Budgeting for the future of the stem cell agency

ICOC_DEC17-24

The CIRM Board discusses the future of the Stem Cell Agency

Budgets are very rarely exciting things; but they are important. For example, it’s useful for a family to know when they go shopping exactly how much money they have so they know how much they can afford to spend. Stem cell agencies face the same constraints; you can’t spend more than you have. Last week the CIRM Board looked at what we have in the bank, and set us on a course to be able to do as many of the things we want to, with the money we have left.

First some context. Last year CIRM spent a shade over $306 million on a wide range of research from Discovery, the earliest stage, through Translational and into Clinical trials. We estimate that is going to leave us with approximately $335 million to spend in the coming years.

A couple of years ago our Board approved a 5 year Strategic Plan that laid out some pretty ambitious goals for us to achieve – such as funding 50 new clinical trials. At the time, that many clinical trials definitely felt like a stretch and we questioned if it would be possible. We’re proving that it is. In just two years we have funded 26 new clinical trials, so we are halfway to our goal, which is terrific. But it also means we are in danger of using up all our money faster than anticipated, and not having the time to meet all our goals.

Doing the math

So, for the last couple of months our Leadership Team has been crunching the numbers and looking for ways to use the money in the most effective and efficient way. Last week they presented their plan to the Board.

It boiled down to a few options.

  • Keep funding at the current rate and run out of money by 2019
  • Limit funding just to clinical trials, which would mean we could hit our 50 clinical trial goal by 2020 but would not have enough to fund Discovery and Translational level research
  • Place caps on how much we fund each clinical trial, enabling us to fund more clinical trials while having enough left over for Discovery and Translational awards

The Board went for the third option for some good reasons. The plan is consistent with the goals laid out in our Strategic Plan and it supports Discovery and Translational research, which are important elements in our drive to develop new therapies for patients.

Finding the right size cap

Here’s a look at the size of the caps on clinical trial funding. You’ll see that in the case of late stage pre-clinical work and Phase 1 clinical trials, the caps are still larger than the average amount we funded those stages last year. For Phase 2 the cap is almost the same as the average. For Phase 3 the cap is half the amount from last year, but we think at this stage Phase 3 trials should be better able to attract funding from other sources, such as industry or private investors.

cap awards

Another important reason why the Board chose option three – and here you’ll have to forgive me for being rather selfish – is that it means the Administration Budget (which pays the salaries of the CIRM team, including yours truly) will be enough to cover the cost of running this research plan until 2020.

The bottom line is that for 2018 we’ll be able to spend $130 million on clinical stage research, $30 million for Translational stage, and $10 million for Discovery. The impact the new funding caps will have on clinical stage projects is likely to be small (you can see the whole presentation and details of our plan here) but the freedom it gives us to support the broad range of our work is huge.

And here is where to go if you are interested in seeing the different funding opportunities at CIRM.

Advertisements

Using the AIDS virus to help children battling a deadly immune disorder

Ronnie Kashyap, patient in SCID clinical trial: Photo Pawash Priyank

More than 35 million people around the world have been killed by HIV, the virus that causes AIDS. So, it’s hard to think that the same approach the virus uses to infect cells could also be used to help children battling a deadly immune system disorder. But that’s precisely what researchers at UC San Francisco and St. Jude Children’s Research Hospital are doing.

The disease the researchers are tackling is a form of severe combined immunodeficiency (SCID). It’s also known as ‘bubble baby’ disease because children are born without a functioning immune system and in the past were protected from germs within the sterile environment of a plastic bubble. Children with this disease often die of infections, even from a common cold, in the first two years of life.

The therapy involves taking the patient’s own blood stem cells from their bone marrow, then genetically modifying them to correct the genetic mutation that causes SCID. The patient is then given low-doses of chemotherapy to create space in their bone marrow for the news cells. The gene-corrected stem cells are then transplanted back into the infant, creating a new blood supply and a repaired immune system.

Unique delivery system

The novel part of this approach is that the researchers are using an inactivated form of HIV as a means to deliver the correct gene into the patient’s cells. It’s well known that HIV is perfectly equipped to infiltrate cells, so by taking an inactivated form – meaning it cannot infect the individual with HIV – they are able to use that infiltrating ability for good.

The results were announced at the American Society of Hematology (ASH) Annual Meeting and Exposition in Atlanta.

The researchers say seven infants treated and followed for up to 12 months, have all produced the three major immune system cell types affected by SCID. In a news release, lead author Ewelina Mamcarz, said all the babies appear to be doing very well:

“It is very exciting that we observed restoration of all three very important cell types in the immune system. This is something that’s never been done in infants and a huge advantage over prior trials. The initial results also suggest our approach is fundamentally safer than previous attempts.”

