An Atlas of the Human Heart that May Guide Development of New Therapies

By Lisa Kadyk, PhD. CIRM Senior Science Officer

Illustration of a man’s heart – Courtesy Science Photo

I love maps; I still have auto club maps of various parts of the country in my car.  But, to tell the truth, those maps just don’t have as much information as I can get by typing in an address on my cell phone.  Technological advances in global positioning systems, cellular service, data gathering and storage, etc. have made my beloved paper maps a bit of a relic.  

Similarly, technological advances have enabled scientists to begin making maps of human tissues and organs at a level of detail that was previously unimaginable.  Hundreds of thousands of single cells can be profiled in parallel, examining expression of RNA and proteins.  These data, in combination with new three-dimensional spatial analysis techniques and sophisticated computational algorithms, allow high resolution mapping of all the cells in a given tissue or organ.

Given these new capabilities, an international “Human Cell Atlas Consortium” published a white paper in 2017 outlining plans and strategies to build comprehensive reference maps of all human cells, organ by organ.  The intent of building such an atlas is to give a much better understanding of the biology and physiology of normal human tissues, as well as to give new insights into the nature of diseases affecting those tissues and to point the way to developing new therapies. 

One example of this new breed of cartography was published September 24 in the journal Nature, in a paper called simply “Cells of the Human Heart”.   This tour-de-force effort was led by scientists from Harvard Medical School, the Wellcome Sanger Institute, the Max Delbruck Center for Molecular Medicine in Berlin and Imperial College, London.  These teams and their collaborators analyzed about 500,000 cells from six different regions of the healthy adult human heart, using post-mortem organs from 14 donors.  They examined RNA and protein expression and mapped the distribution of different types of cells in each region of the heart.  In addition, they made comparisons of male and female hearts, and identified cells expressing genes known to be associated with different types of heart disease.  

One of the take-home messages from this study is that there is a lot of cellular complexity in the heart – with 11 major cell types (examples include atrial and ventricular cardiomyocytes, fibroblasts and smooth muscle cells), as well as multiple subpopulations within each of those types.  Also notable is the different distribution of cells between the atria (which are at the top of the heart and receive the blood) and ventricles (which are on the bottom of the heart and pump blood out): on average, close to half of the cells in the ventricles are cardiomyocytes, whereas only a third of the cells in the atria are cardiomyocytes.  Finally, there is a significantly higher percentage of cardiomyocytes in the ventricles of women (56%) than in the ventricles of men (47%).    The authors speculate that this latter difference might explain the higher volume of blood pumped per beat in women and lower rates of cardiovascular disease.  

The authors gave a few examples of how their data can be used for a better understanding of heart disease.  For example, they identified a specific subpopulation of cardiomyocytes that expresses genes associated with atrial fibrillation, suggesting that the defect may be associated with those cells.   Similarly, they found that a specific neuronal cell type expresses genes that are associated with a particular ventricular dysfunction associated with heart failure.    In addition, the authors identified which cells in the heart express the highest levels of the SARS-CoV-2 receptor, ACE2, including pericytes, fibroblasts and cardiomyocytes.  

Now that these data are accessible for exploration at www.heartcellatlas.org, I have no doubt that many scientific explorers will begin to navigate to a more complete understanding of both the healthy and diseased heart, and ultimately to new treatments for heart disease.

Precision guided therapy from a patient’s own cells

Dr. Wesley McKeithan, Stanford

Imagine having a tool you could use to quickly test lots of different drugs against a disease to see which one works best. That’s been a goal of stem cell researchers for many years but turning that idea into a reality hasn’t been easy. That may be about to change.

A team of CIRM-funded researchers at the Stanford Cardiovascular Institute and the Human BioMolecular Research Institute in San Diego found a way to use stem cells from patients with a life-threatening heart disease, to refine an existing therapy to make it more effective, with fewer side effects.

The disease in question is called long QT syndrome (LQTS). This is a heart rhythm condition that can cause fast, chaotic heartbeats. Some people with the condition have seizures. In some severe cases, particularly in younger people, LQTS can cause sudden death.

There are a number of medications that can help keep LQTS under control. One of these is mexiletine. It’s effective at stabilizing the heart’s rhythm, but it also comes with some side effects such as stomach pain, chest discomfort, drowsiness, headache, and nausea.

