Scientists repair spinal cord injuries in monkeys using human stem cells

Human neuronal stem cells extend axons (green). (Image UCSD)

An exciting development for spinal cord injury research was published this week in the journal Nature Medicine. Scientists from the University of San Diego School of Medicine transplanted human neural progenitor cells (NPCs) into rhesus monkeys that had spinal cord injuries. These cells, which are capable of turning into other cells in the brain, survived and robustly developed into nerve cells that improved the monkeys’ use of their hands and arms.

The scientists grafted 20 million human NPCs derived from embryonic stem cells into two-week-old spinal cord lesions in the monkeys. These stem cells were delivered with growth factors to improve their survival and growth. The monkeys were also treated with immunosuppressive drugs to prevent their immune system from rejecting the human cells.

After nine months, they discovered that the NPCs had developed into nerve cells within the injury site that extended past the injury into healthy tissue. These nerve extensions are called axons, which allow nerves to transmit electrical signals and instructions to other brain cells. During spinal cord injury, nerve cells and their axon extensions are damaged. Scientists have found it difficult to regenerate these damaged cells because of the inhibitory growth environment created at the injury site. You can compare it to the build-up of scar tissue after a heart attack. The heart has difficulty regenerating healthy heart muscle, which is instead replaced by fibrous scar tissue.

Excitingly, the UCSD team was able to overcome this hurdle in their current study. When they transplanted human NPCs with growth factors into the monkeys, they found that the cells were not affected by the inhibitory environment of the injury and were able to robustly develop into nerve cells and send out axon extensions.

Large numbers of human axons (green) emerge from a lesion/graft sites. Many axons travel along the interface (indicated by arrows) between spinal cord white matter (nerve fibers covered with myelin) and spinal cord gray matter (nerves without the whitish myelin sheathing). Image courtesy of Mark Tuszynski, UC San Diego School of Medicine.

The senior scientist on the study, Dr. Mark Tuszynski, explained how their findings in a large animal model are a huge step forward for the field in a UCSD Health news release:

“While there was real progress in research using small animal models, there were also enormous uncertainties that we felt could only be addressed by progressing to models more like humans before we conduct trials with people. We discovered that the grafting methods used with rodents didn’t work in larger, non-human primates. There were critical issues of scale, immunosuppression, timing and other features of methodology that had to be altered or invented. Had we attempted human transplantation without prior large animal testing, there would have been substantial risk of clinical trial failure, not because neural stem cells failed to reach their biological potential but because of things we did not know in terms of grafting and supporting the grafted cells.”

Dr. Tuszynski is a CIRM-grantee whose earlier research involved optimizing stem cell treatments for rodent models of spinal cord injury. We’ve blogged about that research previously on the Stem Cellar here and here.

Tuszynski recently was awarded a CIRM discovery stage research grant to develop a candidate human neural stem cell line that is optimized to repair the injured spinal cord and can be used in human clinical trials. He expressed cautious optimism about the future of this treatment for spinal cord injury patients emphasizing the need for patience and more research before arriving at clinical trials:

“We seem to have overcome some major barriers, including the inhibitory nature of adult myelin against axon growth. Our work has taught us that stem cells will take a long time to mature after transplantation to an injury site, and that patience will be required when moving to humans. Still, the growth we observe from these cells is remarkable — and unlike anything I thought possible even ten years ago. There is clearly significant potential here that we hope will benefit humans with spinal cord injury.”

Related Links:

Stem Cell Agency invests in stem cell therapies targeting sickle cell disease and solid cancers

Today CIRM’s governing Board invested almost $10 million in stem cell research for sickle cell disease and patients with solid cancer tumors.

Clinical trial for sickle cell disease

City of Hope was awarded $5.74 million to launch a Phase 1 clinical trial testing a stem cell-based therapy for adult patients with severe sickle cell disease (SCD). SCD refers to a group of inherited blood disorders that cause red blood cells to take on an abnormal, sickle shape. Sickle cells clog blood vessels and block the normal flow of oxygen-carrying blood to the body’s tissues. Patients with SCD have a reduced life expectancy and experience various complications including anemia, stroke, organ damage, and bouts of excruciating pain.

