks to Caleb and all of our stem cell pioneers [Video]

For our last blog before the Thanksgiving holiday, we give thanks to the patients and their caregivers who are forging a path toward a new era of regenerative medicine therapies through their participation in CIRM-funded clinical trials.

Some of our trials are in the early stages which means they are mainly focused on safety. Participants go into these trials knowing that the cell therapy dose they receive will probably be too low to get any benefit for themselves. And in later trials, some patients will receive a placebo, or blank therapy, for comparison purposes. Even if a patient gets an effective dose, it may not work for them. So the decision to enroll in an experimental clinical trial is often a selfless act. Yet final approval of a therapy by the U.S. Food and Drug Administration (and other regulatory agencies around the world) depends on these brave souls and for that we are truly grateful.

So, with this Thanksgiving Day spirit in mind, we leave you with our latest video featuring Caleb Sizemore, a charming young man who epitomizes the courage of our clinical trial pioneers. At just 7 years old, Caleb was diagnosed with Duchenne Muscular Dystrophy (DMD), a degenerative muscle disease which makes it difficult for him to walk and climb stairs, has led to dangerous scarring of his heart muscle and carries a shortened life expectancy with most DMD patients not living past their 20s or 30s.

In a sit-down interview with us and in clips from his June 2017 presentation to the CIRM governing Board, Caleb talked about the impact of DMD on his life and his experience enrolling in Capricor Therapeutics’ CIRM-funded clinical trial. The trial is testing a stem cell therapy designed to repair the heart scarring that occurs with DMD. By the end of the three-minute video, I can assure you that you’ll be as captivated as we were by Caleb’s delightful, sincere and full-of-faith personality.

Using heart stem cells to help boys battling a deadly disorder

 

Caleb_Thumbnail3

Caleb Sizemore, a young man with DMD, speaks to the CIRM Board about his treatment in the Capricor clinical trial.

It’s hard to imagine how missing just one tiny protein can have such a devastating impact on a person. But with Duchenne Muscular Dystrophy (DMD) the lack of a single protein called dystrophin has deadly consequences. Now a new study is offering hope we may be able to help people with this rare genetic disorder.

DMD is a muscle wasting condition that steadily destroys the muscles in the arms and legs, heart and respiratory system. It affects mostly boys and it starts early in life, sometimes as young as 3 years old, and never lets up. By early teens many boys are unable to walk and are in a wheelchair. Their heart and breathing are also affected. In the past most people with DMD didn’t survive their teens. Now it’s more common for them to live into their 20’s and 30’s, but not much beyond that.

Results from a clinical trial being run by Capricor Therapeutics – and funded by CIRM – suggest we may be able to halt, and even reverse, some of the impacts of DMD.

Capricor has developed a therapy called CAP-1002 using cells derived from heart stem cells, called cardiospheres. Boys and young men with DMD who were treated with CAP-1002 experienced what Capricor calls “significant and sustained improvements in cardiac structure and function, as well as skeletal muscle function.”

In a news release Dr. Ronald Victor, a researcher at Cedars-Sinai Heart Institute and the lead investigator for the trial, said they followed these patients for 12 months after treatment and the results are encouraging:

“Because Duchenne muscular dystrophy is a devastating, muscle-wasting disease that causes physical debilitation and eventually heart failure, the improvements in heart and skeletal muscle in those treated with a single dose of CAP-1002 are very promising and show that a subsequent trial is warranted. These early results provide hope for the Duchenne community, which is in urgent need of a major therapeutic breakthrough.”

According to the 12-month results:

  • 89 percent of patients treated with CAP-1002 showed sustained or improved muscle function compared to untreated patients
  • The CAP-1002 group had improved heart muscle function compared to the untreated group
  • The CAP-1002 group had reduced scarring on their heart compared to the untreated group.

Now, these results are still very early stage and there’s a danger in reading too much into them. However, the fact that they are sustained over one year is a promising sign. Also, none of the treated patients experienced any serious side effects from the therapy.

The team at Capricor now plans to go back to the US Food and Drug Administration (FDA) to get clearance to launch an even larger study in 2018.

For a condition like DMD, that has no cure and where treatments can simply slow down the progression of the disorder, this is a hopeful start.

Caleb Sizemore is one of the people treated in this trial. You can read his story and listen to him describing the impact of the treatment on his life.