One of the infants taking part in the trial is Ronnie Kashyap. We posted a video of his story on our blog, The Stem Cellar.

If the stem cell-gene therapy combination continues to show it is both safe and effective it would be a big step forward in treating SCID. Right now, the best treatment is a bone marrow transplant, but only around 20 percent of infants with SCID have a sibling or other donor who is a good match. The other 80 percent have to rely on a less well-matched bone marrow transplant – usually from a parent – that can still leave the child prone to life-threatening infections or potentially fatal complications such as graft-versus-host disease.

CIRM is funding two other clinical trials targeting SCID. You can read about them here and here.

CIRM-Funded Research Makes Multiple Headlines this Week

When it rains it pours.

This week, multiple CIRM-funded studies appeared in the news, highlighting the exciting progress our Agency is making towards funding innovative stem cell research and promoting the development of promising stem cell therapies for patients.

Below are highlights.


Fate Therapeutics Partners with UC San Diego to Develop Cancer Immunotherapy

Last week, Dr. Dan Kaufman and his team at UC San Diego, received a $5.15 million therapeutic translational research award from CIRM to advance the clinical development of a stem cell-derived immunotherapy for acute myelogenous leukemia (AML), a rare form of blood cancer.

Today, it was announced that the UCSD team is entering into a research collaboration with a San Diego biopharmaceutical company Fate Therapeutics to develop a related immunotherapy for blood cancers. The therapy consists of immune cells called chimeric antigen receptor-targeted natural killer (CAR NK) cells that can target tumor cells and stop their growth. Fate Therapeutics has developed an induced pluripotent stem cell (iPSC) platform to develop and optimize CAR NK cell therapies targeting various cancers.

According to an article by GenBio, this new partnership is already bearing fruit.

“In preclinical studies using an ovarian cancer xenograft model, Dr. Kaufman and Fate Therapeutics had shown that a single dose of CAR-targeted NK cells derived from iPSCs engineered with the CAR construct significantly inhibited tumor growth and increased survival compared to NK cells containing a CAR construct commonly used for T-cell immunotherapy.”

 


City of Hope Brain Cancer Trial Featured as a Key Trial to Watch in 2018

Xconomy posted a series this week forecasting Key Clinical Data to look out for next year. Today’s part two of the series mentioned a recent CIRM-funded trial for glioblastoma, an aggressive, deadly brain cancer.

Christine Brown and her team at the City of Hope are developing a CAR-T cell therapy that programs a patient’s own immune cells to specifically target and kill cancer cells, including cancer stem cells, in the brain. You can read more about this therapy and the Phase 1 trial on our website.

Alex Lash, Xconomy’s National Biotech Editor, argued that good results for this trial would be a “huge step forward for CAR-T”.

Alex Lash

“While CAR-T has proven its mettle in certain blood cancers, one of the biggest medical questions in biotech is whether the killer cells can also eat up solid tumors, which make up the majority of cancer cases. Glioblastoma—an aggressive and usually incurable brain cancer—is a doozy of a solid tumor.”


ViaCyte Receives Innovative New Product Award for Type 1 Diabetes

Last week, San Diego-based ViaCyte was awarded the “Most Innovative New Product Award” by CONNECT, a start-up accelerator focused on innovation, for its PEC-Direct product candidate. The product is a cell-based therapy that’s currently being tested in a CIRM-funded clinical trial for patients with high-risk type 1 diabetes.

In a company news release published today, ViaCyte’s CEO Paul Laikind commented on what the award signifies,

Paul Laikind

“This award acknowledges how ViaCyte has continually broken new ground in stem cell research, medical device engineering, and cell therapy scaling and manufacturing. With breakthrough technology, clinical stage product candidates, an extensive intellectual property estate, and a strong and dedicated team, ViaCyte has all the pieces to advance a transformative new life-saving approach that could help hundreds of thousands of people with high-risk type 1 diabetes around the world.”

Progress to a Cure for Bubble Baby Disease

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of exciting stem cell stories about advances towards stem cell-based cures for serious diseases. Today we’re featuring stories about the progress of CIRM-funded clinical trials for the treatment of a devastating, usually fatal, primary immune disease that strikes newborn babies.

evangelina in a bubble

Evie, a former “bubble baby” enjoying life by playing inside a giant plastic bubble

‘Bubble baby disease’ will one day be a thing of the past. That’s a bold statement, but I say it with confidence because of the recent advancements in stem cell gene therapies that are curing infants of this life-threatening immune disease.

The scientific name for ‘bubble baby disease’ is severe combined immunodeficiency (SCID). It prevents the proper development of important immune cells called B and T cells, leaving newborns without a functioning immune system. Because of this, SCID babies are highly susceptible to deadly infections, and without treatment, most of these babies do not live past their first year. Even a simple cold virus can be fatal.