A mutation in the globlin gene leads to sickled red blood cells that clog up blood vessels

CIRM’s President and CEO, Maria T. Millan, explained in the Agency’s news release:

Maria T. Millan

“The current standard of treatment for SCD is a bone marrow stem cell transplant from a genetically matched donor, usually a close family member. This treatment is typically reserved for children and requires high doses of toxic chemotherapy drugs to remove the patient’s diseased bone marrow. Unfortunately, most patients do not have a genetically matched donor and are unable to benefit from this treatment. The City of Hope trial aims to address this unmet medical need for adults with severe SCD.”

The proposed treatment involves transplanting blood-forming stem cells from a donor into a patient who has received a milder, less toxic chemotherapy treatment that removes some but not all of the patient’s diseased bone marrow stem cells. The donor stem cells are depleted of immune cells called T cells prior to transplantation. This approach allows the donor stem cells to engraft and create a healthy supply of non-diseased blood cells without causing an immune reaction in the patient.

Joseph Rosenthal, the Director of Pediatric Hematology and Oncology at the City of Hope and lead investigator on the trial, mentioned that CIRM funding made it possible for them to test this potential treatment in a clinical trial.

“The City of Hope transplant program in SCD is one of the largest in the nation. CIRM funding will allow us to conduct a Phase 1 trial in six adult patients with severe SCD. We believe this treatment will improve the quality of life of patients while also reducing the risk of graft-versus-host disease and transplant-related complications. Our hope is that this treatment can be eventually offered to SCD patients as a curative therapy.”

This is the second clinical trial for SCD that CIRM has funded – the first being a Phase 1 trial at UCLA treating SCD patients with their own genetically modified blood stem cells. CIRM is also currently funding research at Children’s Hospital of Oakland Research Institute and Stanford University involving the use of CRISPR gene editing technologies to develop novel stem cell therapies for SCD patients.

Advancing a cancer immunotherapy for solid tumors

The CIRM Board also awarded San Diego-based company Fate Therapeutics $4 million to further develop a stem cell-based therapy for patients with advanced solid tumors.

Fate is developing FT516, a Natural Killer (NK) cell cancer immunotherapy derived from an engineered human induced pluripotent stem cell (iPSC) line. NK cells are part of the immune system’s first-line response to infection and diseases like cancer. Fate is engineering human iPSCs to express a novel form of a protein receptor, called CD16, and is using these cells as a renewable source for generating NK cells. The company will use the engineered NK cells in combination with an anti-breast cancer drug called trastuzumab to augment the drug’s ability to kill breast cancer cells.

“CIRM sees the potential in Fate’s unique approach to developing cancer immunotherapies. Different cancers require different approaches that often involve a combination of treatments. Fate’s NK cell product is distinct from the T cell immunotherapies that CIRM also funds and will allow us to broaden the arsenal of immunotherapies for incurable and devastating cancers,” said Maria Millan.

Fate’s NK cell product will be manufactured in large batches made from a master human iPSC line. This strategy will allow them to treat a large patient population with a well characterized, uniform cell product.

The award Fate received is part of CIRM’s late stage preclinical funding program, which aims to fund the final stages of research required to file an Investigational New Drug (IND) application with the US Food and Drug Administration. If the company is granted an IND, it will be able to launch a clinical trial.

Scott Wolchko, President and CEO of Fate Therapeutics, shared his company’s goals for launching a clinical trial next year with the help of CIRM funding:

“Fate has more than a decade of experience in developing human iPSC-derived cell products. CIRM funding will enable us to complete our IND-enabling studies and the manufacturing of our clinical product. Our goal is to launch a clinical trial in 2019 using the City of Hope CIRM Alpha Stem Cell Clinic.”

Stem Cell Roundup: Lab-grown meat, stem cell vaccines for cancer and a free kidney atlas for all

Here are the stem cell stories that caught our eye this week.

Cool Stem Cell Photo: Kidneys in the spotlight

At an early stage, a nephron forming in the human kidney generates an S-shaped structure. Green cells will generate the kidneys’ filtering device, and blue and red cells are responsible for distinct nephron activities. (Image/Stacy Moroz and Tracy Tran, Andrew McMahon Lab, USC Stem Cell)

I had to take a second look at this picture when I first saw it. I honestly thought it was someone’s scientific interpretation of Vincent van Gogh’s Starry Night. What this picture actually represents is a nephron. Your kidney has over a million nephrons packed inside it. These tiny structures filter our blood and remove waste products by producing urine.