The team wanted to find a way to test different forms of that medication to see if they could find one that worked better and was safer to take. So they used induced pluripotent stem cells (iPSCs) from patients with LQTS to do just that.

iPSCs are cells that are made from human tissue – usually skin – that can then be turned into any other cell in the body. In this case, they took tissue from people with LQTS and then turned them into heart cells called cardiomyocytes, the kind affected by the disease. The beauty of this technique is that even though these cells came from another source, they now look and act like cardiomyocytes affected by LQTS.

Dr. Mark Mercola, Stanford

In a news release Stanford’s Dr. Mark Mercola, the senior author of the study, said using these kinds of cells gave them a powerful tool.

“Drugs for heart disease are typically developed using overly simplified models, like tumor cells engineered in a specific way to mimic a biochemical event. Consequently, drugs like this one, mexiletine, have undesirable properties of concern in treating patients. Here, we used cells from a patient to generate that person’s heart muscle cells in a dish so we could visualize both the good and bad effects of the drug.”

The researchers then used these man-made cardiomyocytes to test various drugs that were very similar in structure to mexiletine. They were looking for ones that could help stabilize the heart arrhythmia but didn’t produce the unpleasant side effects. And they found some promising candidates.

Study first author, Dr. Wesley McKeithan, says the bigger impact of the study is that they were able to show how this kind of cell from patients with a particular disease can be used to “guide drug development and identify better drug improvement and optimization in a large-scale manner.”

 “Our approach shows the feasibility of introducing human disease models early in the drug development pipeline and opens the door for precision drug design to improve therapies for patients.”

The study is published in the journal Cell Stem Cell.

Scientists at UC Davis discover a way to help stem cells repair heart tissue

Researchers Phung Thai (left) and Padmini Sirish were part of a research team seeking stem cell solutions to heart failure care.  Image Credit: UC Davis

Repairing the permanent damage associated with a heart attack or long-term heart disease has been a challenge that scientists have been trying to tackle for a long time. Heart failure affects approximately 5.7 million people in the U.S and it is estimated that this number will increase to 9 million by the year 2030. At a biological level, the biggest challenge to overcome is cell death and thickening of muscles around the heart.

Recently, using stem cells to treat heart disease has shown some promise. However, little progress has been made in this area because the inflammation associated with heart disease decreases the chances of stem cell survival. Fortunately, Dr. Nipavan Chiamvimonvat and her team of researchers at UC Davis have found an enzyme inhibitor that may help stem cells repair damaged heart tissue.

Dr. Nipavan Chiamvimonvat
 Image Credit: UC Davis

The enzyme the team is looking at, known as soluble epoxide hydrolase (or sEH for short), is a known factor in joint and lung disease and is associated with inflammation. The inhibitor Dr. Chiamvimonvat and her team are studying closely is called TPPU and it is meant to block sEH.

In their study, the UC Davis team used human-induced pluripotent stem cells (hiPSCs), a kind of stem cell made by reprogramming skin or blood cells that then has the ability to form all cell types. In this case, the hiPSCs were turned into heart muscle cells.

To evaluate the effectiveness of TPPU, the team then induced heart attacks in six groups of mice. A group of these mice was treated with a combination of TPPU and the newly created heart muscle cells.  The team found that the mice treated with this combination approach had the best outcomes in terms of increased engraftment and survival of transplanted stem cells. Additionally, this group also had less heart muscle thickening and improved heart function. 

The next step for Dr. Chiamvimonvat and her team is to conduct more animal testing in order to obtain the data necessary to test this therapy in clinical trials.

In a press release, Dr. Chiamvimonvat discusses the importance of research and its impact on patients.

““It is my dream as a clinician and scientist to take the problems I see in the clinic to the lab for solutions that benefit our patients.”

The full study was published in Stem Cells Translational Medicine.

 

Stem Cell Roundup: watching brain cells in real time, building better heart cells, and the plot thickens on the adult neurogenesis debate

Here are the stem cell stories that caught our eye this week.