Scientists are working hard to develop stem cell-based gene therapies that will cure SCID babies in their first months of life before they succumb to infections. The technology involves taking blood stem cells from a patient’s bone marrow and genetically correcting the SCID mutation in the DNA of these cells. The corrected stem cells are then transplanted back into the patient where they can grow and regenerate a healthy immune system. Early-stage clinical trials testing these stem cell gene therapies are showing very encouraging results. We’ll share a few of these stories with you below.

CIRM-funded trials for SCID

CIRM is funding three clinical trials, one from UCLA, one at Stanford and one from UCSF & St. Jude Children’s Research Hospital, that are treating different forms of SCID using stem cell gene therapies.

Adenosine Deaminase-Deficient SCID

The first trial is targeting a form of the disease called adenosine deaminase-deficient SCID or ADA-SCID. Patients with ADA-SCID are unable to make an enzyme that is essential for the function of infection-fighting immune cells called lymphocytes. Without working lymphocytes, infants eventually are diagnosed with SCID at 6 months. ADA-SCID occurs in approximately 1 in 200,000 newborns and makes up 15% of SCID cases.

CIRM is funding a Phase 2 trial for ADA-SCID that is testing a stem cell gene therapy called OTL-101 developed by Dr. Don Kohn and his team at UCLA and a company called Orchard Therapeutics. 10 patients were treated in the trial, and amazingly, nine of these patients were cured of their disease. The 10th patient was a teenager who received the treatment knowing that it might not work as it does in infants. You can read more about this trial in our blog from earlier this year.

In a recent news release, Orchard Therapeutics announced that the US Food and Drug Administration (FDA) has awarded Rare Pediatric Disease Designation to OTL-101, meaning that the company will qualify for priority review for drug approval by the FDA. You can read more about what this designation means in this blog.

X-linked SCID

The second SCID trial CIRM is funding is treating patients with X-linked SCID. These patients have a genetic mutation on a gene located on the X-chromosome that causes the disease. Because of this, the disease usually affects boys who have inherited the mutation from their mothers. X-linked SCID is the most common form of SCID and appears in 1 in 60,000 infants.

UCSF and St. Jude Children’s Research Hospital are conducting a Phase 1/2 trial for X-linked SCID. The trial, led by Dr. Brian Sorrentino, is transplanting a patient’s own genetically modified blood stem cells back into their body to give them a healthy new immune system. Patients do receive chemotherapy to remove their diseased bone marrow, but doctors at UCSF are optimizing low doses of chemotherapy for each patient to minimize any long-term effects. According to a UCSF news release, the trial is planning to treat 15 children over the next five years. Some of these patients have already been treated and we will likely get updates on their progress next year.

CIRM is also funding a third clinical trial out of Stanford University that is hoping to make bone marrow transplants safer for X-linked SCID patients. The team, led by Dr. Judy Shizuru, is developing a therapy that will remove unhealthy blood stem cells from SCID patients to improve the survival and engraftment of healthy bone marrow transplants. You can read more about this trial on our clinical trials page.

SCID Patients Cured by Stem Cells

These clinical trial results are definitely exciting, but what is more exciting are the patient stories that we have to share. We’ve spoken with a few of the families whose children participated in the UCLA and UCSF/St. Jude trials, and we asked them to share their stories so that other families can know that there is hope. They are truly inspiring stories of heartbreak and joyful celebration.

Evie is a now six-year-old girl who was diagnosed with ADA-SCID when she was just a few months old. She is now cured thanks to Don Kohn and the UCLA trial. Her mom gave a very moving presentation about Evie’s journey at the CIRM Bridges Trainee Annual Meeting this past July.  You can watch the 20-minute talk below:

Ronnie’s story

Ronnie SCID kid

Ronnie: Photo courtesy Pawash Priyank

Ronnie, who is still less than a year old, was diagnosed with X-linked SCID just days after he was born. Luckily doctors told his parents about the UCSF/St. Jude trial and Ronnie was given the life-saving stem cell gene therapy before he was six months old. Now Ronnie is building a healthy immune system and is doing well back at home with his family. Ronnie’s dad Pawash shared his families moving story at our September Board meeting and you can watch it here.

Our mission at CIRM is to accelerate stem cell treatments to patients with unmet medical needs. We hope that by funding promising clinical trials like the ones mentioned in this blog, that one day soon there will be approved stem cell therapies for patients with SCID and other life-threatening diseases.

Surprise findings about bone marrow transplants could lead to more effective stem cell therapies

Surgery_0

Bone marrow transplant: Photo courtesy FierceBiotech

Some medical therapies have been around for so long that we naturally assume we understand how they work. That’s not always the case. Take aspirin for example. It’s been used for more than 4,000 years to treat pain and inflammation but it was only in the 1970’s that we really learned how it works.