Scientists at USC Stem Cell are studying kidney development in animals and humans in hopes of gaining new insights that could lead to improved stem cell-based technologies that more accurately model human kidneys (by coincidence, we blogged about another human kidney study on Tuesday). Yesterday, these scientists published a series of articles in the Journal of American Society of Nephrology that outlines a new, open-source kidney atlas they created. The atlas contains a catalog of high resolution images of different structures representing the developing human kidney.

CIRM-funded researcher Andrew McMahon summed it up nicely in a USC news release:

“Our research bridges a critical gap between animal models and human applications. The data we collected and analyzed creates a knowledge-base that will accelerate stem cell-based technologies to produce mini-kidneys that accurately represent human kidneys for biomedical screening and replacement therapies.”

And here’s a cool video of a developing kidney kindly provided by the authors of this study.

Video Caption: Kidney development begins with a population of “progenitor cells” (green), which are similar to stem cells. Some progenitor cells (red) stream out and aggregate into a ball, the renal vesicle (gold). As each renal vesicle grows, it radically morphs into a series of shapes — can you spot the two S-shaped bodies (green-orange-pink structures)? – and finally forms a nephron. Each human kidney contains one million mature nephrons, which form an expansive tubular network (white) that filters the blood, ensuring a constant environment for all of our body’s functions. (Video courtesy of Nils Lindstorm, Andy McMahon, Seth Ruffins and the Microscopy Core Facility at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at the Keck School of Medicine of USC)

Lab-grown hamburgers coming to a McDonald’s near you…

“Lab-grown meat is coming, whether you like it or not” sure makes a splashy headline! This week, Wired magazine featured two Bay Area startup companies, Just For All and Finless Foods, dedicated to making meat-in-a-dish in hopes of one day reducing our dependence on livestock. The methods behind their products aren’t exactly known. Just For All is engineering “clean meat” from cells. On the menu currently are cultured chorizo, nuggets, and foie gras. I bet you already guessed what Finless Foods specialty is. The company is isolating stem-like muscle progenitor cells from fish meat in hopes of identifying a cell that will robustly create the cell types found in fish meat.

Just’s tacos made with lab-grown chorizo. (Wired)

I find the Wired article particularly interesting because of the questions and issues Wired author Matt Simon raises. Are clean meat companies really more environmentally sustainable than raising livestock? Currently, there isn’t enough data to prove this is the case, he argues. And what about the feasibility of convincing populations that depend on raising livestock for a living to go “clean”? And what about flavor and texture? Will people be willing to eat a hamburger that doesn’t taste and ooze in just the right way?

As clean meat technologies continue to advance and become more affordable, I’ll be interested to see what impact they will have on our eating habits in the future.

Induced pluripotent stem cells could be the next cancer vaccine

Our last story is about a new Cell Stem Cell study that suggests induced pluripotent stem cells (iPSCs) could be developed into a vaccine against cancer. CIRM-funded scientist Joseph Wu and his team at Stanford University School of Medicine found that injecting iPSCs into mice that were transplanted with breast cancer cells reduced the formation of tumors.

The team dug deeper and discovered that iPSCs shared similarities with cancer cells with respect to the panel of genes they express and the types of proteins they carry on their cell surface. This wasn’t surprising to them as both cells represent an immature development stage. Because of these similarities, injecting iPSCs primed the mouse’s immune system to recognize and reject similar cells like cancer cells.

The team will next test their approach on human cancer cells in the lab. Joseph Wu commented on the potential future of iPSC-based vaccines for cancer in a Stanford news release:

“Although much research remains to be done, the concept itself is pretty simple. We would take your blood, make iPS cells and then inject the cells to prevent future cancers. I’m very excited about the future possibilities.”


Seeing is believing. Proof a CIRM-funded therapy is making a difference


Thelma, participant in the CAMELLIA clinical trial

You have almost certainly never heard of Thelma, or met her, or know anything about her. She’s a lady living in England who, if it wasn’t for a CIRM-funded therapy, might not be living at all. She’s proof that what we do, is helping people.

Thelma is featured in a video about a treatment for acute myeloid leukemia, one of the most severe forms of blood cancer. Thelma took part in a clinical trial, called CAMELLIA, at Oxford Cancer Centre in Oxford, UK. The clinical trial uses a therapy that blocks a protein called CD47 that is found on the surface of cancer cells, including cancer stem cells which can evade traditional therapies. The video was shot to thank the charity Bloodwise for raising the funds to pay for the trial.