Watching brain cells in real time

This illustration depicts a new method that enables scientists to see an astrocyte (green) physically interacting with a neuronal synapse (red) in real time, and producing an optical signal (yellow). (Khakh Lab, UCLA Health)

Our stem cell photo of the week is brought to you by the Khakh lab at UCLA Health. The lab developed a new method that allows scientists to watch brain cells interact in real time. Using a technique called fluorescence resonance energy-transfer (FRET) microscopy, the team can visualize how astrocytes (key support cells in our central nervous system) and brain cells called neurons form connections in the mouse brain and how these connections are affected by diseases like Alzheimer’s and ALS.

Baljit Khakh, the study’s first author, explained the importance of their findings in a news release:

“This new tool makes possible experiments that we have been wanting to perform for many years. For example, we can now observe how brain damage alters the way that astrocytes interact with neurons and develop strategies to address these changes.”

The study was published this week in the journal Neuron.


Turn up the power: How to build a better heart cell (Todd Dubnicoff)

For years now, researchers have had the know-how to reprogram a donor’s skin cells into induced pluripotent stem cells (iPSCs) and then specialize them into heart muscle cells called cardiomyocytes. The intervening years have focused on optimizing this method to accurately model the biology of the adult human heart as a means to test drug toxicity and ultimately develop therapies for heart disease. Reporting this week in Nature, scientists at Columbia University report an important step toward those goals.

The muscle contractions of a beating heart occur through natural electrical impulses generated by pacemaker cells. In the case of lab-grown cardiomyocytes, introducing mechanical and electrical stimulation is required to reliably generate these cells. In the current study, the research team showed that the timing and amount of stimulation is a critical aspect to the procedure.

The iPS-derived cardiomyocytes have formed heart tissue that closely mimics human heart functionality at over four weeks of maturation. Credit: Gordana Vunjak-Novakovic/Columbia University.

The team tested three scenarios on iPSC-derived cardiomyocytes (iPSC-CMs): no electrical stimulation for 3 weeks, constant stimulation for 3 weeks, and finally, two weeks of increasingly higher stimulation followed by a week of constant stimulation. This third setup mimics the changes that occur in a baby’s heart just before and just after birth.

These scenarios were tested in 12 day-old and 28 day-old iPSC-CMs. The results show that only the 12 day-old cells subjected to the increasing amounts of stimulation gave rise to fully mature heart muscle cells. On top of that, it only took four weeks to make those cells. Seila Selimovic, Ph.D., an expert at the National Institutes of Health who was not involved in the study, explained the importance of these findings in a press release:

“The resulting engineered tissue is truly unprecedented in its similarity to functioning human tissue. The ability to develop mature cardiac tissue in such a short time is an important step in moving us closer to having reliable human tissue models for drug testing.”

Read more at: https://phys.org/news/2018-04-early-bioengineered-human-heart-cells.html#jCp


Yes we do, no we don’t. More confusion over growing new brain cells as we grow older (Kevin McCormack)

First we didn’t, then we did, then we didn’t again, now we do again. Or maybe we do again.

The debate over whether we are able to continue making new neurons as we get older took another twist this week. Scientists at Columbia University said their research shows we do make new neurons in our brain, even as we age.

This image shows what scientists say is a new neuron in the brain of an older human. A new study suggests that humans continue to make new neurons throughout their lives. (Columbia University Irving Medical Center)

In the study, published in the journal Cell Stem Cell, the researchers examined the brains of 28 deceased donors aged 14 to 79. They found similar numbers of precursor and immature neurons in all the brains, suggesting we continue to develop new brain cells as we age.

This contrasts with a UCSF study published just last month which came to the opposite conclusion, that there was no evidence we make new brain cells as we age.

In an interview in the LA Times, Dr. Maura Boldrini, the lead author on the new study, says they looked at a whole section of the brain rather than the thin tissues slices the UCSF team used:

“In science, the absence of evidence is not evidence of absence. If you can’t find something it doesn’t mean that it is not there 100%.”

Well, that resolves that debate. At least until the next study.

Gladstone scientists tackle heart failure by repairing the heart from within

Modern medicine often involves the development of a drug or treatment outside the body, which is then given to a patient to fix, improve or even prevent their condition. But what if you could regenerate or heal the body using the cells and tissue already inside a patient?

