Throwback Thursday: Progress to a Cure for Type 1 Diabetes

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of valuable stem cell stories on our blog. Some of these stories represent crucial advances towards stem cell-based cures for serious diseases and deserve a second look.

novemberawarenessmonthThis week in honor of Diabetes Awareness Month, we are featuring type 1 diabetes (T1D), a chronic disease that destroys the insulin-producing beta cells in your pancreas. Without these important cells, patients cannot maintain the proper levels of glucose, a fancy name for sugar, in their blood and are at risk for many complications including heart disease, blindness, and even death.

Cell replacement therapy is evolving into an attractive option for patients with T1D. Replacing lost beta cells in the pancreas is a more permanent and less burdensome solution than the daily insulin shots (or insulin pumps) that many T1D patients currently take.

So let’s take a look at the past year’s advances in stem cell research for diabetes.

Making Insulin-Producing Cells from Stem Cells and Skin

This year, there were a lot of exciting studies that improved upon previous methods for generating pancreatic beta cells in a dish. Here’s a brief recap of a few of the studies we covered on our blog:

  • Make pancreatic cells from stem cells. Scientists from the Washington University School of Medicine in St. Louis and the Harvard Stem Cell Institute developed a method that makes beta cells from T1D patient-derived induced pluripotent stem cells (iPSCs) that behave very similarly to true beta cells both in a dish and when transplanted into diabetic mice. Their discovery has the potential to offer personalized stem cell treatments for patients with T1D in the near future and the authors of the study predicted that their technology could be ready to test in humans in the next three to five years.
  • Making functional pancreatic cells from skin. Scientists from the Gladstone Institutes used a technique called direct reprogramming to turn human skin cells directly into pancreatic beta cells without having to go all the way back to a pluripotent stem cell state. The pancreatic cells looked and acted like the real thing in a dish (they were able to secrete insulin when exposed to glucose), and they functioned normally when transplanted into diabetic mice. This study is exciting because it offers a new and more efficient method to make functioning human beta cells in mass quantities.

    Functioning human pancreatic cells after they’ve been transplanted into a mouse. (Image: Saiyong Zhu, Gladstone)

    Functioning human pancreatic cells after they’ve been transplanted into a mouse. (Image: Saiyong Zhu, Gladstone)

  • Challenges of stem cell-derived diabetes treatments. At this year’s Ogawa-Yamanaka Stem Cell Award ceremony Douglas Melton, a well-renowned diabetes researcher from Harvard, spoke about the main challenges for developing stem cell-derived diabetes treatments. The first is the need for better control over the methods that make beta cells from stem cells. The second was finding ways to make large quantities of beta cells for human transplantation. The last was finding ways to prevent a patient’s immune system from rejecting transplanted beta cells. Melton and other scientists are already working on improving techniques to make more beta cells from stem cells. As for preventing transplanted beta cells from being attacked by the patient’s immune system, Melton described two possibilities: using an encapsulation device or biological protection to mask the transplanted cells from an attack.

Progress to a Cure: Clinical Trials for Type 1 Diabetes

Speaking of encapsulation devices, CIRM is funding a Phase I clinical trial sponsored by a San Diego-based company called ViaCyte that’s hoping to develop a stem cell-based cure for patients with T1D. The treatment involves placing a small encapsulated device containing stem cell-derived pancreatic precursor cells under the skin of T1D patients. Once implanted, these precursor cells should develop into pancreatic beta cells that can secrete insulin into the patient’s blood stream. The goal of this trial is first to make sure the treatment is safe for patients and second to see if it’s effective in improving a patient’s ability to regulate their blood sugar levels.

To learn more about this exciting clinical trial, watch this fun video made by Youreka Science.

ViaCyte is still waiting on results for their Phase 1 clinical trial, but in the meantime, they are developing a modified version of their original device for T1D called PEC-Direct. This device also contains pancreatic precursor cells but it’s been designed in a way that allows the patient’s blood vessels to make direct connections to the cells inside the device. This vascularization process hopefully will improve the survival and function of the insulin producing beta cells inside the device. This study, which is in the last stage of research before clinical trials, is also being funded by CIRM, and we are excited to hear news about its progress next year.