The same is now true for bone marrow transplants. Thanks to some skilled research at the Fred Hutchinson Cancer Research Center in Seattle.

Bone marrow transplants have been used for decades to help treat deadly blood cancers such as leukemia and lymphoma. The first successful bone marrow transplant was in the late 1950’s, involving identical twins, one of whom had leukemia. Because the twins shared the same genetic make-up the transplant avoided potentially fatal problems like graft-vs-host-disease, where the transplanted cells attack the person getting them. It wasn’t until the 1970’s that doctors were able to perform transplants involving people who were not related or who did not share the same genetic make-up.

In a bone marrow or blood stem cell transplant, doctors use radiation or chemotherapy to destroy the bone marrow in a patient with, say, leukemia. Then cancer-free donor blood stem cells are transplanted into the patient to help create a new blood system, and rebuild their immune system.

Surprise findings

In the study, published in the journal Science Translational Medicine, the researchers were able to isolate a specific kind of stem cell that helps repair and rebuild the blood and immune system.

The team found that a small subset of blood stem cells, characterized by having one of three different kinds of protein on their surface – CD34 positive, CD45RA negative and CD90 positive – did all the work.

In a news release Dr. Hans-Peter Kiem, a senior author on the study, says some of their initial assumptions about how bone marrow transplants work were wrong:

“These findings came as a surprise; we had thought that there were multiple types of blood stem cells that take on different roles in rebuilding a blood and immune system. This population does it all.”

Tracking the cells

The team performed bone-marrow transplants on monkeys and then followed those animals over the next seven years, observing what happened as the donor cells grew and multiplied.

They tracked hundreds of thousands of cells in the blood and found that, even though the cells with those three proteins on the surface made up just five percent of the total blood supply, they were responsible for rebuilding the entire blood and immune system.

Study co-author Dr. Jennifer Adair said they saw evidence of this rebuilding within 10 days of the transplant:

“Our ability to track individual blood cells that developed after transplant was critical to demonstrating that these really are stem cells.”

Hope for the future

It’s an important finding because it could help researchers develop new ways of delivering bone marrow transplants that are both safer and more effective. Every year some 3,000 people die because they cannot find a matching donor. Knowing which stem cells are specifically responsible for an effective transplant could help researchers come up with ways to get around that problem.

Although this work was done in monkeys, the scientists say humans have similar kinds of stem cells that appear to act in the same way. Proving that’s the case will obviously be the next step in this research.

 

Stem Cell Tools: Helping Scientists Understand Complex Diseases

Yesterday, we discussed a useful stem cell tool called the CIRM iPSC Repository, which will contain over 3000 human induced pluripotent stem cell (iPSC) lines – from patients and healthy individuals – that contain a wealth of information about human diseases. Now that scientists have access to these lines, they need the proper tools to study them. This is where CIRM’s Genomics Initiative comes into play.

Crunching stem cell data

In 2014, CIRM funded the Genomics Initiative, which created the Center of Excellence in Stem Cell Genomics (CESCG). The goal of the CESCG is to develop novel genomics and bioinformatics tools specifically for stem cell research. These technologies aim to advance our fundamental understanding of human development and disease mechanisms, improve current cell and tissue production methods, and accelerate personalized stem cell-based therapies.

The CESCG is a consortium between Stanford University, the Salk Institute and UC Santa Cruz. Together, the groups oversee or support more than 20 different research projects throughout California focused on generating and analyzing sequencing data from stem or progenitor cells. Sequencing technology today is not only used to decode DNA, but also used to study other genomic data like that provides information about how gene activity is regulated.

Many of the projects within the CESCG are using these sequencing techniques to define the basic genetic properties of specific cell types, and will use this information to create better iPSC-based tissue models. For example, scientists can determine what genes are turned on or off in cells by analyzing raw data from RNA sequencing experiments (RNA is like a photocopy of DNA sequences and is the cell’s way of carrying out the instructions contained in the DNA. This technology sequences and identifies all the RNA that is generated in a tissue or cell at a specific moment).  Single cell RNA sequencing, made possible by techniques such as Drop-seq mentioned in yesterday’s blog, are now further revealing the diversity of cell types within tissues and creating more exact reference RNA sequences to identify a specific cell type.  By comparing RNA sequencing data from single cells of stem cell-based models to previously referenced cell types, researchers can estimate how accurate, or physiologically relevant, those stem cell models are.

Such comparative analyses can only be done using powerful software that can compare millions of sequence data at the same time. Part of a field termed bioinformatics, these activities are a significant portion of the CESCG and several software tools are being created within the Initiative.  Josh Stuart, a faculty member at UC Santa Cruz School of Engineering and a primary investigator in the CESCG, explained their team’s vision:

Josh Stuart

“A major challenge in the field is recognizing cell types or different states of the same cell type from raw data. Another challenge is integrating multiple data sets from different labs and figuring out how to combine measurements from different technologies. At the CESCG, we’re developing bioinformatics models that trace through all this data. Our goal is to create a database of these traces where each dot is a cell and the curves through these dots explain how the cells are related to one another.”