Scientists at the Gladstone Institutes are pursuing such a strategy for heart disease. In a CIRM-funded study published today in the journal Cell, the team identified four genes that can stimulate adult heart muscle cells, called cardiomyocytes, to divide and proliferate within the hearts of living mice. This discovery could be further developed as a strategy to repair cardiac tissue damage caused by heart disease and heart attacks.

Regenerating the Heart

Heart disease is the leading cause of death in the US and affects over 24 million people around the world. When patients experience a heart attack, blood flow is restricted to the heart, and parts of the heart muscle are damaged or die due to the lack of oxygen. The heart is unable to regenerate new healthy heart muscle, and instead, cardiac fibroblasts generate fibrous scar tissue to heal the injury. This scar tissue impairs the heart’s ability to pump blood, causing it to work harder and putting patients at risk for future heart failure.

Deepak Srivastava, President of the Gladstone Institutes and a senior investigator there, has dedicated his life’s research to finding new ways to regenerate heart tissue. Previously, his team developed methods to reprogram mouse and human cardiac fibroblasts into beating cardiomyocytes in hopes of one day restoring heart function in patients. The team is advancing this research with the help of a CIRM Discovery Stage research grant, which will aid them in developing a gene therapy product that delivers reprogramming factors into scar tissue cells to regenerate new heart muscle.

In this new study, Srivastava took a slightly different approach and attempted to coax cardiomyocytes, rather than cardiac fibroblasts, to divide and regenerate the heart. During development, fetal cardiomyocytes rapidly divide to create heart tissue. This regenerative ability is lost in adult cardiomyocytes, which are unable to divide because they’ve already exited the cell cycle (a series of phases that a cell goes through that ultimately results in its division).

Deepak Srivastava (left) and first author Tamer Mohamed (right). Photo credits: Diana Rothery.

Unlocking proliferative potential

Srivastava had a hunch that genes specifically involved in the cell division could be used to jump-start an adult cardiomyocyte’s re-entry into the cell cycle. After some research, they identified four genes (referred to as 4F) involved in controlling cell division. When these genes were turned on in adult cardiomyocytes, the cells started to divide and create new heart tissue.

This 4F strategy worked in mouse and rat cardiomyocytes and also was successful in stimulating cell division in 15%-20% of human cardiomyocytes. When they injected 4F into the hearts of mice that had suffered heart attacks, they observed an improvement in their heart function after three months and a reduction in the size of the scar tissue compared to mice that did not receive the injection.

The team was able to further refine their method by replacing two of the four genes with chemical inhibitors that had similar functions. Throughout the process, the team did not observe the development of heart tumors caused by the 4F treatment. They attributed this fact to the short-term expression of 4F in the cardiomyocytes. However, Srivastava expressed caution towards using this method in a Gladstone news release:

“In human organs, the delivery of genes would have to be controlled carefully, since excessive or unwanted cell division could cause tumors.”

First stop heart, next stop …

This study suggests that it’s possible to regenerate our tissues and organs from within by triggering adult cells to re-enter the cell cycle. While more research is needed to ensure this method is safe and worthy of clinical development, it could lead to a regenerative treatment strategy for heart failure.

Srivastava will continue to unravel the secrets to the proliferative potential of cardiomyocytes but predicts that other labs will pursue similar methods to test the regenerative potential of adult cells in other tissues and organs.

“Heart cells were particularly challenging because when they exit the cell cycle after birth, their state is really locked down—which might explain why we don’t get heart tumors. Now that we know our method is successful with this difficult cell type, we think it could be used to unlock other cells’ potential to divide, including nerve cells, pancreatic cells, hair cells in the ear, and retinal cells.”


Related Links:

Stem Cell Roundup: Improving muscle function in muscular dystrophy; Building a better brain; Boosting efficiency in making iPSC’s

Here are the stem cell stories that caught our eye this week.

Photos of the week

TGIF! We’re so excited that the weekend is here that we are sharing not one but TWO amazing stem cell photos of the week.

