
To help with the coronavirus pandemic, many scientists are repurposing previously developed approaches or treatments to see if they can be used to treat patients with COVID-19. Capricor Therapeutics, lead by Dr. Linda Marbán, is using cardiosphere derived cells (CDCs), which are stem cells derived from heart tissue, to treat critically ill patients with COVID-19.
When a patient contracts the virus, their body produces cytokines, proteins that play an important role in the immune response. Unfortunately, having too many cytokines, known as a “cytokine storm”, leads to a severe immune reaction that can cause pneumonia, organ failure, and death. CDCs in previous studies have been shown to help regulate the immune response and cytokines, which could help patients with COVID-19.
Over the course of one month, six critically ill patients with COVID-19, five of whom were on mechanical ventilators, were treated with CDCs. In these compassionate care cases, five male patients and one female patient received treatment. Of the five patients on ventilator support, four patients no longer required ventilator support within just one to four days after treatment. Although these results are promising, it is important to remember that this treatment is in very early testing and will need to demonstrate significant improvement in larger patient groups.
Following a review of the results of this small study, the U.S. Food and Drug Administration (FDA) approved treatment of up to an 20 additional COVID-19 patients.
In a press release, Dr. Marbán discuses the results of the compassionate care study and treatment of additional COVID-19 patients.
“As the global medical community continues to come together in its battle against COVID-19, the results of our initial compassionate care cases are extremely promising and what we had anticipated. We look forward to continuing to treat additional patients under our recently approved expanded access program Investigational New Drug application.”
The treatment used was developed with the help of a CIRM funded preclinical study. It has also been used in three CIRM funded clinical trials for heart disease associated with duchenne muscular dystrophy, heart failure, and pulmonary arterial hypertension.