Stuart’s hope is that scientists will input their stem cell data into the CESCG database and receive a scorecard that explains how accurate their cell model is based on a specific genetic profile. The scorecard will help will not only provide details on the identity of their cells, but will also show how they relate to other cell types found in their database.

The Brain of Cells

An image of a 3D brain organoid grown from stem cells in the Kriegstein Lab at UCSF. (Photo by Elizabeth DiLullo)

A good example of how this database will work is a project called the Brain of Cells (BOC). It’s a collection of single cell RNA sequencing data from thousands of fetal-derived brain cells provided by multiple labs. The idea is that researchers will input RNA sequencing data from the stem cell-derived brain cells they make in their labs and the BOC will give them back a scorecard that describes what types of cells they are and their developmental state by comparing them to the referenced brain cells.

One of the labs that is actively involved in this project and is providing the bulk of the BOC datasets is Arnold Kriegstein’s lab at UC San Francisco. Aparna Bhaduri, a postdoctoral fellow in the Kriegstein lab working on the BOC project, outlined the goal of the BOC and how it will benefit researchers:

“The goal of the Brain of Cells project is to find ways to leverage existing datasets to better understand the cells in the developing human brain. This tool will allow researchers to compare cell-based models (such as stem cell-derived 3D organoids) to the actual developing brain, and will create a query-able resource for researchers in the stem cell community.”

Pablo Cordero, a former postdoc in Josh Stuart’s lab who designed a bioinformatics tool used in BOC called SCIMITAR, explained how the BOC project is a useful exercise in combining single cell data from different external researchers into one map that can predict cell type or cell fate.

“There is no ‘industry standard’ at the moment,” said Cordero. “We have to find various ways to perform these analyses. Approximating the entire human cell lineage is the holy grail of regenerative medicine since in theory, we would have maps of gene circuits that guide cell fate decisions.”

Once the reference data from BOC is ready, the group will use a bioinformatics program called Sample Psychic to create the scorecards for outside researchers. Clay Fischer, project manager of the CESCG at UC Santa Cruz, described how Sample Psychic works:

Clay Fischer

“Sample Psychic can look at how often genes are being turned off and on in cells. It uses this information to produce a scorecard, which shows how closely the data from your cells maps up to the curated cell types and can be used to infer the probability of the cell type.”

The BOC group believes that the analyses and data produced in this effort will be of great value to the research community and scientists interested in studying developmental neuroscience or neurodegeneration.

What’s next?

The Brain of Cells project is still in its early stages, but soon scientists will be able to use this nifty tool to help them build better and more accurate models of human brain development and brain-related diseases.

CESCG is also pursuing stem cell data driven projects focused on developing similar databases and scorecards for heart cells and pancreatic cells. These genomics and bioinformatics tools are pushing the envelope to a day when scientists can connect the dots between how different cell states and cell fates are determined by computational analysis and leverage this information to generate better iPSC-based systems for disease modeling in the lab or therapeutics in the clinic.


Related Links:

Stem Cell Stories that Caught Our Eye: New law to protect consumers; using skin to monitor blood sugar; and a win for the good guys

Hernendez

State Senator Ed Hernandez

New law targets stem cell clinics that offer therapies not approved by the FDA

For some time now CIRM and others around California have been warning consumers about the risks involved in going to clinics that offer stem cell therapies that have not been tested in a clinical trial or approved by the U.S. Food and Drug Administration (FDA) for use in patients.

Now a new California law, authored by State Senator Ed Hernandez (D-West Covina) attempts to address that issue. It will require medical clinics whose stem cell treatments are not FDA approved, to post notices and provide handouts to patients warning them about the potential risk.

In a news release Sen. Hernandez said he hopes the new law, SB 512, will protect consumers from early-stage, unproven experimental therapies:

“There are currently over 100 medical offices in California providing non-FDA approved stem cell treatments. Patients spend thousands of dollars on these treatments, but are totally unaware of potential risks and dangerous side effects.”

Sen. Hernandez’s staffer Bao-Ngoc Nguyen crafted the bill, with help from CIRM Board Vice Chair Sen. Art Torres, Geoff Lomax and UC Davis researcher Paul Knoepfler, to ensure it targeted only clinics offering non-FDA approved therapies and not those offering FDA-sanctioned clinical trials.

For example the bill would not affect CIRM’s Alpha Stem Cell Clinic Network because all the therapies offered there have been given the green light by the FDA to work with patients.