Prof. Paresh Vyas of Oxford University, who was part of the clinical trial team that treated Thelma, says patients with this condition face long odds.

“Patients with acute myeloid leukemia have the most aggressive blood cancer. We really haven’t had good treatments for this condition for the last 40 years.”

While this video was shot in England, featuring English nurses and doctors and patients, the therapy itself was developed here in California, first at Stanford University under the guidance of Irv Weissman and, more recently, at Forty Seven Inc. That company is now about to test their approach in a CIRM-funded clinical trial here in the US.

This is an example of how CIRM doesn’t just fund research, we invest in it. We help support it at every stage, from the earliest research through to clinical trials. Without our early support this work may not have made it this far.

The Forty Seven Inc. therapy uses the patient’s own immune system to help fight back against cancer stem cells. It’s looking very promising. But you don’t have to take our word for it. Take Thelma’s.

California gets first royalty check from Stem Cell Agency investments

COH image

CIRM recently shared in a little piece of history. The first royalty check, based on CIRM’s investment in stem cell research, was sent to the California State Treasurer’s office from City of Hope. It’s the first of what we hope will be many such checks, helping repay, not just the investment the state made in the field, but also the trust the voters of California showed when they created CIRM.

The check, for $190,345.87, was for a grant we gave City of Hope back in 2012 to develop a therapy for glioblastoma, one of the deadliest forms of brain cancer. That has led to two clinical trials and a number of offshoot inventions that were subsequently licensed to a company called Mustang Bio.

Christine Brown, who is now the principal investigator on the project, is quoted in a front page article in the San Francisco Chronicle, on the significance of the check for California:

“This is an initial payment for the recognition of the potential of this therapy. If it’s ultimately approved by the FDA as a commercial product, this could be a continued revenue source.”

In the same article, John Zaia, Director of the City of Hope Alpha Stem Cell Clinic, says this also reflects the unique nature of CIRM:

“I think this illustrates that a state agency can actually fund research in the private community and get a return on its investment. It’s something that’s not done in general by other funding agencies such as the National Institutes of Health, and this is a proof of concept that it can work.”

Maria Millan, CIRM’s President & CEO, says the amount of the payment is not the most significant part of this milestone – after all CIRM has invested more than $2.5 billion in stem cell research since 2004. She says the fact that we are starting to see a return on the investment is important and reflects some of the many benefits CIRM brings to the state.

“It’s a part of the entire picture of the return to California. In terms of what it means to the health of Californians, and access to these transformative treatments, as well as the fact that we are growing an industry.”


Creating a platform to help transplanted stem cells survive after a heart attack


Developing new tools to repair damaged hearts

Repairing, even reversing, the damage caused by a heart attack is the Holy Grail of stem cell researchers. For years the Grail seemed out of reach because the cells that researchers transplanted into heart attack patients didn’t stick around long enough to do much good. Now researchers at Stanford may have found a way around that problem.

In a heart attack, a blockage cuts off the oxygen supply to muscle cells. Like any part of our body starved off oxygen the muscle cells start to die, and as they do the body responds by creating a layer of scars, effectively walling off the dead tissue from the surviving healthy tissue.  But that scar tissue makes it harder for the heart to effectively and efficiently pump blood around the body. That reduced blood flow has a big impact on a person’s ability to return to a normal life.

In the past, efforts to transplant stem cells into the heart had limited success. Researchers tried pairing the cells with factors called peptides to help boost their odds of surviving. That worked a little better but most of the peptides were also short-lived and weren’t able to make a big difference in the ability of transplanted cells to stick around long enough to help the heart heal.

Slow and steady approach

Now, in a CIRM-funded study published in the journal Nature Biomedical Engineering, a team at Stanford – led by Dr. Joseph Wu – believe they have managed to create a new way of delivering these cells, one that combines them with a slow-release delivery mechanism to increase their chances of success.

The team began by working with a subset of bone marrow cells that had been shown in previous studies to have what are called “pro-survival factors.” Then, working in mice, they identified three peptides that lived longer than other peptides. That was step one.

Step two involved creating a matrix, a kind of supporting scaffold, that would enable the researchers to link the three peptides and combine them with a delivery system they hoped would produce a slow release of pro-survival factors.