CIRM-Funded Clinical Trials Targeting the Heart, Pancreas, and Kidneys

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Today we are featuring trials in our organ systems portfolio, specifically focusing on diseases of the heart/vasculature system, the pancreas and the kidneys.

CIRM has funded a total of nine trials targeting these disease areas, and eight of these trials are currently active. Check out the infographic below for a list of our currently active trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

Family, faith and funding from CIRM inspire one patient to plan for his future

Caleb Sizemore speaks to the CIRM Board at the June 2017 ICOC meeting.

Having been to many conferences and meetings over the years I have found there is a really simple way to gauge if someone is a good speaker, if they have the attention of people in the room. You just look around and see how many people are on their phones or laptops, checking their email or the latest sports scores.

By that standard Caleb Sizemore is a spellbinding speaker.

Last month Caleb spoke to the CIRM Board about his experiences in a CIRM-funded clinical trial for Duchenne Muscular Dystrophy. As he talked no one in the room was on their phone. Laptops were closed. All eyes and ears were on him.

To say his talk was both deeply moving and inspiring is an understatement. I could go into more detail but it’s so much more powerful to hear it from  Caleb himself. His words are a reminder to everyone at CIRM why we do this work, and why we have to continue to do all that we can to live up to our mission statement and accelerate stem cell treatments to patients with unmet medical needs.

Video produced by Todd Dubnicoff/CIRM


Related Links:

CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.

 

 

 

 

 

Stem cell stories that caught our eye: update on Capricor’s heart attack trial; lithium on the brain; and how stem cells do math

Capricor ALLSTARToday our partners Capricor Therapeutics announced that its stem cell therapy for patients who have experienced a large heart attack is unlikely to meet one of its key goals, namely reducing the scar size in the heart 12 months after treatment.

The news came after analyzing results from patients at the halfway point of the trial, six months after their treatment in the Phase 2 ALLSTAR clinical trial which CIRM was funding. They found that there was no significant difference in the reduction in scarring on the heart for patients treated with donor heart-derived stem cells, compared to patients given a placebo.

Obviously this is disappointing news for everyone involved, but we know that not all clinical trials are going to be successful. CIRM supported this research because it clearly addressed an unmet medical need and because an earlier Phase 1 study had showed promise in helping prevent decline in heart function after a heart attack.

Yet even with this failure to repeat that promise in this trial,  we learned valuable lessons.

In a news release, Dr. Tim Henry, Director of the Division of Interventional Technologies in the Heart Institute at Cedars-Sinai Medical Center and a Co-Principal Investigator on the trial said:

“We are encouraged to see reductions in left ventricular volume measures in the CAP-1002 treated patients, an important indicator of reverse remodeling of the heart. These findings support the biological activity of CAP-1002.”

Capricor still has a clinical trial using CAP-1002 to treat boys and young men developing heart failure due to Duchenne Muscular Dystrophy (DMD).

Lithium gives up its mood stabilizing secrets

As far back as the late 1800s, doctors have recognized that lithium can help people with mood disorders. For decades, this inexpensive drug has been an effective first line of treatment for bipolar disorder, a condition that causes extreme mood swings. And yet, scientists have never had a good handle on how it works. That is, until this week.

evan snyder

Evan Snyder

Reporting in the Proceedings of the National Academy of Sciences (PNAS), a research team at Sanford Burnham Prebys Medical Discovery Institute have identified the molecular basis of the lithium’s benefit to bipolar patients.  Team lead Dr. Evan Snyder explained in a press release why his group’s discovery is so important for patients:

“Lithium has been used to treat bipolar disorder for generations, but up until now our lack of knowledge about why the therapy does or does not work for a particular patient led to unnecessary dosing and delayed finding an effective treatment. Further, its side effects are intolerable for many patients, limiting its use and creating an urgent need for more targeted drugs with minimal risks.”

The study, funded in part by CIRM, attempted to understand lithium’s beneficial effects by comparing cells from patient who respond to those who don’t (only about a third of patients are responders). Induced pluripotent stem cells (iPSCs) were generated from both groups of patients and then the cells were specialized into nerve cells that play a role in bipolar disorder. The team took an unbiased approach by looking for differences in proteins between the two sets of cells.