Blood_Glucose_Testing 

Using your own skin as a blood glucose monitor

One of the many things that people with diabetes hate is the constant need to monitor their blood sugar level. Usually that involves a finger prick to get a drop of blood. It’s simple but not much fun. Attempts to develop non-invasive monitors have been tried but with limited success.

Now researchers at the University of Chicago have come up with another alternative, using the person’s own skin to measure their blood glucose level.

Xiaoyang Wu and his team accomplished this feat in mice by first creating new skin from stem cells. Then, using the gene-editing tool CRISPR, they added in a protein that sticks to sugar molecules and another protein that acts as a fluorescent marker. The hope was that the when the protein sticks to sugar in the blood it would change shape and emit fluorescence which could indicate if blood glucose levels were too high, too low, or just right.

The team then grafted the skin cells back onto the mouse. When those mice were left hungry for a while then given a big dose of sugar, the skin “sensors” reacted within 30 seconds.

The researchers say they are now exploring ways that their findings, published on the website bioRxiv, could be duplicated in people.

While they are doing that, we are supporting ViaCytes attempt to develop a device that doesn’t just monitor blood sugar levels but also delivers insulin when needed. You can read about our recent award to ViaCyte here.

Deepak

Dr. Deepak Srivastava

Stem Cell Champion, CIRM grantee, and all-round-nice guy named President of Gladstone Institutes

I don’t think it would shock anyone to know that there are a few prima donnas in the world of stem cell research. Happily, Dr. Deepak Srivastava is not one of them, which makes it such a delight to hear that he has been appointed as the next President of the Gladstone Institutes in San Francisco.

Deepak is a gifted scientist – which is why we have funded his work – a terrific communicator and a really lovely fella; straight forward and down to earth.

In a news release announcing his appointment – his term starts January 1 next year – Deepak said he is honored to succeed the current President, Sandy Williams:

“I joined Gladstone in 2005 because of its unique ability to leverage diverse basic science approaches through teams of scientists focused on achieving scientific breakthroughs for mankind’s most devastating diseases. I look forward to continue shaping this innovative approach to overcome human disease.”

We wish him great success in his new role.

 

 

 

CIRM Bridges Student Researcher Discovers Mentoring is a Two-Way Street

Jasmine Carter is a CIRM Bridges Scholar a Sacramento State University. She currently is interning in the lab of Dr. Kyle Fink at UC Davis and her research focuses on developing induced neurons from skin cells to model neurological disorders and develop novel therapeutics. Jasmine was a mentor to one of our UC Davis CIRM SPARK high school students this summer, and we asked her to share her thoughts on the importance of mentorship in science.

I began my scientific journey as an undergraduate student in the biomedical sciences, determined to get into medical school to become a surgeon. But I was perpetually stressed, always pushing towards the next goal and never stopping to smell the roses. Until one day, I did stop because a mentor encouraged me to figure out how I wanted to contribute to the medical field. In the midst of contemplating this important question, I was offered an undergraduate research position studying stem cells. It wasn’t long before I realized I had found my calling. Those little stem cells were incredibly fascinating to me, and I really enjoyed my time in a research lab. Being able to apply my scientific knowledge at the lab bench and challenge myself to solve biological problems was truly enjoyable to me so I applied to and was accepted into Sacramento State’s CIRM Bridges Program.

Jasmine working with stem cells in the cell culture hood.

To say I was excited to learn more about stem cell biology would be an understatement. I started volunteering in the Translational Research Lab at the Institute for Regenerative Cures at UC Davis as soon as I could. And I started to feel way outside my comfort zone as I walked into the lab because the seemingly endless rows of research benches and all the lab equipment can be a lot to take in when you first begin your research journey. When I started to actually run experiments, I worried that I may have messed the experiment up. I worried that I might SAY or DO something that would make me appear less intelligent because everyone was so knowledgeable. I struggled with figuring out whether or not I was cut out for the research environment.

I have now started my formal research internship and am constantly amazed at the mentorship I receive and collaboration I witness every day; everyone is always willing to lend a helping hand or simply be a sounding board for ideas. I have learned an immense amount of knowledge about stem cell research and its potential to improve knowledge for the scientific community and treatment options for patients. But I would not have had the opportunity to grow as an intern and learn from experts in various disciplines if it were not for the CIRM Bridges Program. The Bridges Program has allowed me to apply basic biological principles as I learn about stem cell biology and the applications of stems cells while completing a Master’s research project. Diving into the research environment has been challenging at times, but guidance from knowledgeable and encouraging mentors in the Translational Research Laboratory has helped to shape me into a more confident researcher.

Jasmine and Yasmine.

