Stem Cell Roundup: Improving muscle function in muscular dystrophy; Building a better brain; Boosting efficiency in making iPSC’s

Here are the stem cell stories that caught our eye this week.

Photos of the week

TGIF! We’re so excited that the weekend is here that we are sharing not one but TWO amazing stem cell photos of the week.

RMI IntestinalChip

Image caption: Cells of a human intestinal lining, after being placed in an Intestine-Chip, form intestinal folds as they do in the human body. (Photo credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute)

Photo #1 is borrowed from a blog we wrote earlier this week about a new stem cell-based path to personalized medicine. Scientists at Cedars-Sinai are collaborating with a company called Emulate to create intestines-on-a-chip using human stem cells. Their goal is to create 3D-organoids that represent the human gut, grow them on chips, and use these gut-chips to screen for precision medicines that could help patients with intestinal diseases. You can read more about this gut-tastic research here.

Young mouse heart 800x533

Image caption: UCLA scientists used four different fluorescent-colored proteins to determine the origin of cardiomyocytes in mice. (Image credit: UCLA Broad Stem Cell Research Center/Nature Communications)

Photo #2 is another beautiful fluorescent image, this time of a cross-section of a mouse heart. CIRM-funded scientists from UCLA Broad Stem Cell Research Center are tracking the fate of stem cells in the developing mouse heart in hopes of finding new insights that could lead to stem cell-based therapies for heart attack victims. Their research was published this week in the journal Nature Communications and you can read more about it in a UCLA news release.

Stem cell injection improves muscle function in muscular dystrophy mice

Another study by CIRM-funded Cedars-Sinai scientists came out this week in Stem Cell Reports. They discovered that they could improve muscle function in mice with muscular dystrophy by injecting cardiac progenitor cells into their hearts. The injected cells not only improved heart function in these mice, but also improved muscle function throughout their bodies. The effects were due to the release of microscopic vesicles called exosomes by the injected cells. These cells are currently being used in a CIRM-funded clinical trial by Capricor therapeutics for patients with Duchenne muscular dystrophy.

How to build a better brain (blob)

For years stem cell researchers have been looking for ways to create “mini brains”, to better understand how our own brains work and develop new ways to repair damage. So far, the best they have done is to create blobs, clusters of cells that resemble some parts of the brain. But now researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have come up with a new method they think can advance the field.

Their approach is explained in a fascinating article in the journal Science News, where lead researcher Bennet Novitch says finding the right method is like being a chef:

“It’s like making a cake: You have many different ways in which you can do it. There are all sorts of little tricks that people have come up with to overcome some of the common challenges.”

Brain cake. Yum.

A more efficient way to make iPS cells

17yamanaka-master768

Shinya Yamanaka. (Image source: Ko Sasaki, New York Times)

In 2006 Shinya Yamanaka discovered a way to take ordinary adult cells and reprogram them into embryonic-like stem cells that have the ability to turn into any other cell in the body. He called these cells induced pluripotent stem cells or iPSC’s. Since then researchers have been using these iPSC’s to try and develop new treatments for deadly diseases.

There’s been a big problem, however. Making these cells is really tricky and current methods are really inefficient. Out of a batch of, say, 1,000 cells sometimes only one or two are turned into iPSCs. Obviously, this slows down the pace of research.

Now researchers in Colorado have found a way they say dramatically improves on that. The team says it has to do with controlling the precise levels of reprogramming factors and microRNA and…. Well, you can read how they did it in a news release on Eurekalert.

 

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s