The team zeroed in on a protein called CRMP2 that was much less functional in the cells from the lithium-responsive patients. When lithium was added to these cells the disruption in CRMP2’s activity was fixed. Now that the team has identified the molecular location of lithium’s effects, they can now search for new drugs that do the same thing more effectively and with fewer side effects.

The stem cell: a biological calculator?

math

Can stem cells do math?

Stem cells are pretty amazing critters but can they do math? The answer appears to be yes according to a fascinating study published this week in PNAS Proceedings of the National Academy of Sciences.

Stem cells, like all cells, process information from the outside through different receptors that stick out from the cells’ outer membranes like a satellite TV dish. Protein growth factors bind those receptors which trigger a domino effect of protein activity inside the cell, called cell signaling, that transfers the initial receptor signal from one protein to another. Ultimately that cascade leads to the accumulation of specific proteins in the nucleus where they either turn on or off specific genes.

Intuition would tell you that the amount of gene activity in response to the cell signaling should correspond to the amount of protein that gets into the nucleus. And that’s been the prevailing view of scientists. But the current study by a Caltech research team debunks this idea. Using real-time video microscopy filming, the team captured cell signaling in individual cells; in this case they used an immature muscle cell called a myoblast.

goentoro20170508

Behavior of cells over time after they have received a Tgf-beta signal. The brightness of the nuclei (circled in red) indicates how much Smad protein is present. This brightness varies from cell to cell, but the ratio of brightness after the signal to before the signal is about the same. Image: Goentoro lab, CalTech.

To their surprise the same amount of growth factor given to different myoblasts cells led to the accumulation of very different amounts of a protein called Smad3 in the cells’ nuclei, as much as a 40-fold difference across the cells. But after some number crunching, they discovered that dividing the amount of Smad3 after growth factor stimulation by the Smad3 amount before growth stimulation was similar in all the cells.

As team lead Dr. Lea Goentoro mentions in a press release, this result has some very important implications for studying human disease:

“Prior to this work, researchers trying to characterize the properties of a tumor might take a slice from it and measure the total amount of Smad in cells. Our results show that to understand these cells one must instead measure the change in Smad over time.”

Capricor reports positive results on CIRM-funded stem cell trial for Duchenne Muscular Dystrophy

Capricor Therapeutics, a Los Angeles-based company, published an update about its CIRM-funded clinical trial for patients with Duchenne muscular dystrophy (DMD), a devastating degenerative muscle disease that significantly reduces life expectancy.

The company reported positive results from their Phase I/II HOPE trial that’s testing the safety of their cardiosphere stem cell-based therapy called CAP-1002. The trial had 25 patients, 13 of which received the cells and 12 who received normal treatment. No serious adverse effects were observed suggesting that the treatment is “generally safe” thus far.

Patients given a single dose of CAP-1002 showed improvements “in certain measures of cardiac and upper limb function” after six months. They also experienced a reduction of cardiac scar tissue and a thickening of the heart’s left ventricle wall, which is typically thinned in DMD patients.

Capricor shared more details on their six-month trial results in a webcast this week, and you can read about them in this blog by Rare Disease Report.

Leading cause of death for DMD patients

DMD is a severe form of muscular dystrophy caused by a recessive genetic mutation in the dystrophin gene on the X chromosome. Consequently, men are much more likely to get the disease than women. Symptoms of DMD start with muscle weakness as early as four years of age, which then leads to deterioration of both skeletal and heart muscle. Heart disease is the leading cause of death in DMD patients – a fact that Capricor hopes to change with its clinical trial.

Capricor’s CEO, Dr. Linda Marbán, commented in a press release that the trial’s results support the findings of other researchers.

“These initial positive clinical results build upon a large body of preclinical data which illustrate CAP-1002’s potential to broadly improve the condition of those afflicted by DMD, as they show that cardiosphere-derived cells exert salutary effects on cardiac and skeletal muscle.”

Also quoted in the press release was Pat Furlong, DMD patient advocate and CEO of Parent Project Muscular Dystrophy.

Pat Furlong

“I’m excited to see these data, especially given the advanced nature of the patients in the HOPE trial. It is also gratifying to see the field of cell therapy making progress after more than two decades in development. It is our hope that CAP-1002 will have broad potential to improve the lives of patients with Duchenne muscular dystrophy.”