As fate would have it, just as I was becoming more and more confident in myself as a researcher, I found myself becoming a mentor to our CIRM SPARK high school intern, Yasmine. During Yasmine’s first week, I saw the exact same feelings of doubt on her face that I had experienced when I first volunteered in the laboratory. I saw how she challenged herself to absorb and understand every word and concept we said to her. I saw that familiar worried expression she’d displayed when unsure if she just messed up on an experiment or the hesitation when trying to figure out if the question she was about to ask was the “right” one. Because I had faced the same struggles, I could assure her that the internship was a learning experience and that each success and setback she encountered while working on her project would make her a better scientist.

During Yasmine’s eight-week summer internship, she observed and helped members of our team on various experiments while conducting her own research project. At the end of the first week, Yasmine commented on how diligent all the researchers in the lab were; how she hadn’t known the amount of effort and work that’s required to develop and complete a research project. Yasmine’s project focused on optimizing the protocols, or recipes, for editing genes in different types of cells for use as potential treatments for neurological disorders. Many days, you’d find Yasmine peering into the microscope and imaging cells – for her project or one of ours. Being able to visually assess the success of our experiments was exciting for her. The time we spent trying to track down just one fluorescent cell was a great opportunity for us to review the experiment and brainstorm the next set of experiments we wanted to run. I enjoyed explaining the science behind the experiments we set up, and Yasmine’s thought provoking questions sometimes led to a learning session where we figured out the answer together. Yasmine even used the knowledge she was acquiring in a graduate level Good Manufacturing Practice (GMP) course to explain her flow cytometry results to our team during a lab meeting.

Yasmine at the microscope.

It was actually during one of these lab meetings when I was practicing my poster presentation for the 2017 Annual CIRM Bridges Trainee Meeting when Yasmine said, “I finally understand your project”. She and I had frequently discussed my project, but towards the end of the internship she was integrating what she learned in lectures, whiteboard review sessions and scientific papers to the research we were doing at the lab bench. It was incredibly gratifying to see how much she had learned and how her confidence as a young scientist grew while she interned with us. The internship was an invaluable experience for Yasmine because it helped to reinforce her commitment to improving the lives of patients who suffer from brain cancer. She hopes to use the research skills that the SPARK program provided to seek out research opportunities in college.

But the learning wasn’t one-sided this summer because I was also learning from Yasmine. The CIRM SPARK students are encouraged to document their internship on social media. And with Yasmine’s encouragement, I have started to document my experiences in the Bridges program by showing what the day to day life of a graduate student looks like, what experiments are going well and how I am trouble-shooting the failed experiments. Sometimes those failed experiments can be discouraging, but taking the time to discuss it with a mentor, mentee or an individual on social media can help me to figure out how I should change the experiment. So, when self-doubt sprouted back up as I began to document my experiences in the program, I reminded myself that being pushed outside my comfort zone is a great way to learn. But one of the greatest lessons I learned from Yasmine’s summer internship is the importance of sharing in a mentor-mentee relationship. After sharing my knowledge with Yasmine, I got to watch her confidence shine when she took the reins with experiments and then shared the fruits of her labor with me.

There can be a lot of ups and downs in research. However, opportunities for mentorship and learning with such bright, enthusiastic and dedicated students has certainly validated the importance of the CIRM Bridges and SPARK programs. The mentorship and collaboration that occurs between high school interns, undergraduates, graduate students, post-docs and principal investigators to develop therapies for patients with unmet medical needs is truly amazing.

Mentorship leads to productive careers and friendships.

Jasmine Carter is also an avid science communicator. You can follow her science journey on Instagram and Twitter.

UCLA scientists begin a journey to restore the sense of touch in paralyzed patients

Yesterday, CIRM-funded scientists at UCLA published an interesting study that sheds light on the development of sensory neurons, a type of nerve cell that is damaged in patients with spinal cord injury. Their early-stage findings could potentially, down the road, lead to the development of stem cell-based treatments that rebuild the sensory nervous system in paralyzed people that have lost their sense of touch.

Dr. Samantha Butler, a CIRM grantee and professor at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, led the study, which was published in the journal eLife.

Restoring sensation

Butler and her team were interested in understanding the basic development of sensory interneurons in the spinal cord. These are nerve cells in the spinal cord that receive sensory signals from the environment outside the body (like heat, pain and touch) and relay these signals to the brain where the senses are then perceived.

Developing spinal cord injury treatments often focus on the loss of movement caused by damage to the motor neurons in the spine that control our muscles. However, the damage caused to sensory neurons in the spine can be just as debilitating to people with paralysis. Without being able to feel whether a surface is hot or cold, paralyzed patients can sustain serious burn injuries.

Butler commented in a UCLA news release that attempting to restoring sensation in paralyzed patients is just as important as restoring movement:

Samantha Butler

“The understanding of sensory interneuron development has lagged far behind that of another class of neurons—called motor neurons—which control the body’s ability to move. This lack in understanding belies the importance of sensation: it is at the core of human experience. Some patients faced with the reality of paralysis place the recovery of the sense of touch above movement.”