Step three was seeing if it worked. Using fluorescent markers, they were able to show, in laboratory tests, that unlinked peptides were rapidly released over two or three days. However, the linked peptides had a much slower release, lasting more than 15 days.

Out of the lab and into animals

While these petri dish experiments looked promising the big question was could this approach work in an animal model and, ultimately, in people. So, the team focused on cardiac progenitor cells (CPCs) which have shown potential to help repair damaged hearts, but which also have a low survival rate when transplanted into hearts that have experienced a heart attack.

The team delivered CPCs to the hearts of mice and found the cells without the pro-survival matrix didn’t last long – 80 percent of the cells were gone four days after they were injected, 90 percent were gone by day ten. In contrast the cells on the peptide-infused matrix were found in large numbers up to eight weeks after injection. And the cells didn’t just survive, they also engrafted and activated the heart’s own survival pathways.

Impact on heart

The team then tested to see if the treatment was helping improve heart function. They did echocardiograms and magnetic resonance imaging up to 8 weeks after the transplant surgery and found that the mice treated with the matrix combination had a statistically improved left ventricular function compared to the other mice.

Jayakumar Rajadas, one of the authors on the paper told CIRM that, because the matrix was partly made out of collagen, a substance the FDA has already approved for use in people, this could help in applying for approval to test it in people in the future:

“This paper is the first comprehensive report to demonstrate an FDA-compliant biomaterial to improve stem cell engraftment in the ischemic heart. Importantly, the biomaterial is collagen-based and can be readily tested in humans once regulatory approval is obtained.”


New Insights into Adult Neurogenesis

To be a successful scientist, you have to expect the unexpected. No biological process or disease mechanism is ever that simple when you peel off its outer layers. Overtime, results that prove a long-believed theory can be overturned by new results that suggest an alternate theory.

UCSF scientist Arturo Alvarez-Buylla is well versed with the concept of unexpected results. His lab’s research is focused on understanding adult neurogenesis – the process of creating new nerve cells (called neurons) from neural stem cells (NSCs).

For a long time, the field of adult neurogenesis has settled on the theory that brain stem cells divide asymmetrically to create two different types of cells: neurons and neural stem cells. In this way, brain stem cells populate the brain with new neurons and they also self-renew to maintain a constant stem cell supply throughout the adult animal’s life.

New Insights into Adult Neurogenesis

Last week, Alvarez-Buylla and his colleagues published new insights on adult neurogenesis in mice in the journal Cell Stem Cell. The study overturns the original theory of asymmetrical neural stem cell division and suggests that neural stem cells divide in a symmetrical fashion that could eventually deplete their stem cell population over the lifetime of the animal.

Arturo Alvarez-Buylla explained the study’s findings in an email interview with the Stem Cellar:

Arturo Alvarez-Bulla

“Our results are not what we expected. Our work shows that postnatal NSCs are not being constantly renewed by splitting them asymmetrically, with one cell remaining as a stem cell and the other as a differentiated cell. Instead, self-renewal and differentiation are decoupled and achieved by symmetric divisions.”

In brief, the study found that neural stem cells (called B1 cells) divide symmetrically in an area of the adult mouse brain called the ventricular-subventricular zone (V-SVZ). Between 70%-80% of those symmetric divisions produced neurons while only 20%-30% created new B1 stem cells. Alvarez-Buylla said that this process would result in the gradual depletion of B1 stem cells over time and seems to be carefully choreographed for the length of the lifespan of a mouse.

What does this mean?

I asked Alvarez-Buylla how his findings in mice will impact the field and whether he expects human adult neurogenesis to follow a similar process. He explained,

“The implications are quite wide, as it changes the way we think about neural stem cell retention and aging. The cells do not seem open ended with unlimited potential to be renewed, which results in a progressive decrease in NSC number and neurogenesis with time.  Understanding the mechanisms regulating proliferation of NSCs and their self-renewal also provides new insights into how the whole process of neurogenesis is choreographed over long periods by suggesting that differentiation (generation of neurons) is regulated separately from renewal.”

He further explained that mice generate new neurons in the V-SVZ brain region throughout their lifetime while humans only appear to generate new neurons during infancy in the equivalent region of the human brain called the SVZ. In humans, he said, it remains unclear where and how many neural stem cells are retained after birth.