RMI IntestinalChip

Image caption: Cells of a human intestinal lining, after being placed in an Intestine-Chip, form intestinal folds as they do in the human body. (Photo credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute)

Photo #1 is borrowed from a blog we wrote earlier this week about a new stem cell-based path to personalized medicine. Scientists at Cedars-Sinai are collaborating with a company called Emulate to create intestines-on-a-chip using human stem cells. Their goal is to create 3D-organoids that represent the human gut, grow them on chips, and use these gut-chips to screen for precision medicines that could help patients with intestinal diseases. You can read more about this gut-tastic research here.

Young mouse heart 800x533

Image caption: UCLA scientists used four different fluorescent-colored proteins to determine the origin of cardiomyocytes in mice. (Image credit: UCLA Broad Stem Cell Research Center/Nature Communications)

Photo #2 is another beautiful fluorescent image, this time of a cross-section of a mouse heart. CIRM-funded scientists from UCLA Broad Stem Cell Research Center are tracking the fate of stem cells in the developing mouse heart in hopes of finding new insights that could lead to stem cell-based therapies for heart attack victims. Their research was published this week in the journal Nature Communications and you can read more about it in a UCLA news release.

Stem cell injection improves muscle function in muscular dystrophy mice

Another study by CIRM-funded Cedars-Sinai scientists came out this week in Stem Cell Reports. They discovered that they could improve muscle function in mice with muscular dystrophy by injecting cardiac progenitor cells into their hearts. The injected cells not only improved heart function in these mice, but also improved muscle function throughout their bodies. The effects were due to the release of microscopic vesicles called exosomes by the injected cells. These cells are currently being used in a CIRM-funded clinical trial by Capricor therapeutics for patients with Duchenne muscular dystrophy.

How to build a better brain (blob)

For years stem cell researchers have been looking for ways to create “mini brains”, to better understand how our own brains work and develop new ways to repair damage. So far, the best they have done is to create blobs, clusters of cells that resemble some parts of the brain. But now researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have come up with a new method they think can advance the field.

Their approach is explained in a fascinating article in the journal Science News, where lead researcher Bennet Novitch says finding the right method is like being a chef:

“It’s like making a cake: You have many different ways in which you can do it. There are all sorts of little tricks that people have come up with to overcome some of the common challenges.”

Brain cake. Yum.

A more efficient way to make iPS cells

17yamanaka-master768

Shinya Yamanaka. (Image source: Ko Sasaki, New York Times)

In 2006 Shinya Yamanaka discovered a way to take ordinary adult cells and reprogram them into embryonic-like stem cells that have the ability to turn into any other cell in the body. He called these cells induced pluripotent stem cells or iPSC’s. Since then researchers have been using these iPSC’s to try and develop new treatments for deadly diseases.

There’s been a big problem, however. Making these cells is really tricky and current methods are really inefficient. Out of a batch of, say, 1,000 cells sometimes only one or two are turned into iPSCs. Obviously, this slows down the pace of research.

Now researchers in Colorado have found a way they say dramatically improves on that. The team says it has to do with controlling the precise levels of reprogramming factors and microRNA and…. Well, you can read how they did it in a news release on Eurekalert.

 

 

 

Making beating heart cells from stem cells just got easier

Here’s a heartwarming story for the holidays. Scientists from the Salk Institute in La Jolla, California have figured out a simple, easy way to make beating heart cells from human stem cells that will aid research and therapy development for heart disease. Their study, which received funding support from CIRM, was published last week in the journal Genes & Development.

The Salk team discovered that making beating heart tissue from human stem cells is as simple as turning off a single gene called YAP. You might be wondering how the team settled on this gene and no, it doesn’t involve pulling a random gene name out of a hat.

In previous studies, the researchers found that two cell signaling pathways, Wnt and Activin, are crucial for the development of embryonic stem cells into specialized cells like cardiomyocytes (beating heart cells). This research led to the discovery of a third pathway, controlled by YAP, which sets up a road block for cell specialization and keeps stem cells in their undifferentiated state.

Only hESCs without YAP (right panel) make heart cells (green) in one step. Blue dye marks cell nuclei. (Salk Institute)

The team deleted YAP from these stem cells using CRISPR gene editing technology, and then treated the stem cells to the Activin signaling molecule. Without YAP, exposure to Activin prompted the stem cells to develop immediately into beating cardiomyocytes that you can see beating away in the Salk video below.