Pat recently spoke at the 2nd Annual CIRM Alpha Stem Cell Clinics meeting about her heartbreaking experience of losing two sons to DMD, both at a very young age. You can watch her speech below. We also featured her story and her inspiring efforts to promote DMD awareness in our 2016 Annual Report.

What to HOPE for next?

The trial is a year-long study and Capricor will report 12-month results at the end of 2017. In the meantime, Dr. Marbán and her team have plans to talk with the US Food and Drug Administration (FDA) about the regulatory options for getting CAP-1002 approved and on the market for DMD patients. She explained,

Linda Marban, CEO of Capricor Therapeutics

“We have submitted an FDA meeting request to discuss these results as well as next steps in our development of CAP-1002 for Duchenne muscular dystrophy, which includes our plan to begin a clinical trial of intravenously-administered CAP-1002 in the latter half of this year. We believe the interim HOPE results may enable us to pursue one of the FDA’s Expedited Programs for Serious Conditions, and we will apply for either or both of the Breakthrough Therapy and Regenerative Medicine Advanced Therapy (RMAT) designations for CAP-1002.”


Related Links:

Stem Cells Profile in Courage: Pat Furlong, Patient Advocate

pat-furlong

Pat Furlong: Photo by Colin McGuire – http://www.colinmcguire.com

One of the true joys for me in helping put together this year’s Annual Report was getting to know the patients and patient advocates that we profiled in the report. These are some extraordinary individuals and the short profiles we posted only touch the surface of just how extraordinary.

So, over the next few weeks we are going to feature four of these people at greater length, allowing them, in their own words, to talk about what makes them tic, and how they keep going in the face of what is often heartbreak and tragedy.

We begin with Pat Furlong, a Patient Advocate and the Founding President and CEO of Parent Project Muscular Dystrophy (PPMD), the largest nonprofit organization in the United States solely focused on Duchenne muscular dystrophy (DMD).

DMD is the most common fatal, genetic childhood disorder, which affects approximately 1 out of every 3,500 boys each year worldwide. It’s a progressive muscle disorder that leads to loss of muscle function, meaning you lose your ability to walk, to use your arms, and ultimately to breathe. And because the heart is a muscle, that is often seriously affected. There is no cure, and treatment options are limited. At the time her sons were diagnosed life expectancy was in the teens.

Pat’s story:

“When my sons, Chris and Pat were diagnosed with DMD, at the ages of 4 and 6, there was nothing available for them. Doctors cared about them but they didn’t have the tools they needed, or the National Institutes of Health the money it needed to do research.

Doctors were faced with diagnosing a disease and saying “there’s nothing we can do”. And then parents like me, coming to them hearing there was nothing they could do, no hope, no help. When your son is diagnosed with something like this you are told go home and love them.

When I asked questions, I was often ignored or dismissed by some doctors.

When my sons were diagnosed with DMD I would drop them off at school and go walking and that would help me deal with the anger.

For me staying in this is to be able to say to Chris and Pat in the universe, when you were here I tried my very best and when you were gone I continued to try my best so that others would have advantages that you didn’t receive.

I haven’t stood back and said I can’t go on.

The family is all scarred, we all suffered this loss. It’s much more apparent when we are together, there are empty chairs, emptiness. If we go to a family gathering we wish Chris and Pat were here, could be married. Now there’s my husband and our two daughters. We have a granddaughter, who is wonderful, but still we are incomplete and we will live with that forever.

I am trained as a nurse and I find DMD equal parts fascinating disease, heartbreaking and painful. I try to emphasize the fascinating so I can keep going. There are frustrations; lack of money, the slow process of regulatory approval, but I have an incredible team of very smart people and we are passionate about change so that helps keep us going.

Your only interest can’t be DMD, it can’t be. For me it’s certainly a priority, but it’s not my only interest. I love to go to an art museum and see how creative people work. I love Cirque du Soleil because they do things with their muscles I can’t imagine. Going outside and seeing these things makes the world better.

I am interested in the expression of art, to see how people dress, to see how people are creative, I love creativity, I think the human spirit is pretty amazing and the creativity around it. I think we are all pretty amazing but sometimes we don’t say it enough.