I also asked him how these findings will impact the development of neural stem cell-based therapies for neurological or neurodegenerative diseases. Alvarez-Buylla shared interesting insights:

“Our data also indicate that upon a self-renewing division, sibling NSCs may not be equal to each other. While one NSC might stay quiescent [non-dividing] for an extended period of time, its sister cell might become activated earlier on and either undergo another round of self-renewal or differentiate. Thus, for cell-replacement therapies it will be important to understand which kind of neuron the NSC of interest can produce, and when. The use of NSCs for brain repair requires a detailed understanding of which NSC subset will be utilized for treatment and how to induce them to produce progeny. The study also suggests that factors that control NSC renewal may be separate from those that control generation of neurons.”

Scientists developing adult NSC-based therapies will definitely need to take note of Alvarez-Buylla’s findings as some NSC populations might be more successful therapeutically than others.

Neural Stem Cells in the Wild

I’ll conclude with a beautiful image that the study’s first author, Kirsten Obernier, shared with me. It’s shows the V-SVZ of the mouse brain and a neural stem cell in red making contact with a blood vessel in green and neurons in blue.

Image of the mouse brain with a neural stem cell in red. (Credit: Kirsten Obernier, UCSF)

Kirsten described the complex morphology of B1 NSCs in the mouse brain and their dynamic behavior, which Kirsten observed by taking a time lapsed video of NSCs dividing in the mouse V-SVZ. Obernier and Alvarez-Buylla hypothesize that these NSCs could be receiving signals from their surrounding environment that tell them whether to make neurons or to self-renew.

Clearly, further research is necessary to peel back the complex layers of adult neurogenesis. If NSC differentiation is regulated separately from self-renewal, their insights could shed new light on how conditions of unregulated self-renewal like brain tumors develop.

Just a Mom: The Journey of a Sickle Cell Disease Patient Advocate [video]

Adrienne Shapiro will tell you that she’s just a mom.

And it’s true. She is just a mom. Just a mom who is the fourth generation of mothers in her family to have children born with sickle cell disease. Just a mom who was an early advocate of innovative stem cell and gene therapy research by UCLA scientist Dr. Don Kohn which has led to an on-going, CIRM-funded clinical trial for sickle cell disease. Just a mom who is the patient advocate representative on a Clinical Advisory Panel (CAP) that CIRM is creating to help guide this clinical trial.

She’s just a mom who has become a vocal stem cell activist, speaking to various groups about the importance of CIRM’s investments in both early stage research and clinical trials. She’s just a mom who was awarded a Stem Cell and Regenerative Medicine Action Award at last month’s World Stem Cell Summit. She’s just a mom who, in her own words, “sees a new world not just for her children but for so many other children”, through the promise of stem cell therapies.

Yep, she’s just a mom. And it’s the tireless advocacy of moms like Adrienne that will play a critical role in accelerating stem cell therapies to patients with unmet medical needs. We can use all the moms we can get.

Adrienne Shapiro speaks to the CIRM governing Board about her journey as a patient advocate

Listen up! Stem cell scientists craft new ears using children’s own cells

Imagine growing up without an ear, or with one that was stunted and deformed. It would likely have an impact on almost every part of your life, not just your hearing. But now scientists in China say they have found a way to help give children born with this condition a new ear, one that is grown using their own cells.

Microtia is a rare condition where children are born with a deformed or underdeveloped outer ear. This is what it can look like.

Microtia ear

In an interview in New Scientist, Dr. Tessa Hadlock, at Massachusetts Eye and Ear Infirmary in Boston, said:

“Children with the condition often feel self-conscious and are picked on, and are unable to wear glasses.”

In the past repairing it required several cosmetic surgeries that had to be repeated as the child grew. But now Chinese scientists say they have helped five children born with microtia grown their own ears.

In the study, published in the journal EBioMedicine, the researchers explained how they used a CT scan of the child’s normal ear to create a 3D mold, using biodegradable material. They took cartilage cells from the child’s ear, grew them in the lab, and then used them to fill in tiny holes in the ear mold. Over the course of 12 weeks the cells continued to multiply and grow and slowly replaced the biodegradable material in the mold.

While the new “ear” was being prepared in the lab, the scientists used a mechanical device to slowly expand the skin on the child’s affected ear. After 12 weeks there was enough expanded skin for the scientists to take the engineered ear, surgically implant it on the child’s head, and cover it with skin.

Over the course of the next two and a half years the engineered ear took on a more and more “natural” appearance. The children did undergo minor surgeries, to remove scar tissue, but other than that the engineered ear shows no signs of complications or of being rejected.