Dr. Kathy Jones, Salk professor and senior author on the study, explained why this discovery is important to the field in a news release:

“This discovery is really exciting because it means we can potentially create a reliable protocol for taking normal cells and moving them very efficiently from stem cells to heart cells. Researchers and commercial companies want to easily generate cardiomyocytes to study their capacity for repair in heart attacks and disease—this brings us one step closer to being able to do that.”

First author, Conchi Estarás, emphasized how their new method for making cardiomyocytes is attractive not only for its simplicity, but also for its cost-effectiveness in enabling large-scale manufacturing of these cells for treatment.

“Instead of requiring two steps to achieve specialization, removing YAP cut it to just one step. That would mean a huge savings for industry in terms of reagent materials and expense.”

Looking ahead, Jones and her team do not plan on deleting the YAP gene from stem cells because of the potential side effects cause by the loss of YAP’s other cellular functions. Instead, they will be using commercially available molecules that can temporarily inhibit the function of YAP in hopes that this less permanent action will still readily produce beating heart cells from stem cells.

Kathy Jones and Conchi Estarás. (Image courtesy of Salk Institute)

Stem cell stories that caught our eye: bubble baby therapy a go in UK, in-utero stem cell trial and novel heart disease target

There were lots of CIRM mentions in the news this week. Here are two brief recaps written by Karen Ring to get you up to speed. A third story by Todd Dubnicoff summarizes an promising finding related to heart disease by researchers in Singapore.  

CIRM-funded “bubble baby” disease therapy gets special designation by UK.
Orchard Therapeutics, a company based in the UK and the US, is developing a stem cell-based gene therapy called OTL-101 to treat a primary immune disease called adenosine-deaminase deficient severe combined immunodeficiency (ADA-SCID), also known as “bubble baby disease”. CIRM is funding a Phase 1/2 clinical trial led by Don Kohn of UCLA in collaboration with Orchard and the University College in London.

In July, the US Food and Drug Administration (FDA) awarded OTL-101 Rare Pediatric Disease Designation (read more about it here), which makes the therapy eligible for priority review by the FDA, and could give it a faster route to being made more widely available to children in need.

On Tuesday, Orchard announced further good news that OTL-101 received “Promising Innovative Medicine Designation” by the UK’s Medicines and Healthcare Products Regulatory Agency (MHRA). In a news release, the company explained how this designation bodes well for advancing OTL-101 from clinical trials into patients,

“The designation as Promising Innovative Medicine is the first step of a two-step process under which OTL-101 can benefit from the Early Access to Medicine Scheme (“EAMS”). Nicolas Koebel, Senior Vice President for Business Operations at Orchard, added: “With this PIM designation we can potentially make OTL-101 available to UK patients sooner under the Early Access to Medicine Scheme”.

CIRM funded UCSF clinical trial mentioned in SF Business Times
Ron Leuty, reporter at the San Francisco Business Times, published an article about a CIRM-funded trial out of UCSF that is targeting a rare genetic blood disease called alpha thalassemia major, describing it as, “The world’s first in-utero blood stem cell transplant, soon to be performed at the University of California, San Francisco, could point the way toward pre-birth cures for a range of blood diseases, such as sickle cell disease.”

Alpha Thalassemia affects the ability of red blood cells to carry oxygen because of a reduction in a protein called hemoglobin. The UCSF trial, spearheaded by UCSF Pediatric surgeon Dr. Tippi MacKenzie, is hoping to use stem cells from the mother to treat babies in the womb to give them a better chance at surviving after birth.

In an interview with Leuty, Tippi explained,

“Our goal is to put in enough cells so the baby won’t need another transplant. But even if we fall short, if we can just establish 1 percent maternal cells circulating in the child, it will establish tolerance and then they can get the booster transplant.”

She also emphasized the key role that CIRM funded played in the development and launch of this clinical trial.

“CIRM is about more than funding for studies, MacKenzie said. Agency staff has provided advice about how to translate animal studies into work in humans, she said, as well as hiring an FDA consultant, writing an investigational new drug application and setting up a clinical protocol.”

“I’m a clinician, but running a clinical trial is different,” MacKenzie said. “CIRM’s been incredibly helpful in helping me navigate that.”