I recently saw a woman on the subway with a pair of tennis shoes that said “you are beautiful” and people around her were looking at her shoes and smiling, just because of those shoes. We forget to interact, and that was such a simple way of doing that.

bucket-feet

 

I relax by doing yoga, 90-minute hot yoga, as often as I can. I’ve also done a number of half marathons, but I’m more a walker than a runner. I find getting outside or hot yoga makes me concentrate on what I’m doing so that I can’t think of anything else. I can put it down and think about nothing and whisper prayers to my sons and say am I doing the right thing, is there something I should be doing differently? It’s my time to think about them and meditate about what they think would be important.

You need to give your mind time to cope, so it’s putting your phone down and your computer away. It’s getting rid of those interruptions. To put the phone, the computer down and get in a hot room and do yoga, or run around outside, to look at a tree and think about the changing season, the universe, the sun. It’s an incredible break for the brain to be able to rest.

I think the disease has made us kinder people and more thoughtful. When Chris died, we found a notebook he kept. In it was written “the meaning of life is a life of meaning”. I think that’s where we have all landed, what we all strive for, a life of meaning.

 

 

 

Stem cell agency funds clinical trials in three life-threatening conditions

strategy-wide

A year ago the CIRM Board unanimously approved a new Strategic Plan for the stem cell agency. In the plan are some rather ambitious goals, including funding ten new clinical trials in 2016. For much of the last year that has looked very ambitious indeed. But today the Board took a big step towards reaching that goal, approving three clinical trials focused on some deadly or life-threatening conditions.

The first is Forty Seven Inc.’s work targeting colorectal cancer, using a monoclonal antibody that can strip away the cancer cells ability to evade  the immune system. The immune system can then attack the cancer. But just in case that’s not enough they’re going to hit the tumor from another side with an anti-cancer drug called cetuximab. It’s hoped this one-two punch combination will get rid of the cancer.

Finding something to help the estimated 49,000 people who die of colorectal cancer in the U.S. every year would be no small achievement. The CIRM Board thought this looked so promising they awarded Forty Seven Inc. $10.2 million to carry out a clinical trial to test if this approach is safe. We funded a similar approach by researchers at Stanford targeting solid tumors in the lung and that is showing encouraging results.

Our Board also awarded $7.35 million to a team at Cedars-Sinai in Los Angeles that is using stem cells to treat pulmonary hypertension, a form of high blood pressure in the lungs. This can have a devastating, life-changing impact on a person leaving them constantly short of breath, dizzy and feeling exhausted. Ultimately it can lead to heart failure.

The team at Cedars-Sinai will use cells called cardiospheres, derived from heart stem cells, to reduce inflammation in the arteries and reduce blood pressure. CIRM is funding another project by this team using a similar  approach to treat people who have suffered a heart attack. This work showed such promise in its Phase 1 trial it’s now in a larger Phase 2 clinical trial.

The largest award, worth $20 million, went to target one of the rarest diseases. A team from UCLA, led by Don Kohn, is focusing on Adenosine Deaminase Severe Combined Immune Deficiency (ADA-SCID), which is a rare form of a rare disease. Children born with this have no functioning immune system. It is often fatal in the first few years of life.

The UCLA team will take the patient’s own blood stem cells, genetically modify them to fix the mutation that is causing the problem, then return them to the patient to create a new healthy blood and immune system. The team have successfully used this approach in curing 23 SCID children in the last few years – we blogged about it here – and now they have FDA approval to move this modified approach into a Phase 2 clinical trial.

So why is CIRM putting money into projects that it has either already funded in earlier clinical trials or that have already shown to be effective? There are a number of reasons. First, our mission is to accelerate stem cell treatments to patients with unmet medical needs. Each of the diseases funded today represent an unmet medical need. Secondly, if something appears to be working for one problem why not try it on another similar one – provided the scientific rationale and evidence shows it is appropriate of course.

As Randy Mills, our President and CEO, said in a news release:

“Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can. These are very different projects, but they all share the same goal, accelerating treatments to patients with unmet medical needs.”

We are trying to create a pipeline of projects that are all moving towards the same goal, clinical trials in people. Pipelines can be horizontal as well as vertical. So we don’t really care if the pipeline moves projects up or sideways as long as they succeed in moving treatments to patients. And I’m guessing that patients who get treatments that change their lives don’t particularly