Here is a photo montage showing the pre and post-surgical pictures of a six-year old girl, the first person treated in the study.


Other scientists, in the US and UK, are already working on using stem cells taken from the patient’s fat tissue, that are then re-engineered to become ear cells.

Surgeons, like Dr. Hadlock, say this study proves the concept is sound and can make a dramatic difference in the lives of children.

“It’s a very exciting approach. They’ve shown that it is possible to get close to restoring the ear structure.”

The Journey of a Homegrown Stem Cell Research All-Star

Nothing makes a professional sports team prouder than its homegrown talent. Training and mentoring a promising, hard-working athlete who eventually helps carry the team to a championship can lift the spirits of an entire city.

Gerhard and Brian 1

Brian Fury

Here at CIRM, we hold a similar sense of pride in Brian Fury, one of our own homegrown all-stars. Nearly a decade ago, Brian was accepted into the inaugural class of CIRM’s Bridges program which provides paid stem cell research internships to students at California universities and colleges that don’t have major stem cell research programs. The aim of the program, which has trained over 1200 students to date, is to build the stem cell work force here in California to accelerate stem cell treatments to patients with unmet medical needs.

A CIRM full circle
Today, Brian is doing just that as manager of manufacturing at the UC Davis Institute for Regenerative Cures (IRC) where he leads the preparation of stem cell therapy products for clinical trials in patients. It was at UC Davis that he did his CIRM Bridges internship as a Sacramento State masters student back in 2009. So, he’s really come full circle, especially considering he currently works in a CIRM-funded facility and manufactures stem cell therapy products for CIRM-funded clinical trials.


Gerhard Bauer

“Many of the technicians we have in the [cell manufacturing] facility are actually from the Bridges program CIRM has funded, and were educated by us,” Gerhard Bauer, Brian’s boss and director of the facility, explained to me. “Brian, in particular, has made me incredibly proud. To witness that the skills and knowledge I imparted onto my student would make him such an integral part of our program and would lead to so many novel products to be administered to people, helping with so many devastating diseases is a very special experience. I treasure it every day.”

“It sustains me”
Brian’s career path wasn’t always headed toward stem cell science. In a previous life, he was an undergrad in computer management information systems. It was a required biology class at the time that first sparked his interest in the subject. He was fascinated by the course and was inspired by his professor, Cathy Bradshaw. He still recalls a conversation he had with her to better understand her enthusiasm for biology:

“I asked her, ‘what is it about biology that really made you decide this is what you wanted to do?’ And she just said, ‘It sustains me. It is air in my lungs.’ It was what she lived and breathed. That really stuck with me early on.“

Still, Brian went on to earn his computer degree and worked as a computer professional for several years after college. But when the dot com boom went bust in the early 2000’s, Brian saw it as a sign to re-invent himself. Remembering that course with Professor Bradshaw, he went back to school to pursue a biology degree at Sacramento State University.

On a path before there was a path
Not content with just his textbooks and lectures at Sac State, Brian offered to volunteer in any lab he could find, looking for opportunities to get hands-on experience:

Sac State 1

Brian at work during his Sacramento State days.

“I was really hungry to get involved and I really wanted to not just be in class and learning about all these amazing things in biology but I also wanted to start putting them to work. And so, I looked for any opportunity that I could to become actively involved in actually seeing how biology really works and not just the theory.”

This drive to learn led to several volunteer stints in labs on campus as well as a lab manager job. But it was an opportunity he pursued as he was finishing up his degree that really set in motion his current career path. Gerhard Bauer happened to be giving a guest lecture at Sac State about UC Davis’ efforts to develop a stem cell-based treatment for HIV. Hearing that talk was an epiphany for Brian. “That’s really what hooked me in and helped determine that this is definitely the field that I want to enter into. It was my stepping off point.”


Brian Fury (center) flanked by mentors Gerhard Bauer (left) and Jan Nolta (right)

Inspired, Brian secured a volunteering gig on that project at UC Davis – along with all his other commitments at Sac State – working under Bauer and Dr. Jan Nolta, the director of the UC Davis Stem Cell Program.