Heart, heal thyself: the story of Singheart
When you cut your finger or scrape a knee, a scab forms, allowing the skin underneath to regenerate and repair itself. The heart is not so lucky – it has very limited self-healing abilities. Instead, heart muscle cells damaged after a heart attack form scar tissue, making each heart beat less efficient. This condition can lead to chronic heart disease, the number one killer of both men and women in the US.

A mouse heart cell with 2 nuclei (blue) and Singheart RNA labelled by red fluorescent dyes.
Credit: A*STAR’s Genome Institute of Singapore

Research has shown that newborn mice retain the ability to completely regenerate and repair injuries to the heart because their heart muscle cells, or cardiomyocytes, are still able to divide and replenish damaged cells. But by adulthood, the mouse cardiomyocytes lose the ability to stimulate the necessary cell division processes. A research team in Singapore wondered what was preventing cardiomyocytes cell division in adult mice and if there was some way to lift that block.

This week in Nature Communications, they describe the identification of a molecule they call Singheart that may be the answer to their questions. Using tools that allow the analysis of gene activity in single cells revealed that a rare population of diseased cardiomyocytes are able to crank up genes related to cell division. And further analysis showed Singheart, a specialized genetic molecule called a long non-coding RNA, played a role in blocking this cell division gene.

As lead author Dr. Roger Foo, a principal investigator at Genome Institute of Singapore (GIS) and the National University Health System (NUHS), explained in a press release, these findings may lead to new self-healing strategies for heart disease,

“There has always been a suspicion that the heart holds the key to its own healing, regenerative and repair capability. But that ability seems to become blocked as soon as the heart is past its developmental stage. Our findings point to this potential block that when lifted, may allow the heart to heal itself.”

Understanding two heart problems by studying the domino effect of one gene network

Although heart muscle cells, or cardiomyocytes, are specialized to help pump blood to the organs, they nonetheless carry all the genetic instructions for becoming a nerve cell, an intestinal cell, a liver or any cell type in the body. But at the moment in time that the fetal heart begins to develop, master switch proteins, called transcription factors, act like the first tile in an extremely complex pattern of dominos and set off a chain of events which lead to the activation of heart muscle specific genes in cardiomyocytes as well as the silencing of genes important for the development other cells types.

55e35-20110130_cardiomyocytes

cardiomyocytes

It’s truly amazing that this process comes together to create functioning hearts in the about 355,000 babies that are born in the world each day. But it isn’t always flawless as heart defects occur in about 1% of all live births. By studying a family with a history of heart defects, scientists at the Gladstone Institutes have gained a deeper understanding of how gene networks go awry,  causing heart defects as well as heart disease later in life. This CIRM-funded work was published today in Cell.

Half the children in the family studied by the Gladstone team were born with a hole in the wall between the two chambers of the heart. Back in 2003, the family approached Deepak Srivastava, head of the cardiovascular institute at Gladstone, for help. A genetic analysis by Srivastava’s team found that all of the affected children carried a mutation in the GATA4 gene, which encodes a heart specific transcription factor protein. Seven years later the children developed heart disease that led to weaker heart pumping. Although the two heart problems were not related, they suspected both were caused by the GATA4 mutation and sought to understand how that could be the case.

Srivastava’s team sought to understand how the GATA4 mutation could be causing both health problems. They collected skin samples from the affected children and generated cardiomyocytes using the induced pluripotent stem cell technique. Cells were also collected from the children’s healthy siblings. In the laboratory, the cells were analyzed for how well they functioned, such as their ability to contract. All of these tests showed that the cells carrying the GATA4 mutation had impaired function compared to the healthy cells. These findings provide a basis for the heart disease found in the children during their teens.

In terms of the heart wall defect, the team examined the GATA4 protein’s interaction with the protein TBX5, another transcription factor that is also mutated in cases of this defect. Both proteins regulate genes by directly binding to DNA as well as interacting with each other. In cells with the defective GATA4, the research discovered TBX5 did not bind well to the DNA. The lack of TBX5 led to a disruption in the activation of genes that play a role in the development of the heart wall.