BMPs are important for sensory neuron development

To restore sensation in paralyzed patients, scientists need to replace the sensory neurons that are damaged in the spine. To create these neurons, Butler looked to proteins involved in the early development of the spinal cord called bone morphogenetic proteins or BMPs.

BMPs are an important family of signaling proteins that influence development of the embryo. Their signaling can determine the fate or identity of cells including cells that make up the developing spinal cord.

It was previously thought that the concentration of BMPs determined what type of sensory neuron a stem cell would develop into, but Butler’s team found the opposite in their research. By studying developing chick embryos, they discovered that the type, not the concentration, of BMP matters when determining what subtype of sensory neuron is produced. Increasing the amount of a particular BMP in the chick spinal cord only produced more of the same type of sensory interneuron rather than creating a different type.

Increasing the concentration of a certain type of BMP increases the production of the same categories of sensory interneurons (red and green). (Image credit: UCLA)

The scientists confirmed these findings using mouse embryonic stem cells grown in the lab. Interestingly a different set of BMPs were responsible for deciding sensory neuron fate in the mouse stem cell model compared to the chick embryo. But the finding that different BMPs determine sensory neuron identity was consistent.

So what and what’s next?

While this research is still in its early stages, the findings are important because they offer a better understanding of sensory neuron development in the spinal cord. This research also hints at the potential for stem cell-based therapies that replace or restore the function of sensory neurons in paralyzed patients.

Madeline Andrews, the first author of the study, concluded:

“Central nervous system injuries and diseases are particularly devastating because the brain and spinal cord are unable to regenerate. Replacing damaged tissue with sensory interneurons derived from stem cells is a promising therapeutic strategy. Our research, which provides key insights into how sensory interneurons naturally develop, gets us one step closer to that goal.”

The next stop on the team’s research journey is to understand how BMPs influence sensory neuron development in a human stem cell model. The UCLA news release gave a sneak preview of their plans in the coming years.

“Butler’s team now plans to apply their findings to human stem cells as well as drug testing platforms that target diseased sensory interneurons. They also hope to investigate the feasibility of using sensory interneurons in cellular replacement therapies that may one day restore sensation to paralyzed patients.”

Protein that turns normal cells into cancer stem cells offers target to fight colon cancer

colon-cancer

Colon cancer: Photo courtesy WebMD

Colon cancer is a global killer. Each year more than one million people worldwide are diagnosed with it; more than half a million die from it. If diagnosed early enough the standard treatment involves surgery, chemotherapy, radiation or targeted drug therapy to destroy the tumors. In many cases this may work. But in some cases, while this approach helps put people in remission, eventually the cancer returns, spreads throughout the body, and ultimately proves fatal.

Now researchers may have identified a protein that causes normal cells to become cancerous, and turn into cancer stem cells (CSCs). This discovery could help provide a new target for anti-cancer therapies.

Cancer stem cells are devilishly tricky. While most cancer cells are killed by chemotherapy or other therapies, cancer stem cells are able to lie dormant and hide, then emerge later to grow and spread, causing the person to relapse and the cancer to return.

In a study published in Nature Research’s Scientific Reports, researchers at SU Health New Orleans School of Medicine and Stanley S. Scott Cancer Center identified a protein, called SATB2, that appears to act as an “on/off” switch for specific genes inside a cancer cell.

In normal, healthy colorectal tissue SATB2 is not active, but in colorectal cancer it is highly active, found in around 85 percent of tumors. So, working with mice, the researchers inserted extra copies of the SATB2 gene, which produced more SATB2 protein in normal colorectal tissue. They found that this produced profound changes in the cell, leading to uncontrolled cell growth. In effect it turned a normal cell into a cancer stem cell.

As the researchers state in their paper:

“These data suggest that SATB2 can transform normal colon epithelial cells to CSCs/progenitor-like cells which play significant roles in cancer initiation, promotion and metastasis.”

When the researchers took colorectal cancer cells and inhibited SATB2 they found that this not only suppressed the growth of the cancer and it’s ability to spread, it also prevented those cancer cells from becoming cancer stem cells.

In a news release about the study Dr. Rakesh Srivastava,  the senior author on the paper, said the findings are important:

“Since the SATB2 protein is highly expressed in the colorectal cell lines and tissues, it can be an attractive target for therapy, diagnosis and prognosis.”

Because SATB2 is found in other cancers too, such as breast cancer, these findings may hold significance for more than just colorectal cancer.

The next step is to repeat the study in mice that have been genetically modified to better reflect the way colon cancer shows up in people. The team hope this will not only confirm their findings, but also give them a deeper understanding of the role that SATB2 plays in cancer formation and spread.