That was 2008 and this little path Brian was creating by himself was just about to get some serious pavement. The next year, Sacramento State was one of sixteen California schools that was awarded the CIRM Bridges to Stem Cell Research grant. Their five-year, $3 million award (the total CIRM investment for all the schools was over $55 million) helped support a full-blown, stem cell research-focused master’s program which included 12-month, CIRM-funded internships. One of the host researchers for the internships was, you guessed it, Jan Nolta at UC Davis.

Good Manufacturing Practice (GMP) was a good move
Applying to this new program was a no brainer for Brian and, sure enough, he was one of ten students selected for the first-year class. His volunteer HIV project in the Nolta lab seamlessly dovetailed into his Bridges internship project. He was placed under the mentorship of Dr. Joseph Anderson, a researcher in the Nolta lab at the time, and gained many important skills in stem cell research. Brian’s project focused on a stem cell and gene therapy approach to making HIV-resistant immune cells with the long-term goal of eradicating the virus in patients. In fact, follow on studies by the Anderson lab have helped lead to a CIRM-funded clinical trial, now underway at UC Davis, that’s testing a stem cell-based treatment for HIV/AIDs patients.

After his Bridges internship came to a close, Brian worked on a few short-term research projects at UC Davis but then found himself in a similar spot: needing to strike out on a career path that wasn’t necessarily clearly paved. He reached out to Nolta and Bauer and basically cut to the chase in an email asking, “do you know anybody?”. Bauer reply immediately, “yeah, me!”. It was late 2011 and UC Davis had built a Good Manufacturing Practice (GMP) facility with the help of a CIRM Major Facility grant. Bauer only had one technician at the time and work was starting to pick up.


The Good Manufacturing Practice (GMP) facility in UC Davis’ Institute for Regenerative Cures.

A GMP facility is a specialized laboratory where clinical-grade cell products are prepared for use in people. To ensure the cells are not contaminated, the entire lab is sealed off from the outside environment and researchers must don full-body lab suits. We produced the video below about the GMP facility just before it opened.

Bauer knew Brian would be perfect at their GMP facility:

“Brian was a student in the first cohort of CIRM Bridges trainees and took my class Bio225 – stem cell biology and manufacturing practices. He excelled in this class, and I also could observe his lab skills in the GMP training part incorporated in this class. I was very lucky to be able to hire Brian then, since I knew what excellent abilities he had in GMP manufacturing.”

CIRM-supported student now supporting CIRM-funded clinical trials


Brian Fury suited up in GMP facility

Since then, Brian has worked his way up to managing the entire GMP facility and its production of cell therapy products. At last count, he and the five people he supervises are juggling sixteen cell manufacturing projects. One of his current clients is Angiocrine which has a CIRM-funded clinical trial testing a cell therapy aimed to improve the availability and engraftment of blood stem cell transplants. This treatment is geared for cancer patients who have had their cancerous bone marrow removed by chemotherapy.

When a company like Angiocrine approaches Brian at the GMP facility, they already have a well-defined method for generating their cell product. Brian’s challenge is figuring out how to scale up that process to make enough cells for all the patients participating in the clinical trial. And on top of that, he must design the procedures for the clean room environment of the GMP facility, where every element of making the cells must be written down and tracked to demonstrate safety to the Food and Drug Administration (FDA).

The right time, the right place…and a whole bunch of determination and passion
It’s extremely precise and challenging work but that’s what makes it so exciting for Brian. He tells me he’s never bored and always wakes up looking forward to what each day’s challenges will bring and figuring out how he and his team are going get these products into the clinic. It’s a responsibility he takes very seriously because he realizes what it means for his clients:

“I invest as much energy and passion and commitment into these projects as I would my own family. This is extremely important to me and I feel so incredibly fortunate to have the opportunity to work on things like this. The reality is, in the GMP, people are bringing their life’s work to us in the hopes we can help people on the other end. They share all their years of development, knowledge and experience and put it in our hands and hope we can scale this up to make it meaningful for patients in need of these treatments.”

Despite all his impressive accomplishments, Brian is a very modest guy using phrases like “I was just in the right place at the right time,” during our conversation. But I was glad to hear him add “and I was the right candidate”. Because it’s clear to me that his determination and passion are the reasons for his success and is the epitome of the type of researcher CIRM had hoped its investment in the Bridges program and our SPARK high school internship program would produce for the stem cell research field.

That’s why we’ll be brimming over with an extra dose of pride on the day that one of Brian’s CIRM-funded stem cell therapy products reaches the goal line with an FDA approval.