TBX5 and GATA4 also work together in cardiomyocytes to silence genes that play a role in other cell types. But the scientists found that the because the GATA4 mutation hindered its interaction with TBX5, those non-heart specific genes we’re no longer repressed causing further disruption to proper cardiomyocyte development. Srivastava summed up these results in an institute press release:

srivastava-profile

Deepak Srivastava

“By studying the patients’ heart cells in a dish, we were able to figure out why their hearts were not pumping properly. Investigating their genetic mutation revealed a whole network of genes that went awry, first causing septal [heart wall] defects and then the heart muscle dysfunction.”

Now, because GATA4 and TBX5 are those first domino tiles in very intricate networks of genes, targeting those proteins for future therapy development wouldn’t be wise. Their effects are so widespread that blocking their actions would do more harm than good. But finding drugs that might affect only a branch of GATA4/TBX5 actions could result in new therapy approaches to heart defects and disease.

deepak-yen-sin-22 Deepak Srivastava and Yen-Sin Ang [Photo: Chris Goodfellow, Gladstone Institutes]

Yen-Sin Ang, the first author on the report, thinks these finding could prove fruitful for other diseases as well:

“It’s amazing that by studying genes in a two-dimensional cluster of heart cells, we were able to discover insights into a disease that affects a complicated three-dimensional organ. We think this conceptual framework could be used to study other diseases caused by mutations in proteins that serve as master regulators of whole gene networks.”

Using skin cells to repair damaged hearts

heart-muscle

Heart muscle  cells derived from skin cells

When someone has a heart attack, getting treatment quickly can mean the difference between life and death. Every minute delay in getting help means more heart cells die, and that can have profound consequences. One study found that heart attack patients who underwent surgery to re-open blocked arteries within 60 minutes of arriving in the emergency room had a six times greater survival rate than people who had to wait more than 90 minutes for the same treatment.

Clearly a quick intervention can be life-saving, which means an approach that uses a patient’s own stem cells to treat a heart attack won’t work. It simply takes too long to harvest the healthy heart cells, grow them in the lab, and re-inject them into the patient. By then the damage is done.

Now a new study shows that an off-the-shelf approach, using donor stem cells, might be the most effective way to go. Scientists at Shinshu University in Japan, used heart muscle stem cells from one monkey, to repair the damaged hearts of five other monkeys.

In the study, published in the journal Nature, the researchers took skin cells from a macaque monkey, turned those cells into induced pluripotent stem cells (iPSCs), and then turned those cells into cardiomyocytes or heart muscle cells. They then transplanted those cardiomyocytes into five other monkeys who had experienced an induced heart attack.

After 3 months the transplanted monkeys showed no signs of rejection and their hearts showed improved ability to contract, meaning they were pumping blood around the body more powerfully and efficiently than before they got the cardiomyocytes.

It’s an encouraging sign but it comes with a few caveats. One is that the monkeys used were all chosen to be as close a genetic match to the donor monkey as possible. This reduced the risk that the animals would reject the transplanted cells. But when it comes to treating people, it may not be feasible to have a wide selection of heart stem cell therapies on hand at every emergency room to make sure they are a good genetic match to the patient.

The second caveat is that all the transplanted monkeys experienced an increase in arrhythmias or irregular heartbeats. However, Yuji Shiba, one of the researchers, told the website ResearchGate that he didn’t think this was a serious issue:

“Ventricular arrhythmia was induced by the transplantation, typically within the first four weeks. However, this post-transplant arrhythmia seems to be transient and non-lethal. All five recipients of [the stem cells] survived without any abnormal behaviour for 12 weeks, even during the arrhythmia. So I think we can manage this side effect in clinic.”

Even with the caveats, this study demonstrates the potential for a donor-based stem cell therapy to treat heart attacks. This supports an approach already being tested by Capricor in a CIRM-funded clinical trial. In this trial the company is using donor cells, derived from heart stem cells, to treat patients who developed heart failure after a heart attack. In early studies the cells appear to reduce scar tissue on the heart, promote blood vessel growth and improve heart function.

The study from Japan shows the possibilities of using a ready-made stem cell approach to helping repair damage caused by a heart attacks. We’re hoping Capricor will take it from a possibility, and turn it into a reality.

If you would like to read some recent blog posts about Capricor go here and here.