ViaCyte's PEC-Direct device allows a patient's blood vessels to integrate and make contact with the transplanted beta cells.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted beta cells.


Related Links:

Three stories give us a glimpse of the real possibilities for stem cell therapies

Today we’re featuring a guest blog by Lisa Willemse about the Till and McCulloch Stem Cell Meeting in Canada. Enjoy!

Stem cell treatments should be incredibly easy. Or rather, that’s what some clinics or products would have you believe. Because, on the surface, a one-stop-shop for injectable cells to cure just about any condition or topical creams to peel away the scourge of time are very easy.

Attend one stem cell research conference and you’ll be convinced that it’s much more complicated. It’s a sea of reagents and transcription factors and unknown cause-and-effect. Many researchers will spend their entire career working on just one unknown and their caution and concern when it comes to the notion of a cure is justifiable.

Whistler (Courtesy of Lisa Willemse)

Whistler (Courtesy of Lisa Willemse)

Which makes it all the more impactful when you attend a research conference and hear three talks, back-to-back, that demonstrate that we’re ticking off some of those unknowns and getting much closer to real – not sham – therapies. Therapies with a sound scientific basis that are well planned and done with patient safety (not sales) in mind. Last week’s Till and McCulloch Meetings, held in Whistler, British Columbia gave us a sense of what is possible for three conditions: macular degeneration (vision), septic shock and a rare neurologic disease (Stiff Person Syndrome). Other blogs have covered  different aspects of this meeting here and here.

Vision Repair – Age-related Macular Degeneration (AMD)

As the world’s first clinical trial to use induced pluripotent stem cells launched amid sweeping regulatory changes in Japan, Dr. Masayo Takahashi’s treatment protocol for AMD has received no small amount of scrutiny. After a brief hiatus, the trial was back on track earlier this year and Takahashi’s presentation at this meeting was highly anticipated.

Dr. Masayo Takahashi

Dr. Masayo Takahashi

It did not disappoint. Takahashi spent the better part of her time outlining the steps taken to reach the point where the clinical trial was possible, including multiple studies in mice and further refinement of the treatment to ensure it would be stable in humans even with genetic changes over time. Given that one of the reasons the trial was put on hold was due to genetic mutations found in the cells prepared for the second potential human transplant, Takahashi’s careful work in ensuring the product was safe bodes well for the future of this trial.

The first patient was treated in 2014, a 78-year-old woman with wet AMD in the right eye, and although only minimal visual improvement was documented, the patient anonymously told the Japan Times, “I’m glad I received the treatment. I feel my eyesight has brightened and widened.”

Takahashi also alluded to some of the other challenges she’d had to overcome to make this trial a reality, including would-be critics who told her that the nervous system and the retina were too complicated to regenerate. Takahashi’s response? “You don’t know stem cells [and] you don’t understand the needs of the patient.”

While it was unclear when the next patient will receive treatment, Takahashi did say that three new applications for clinical trials using her refined protocols have been submitted for approval.

Septic shock  

Septic shock is not a condition that gets a lot of attention, most likely because it’s not a primary illness, but a secondary one; a drastic and often fatal immune response that severely reduces blood pressure and cell metabolism. It accounts for 20% of all intensive care unit (ICU) admissions and is the most common cause of non-coronary mortality in the ICU. For those who survive septic shock, there are significant and long-term health consequences.

Over 100 clinical trials have attempted to improve outcomes for patients with septic shock, but not one has been successfully translated into the clinical setting. Supportive care remains the mainstay of therapy.

Dr. Lauralyn McIntyre

Dr. Lauralyn McIntyre

This was the sober backdrop painted by critical care physician, Dr. Lauralyn McIntyre as she began her talk on the world’s first stem cell clinical trial for septic shock she is co-leading in Ottawa with Dr. Duncan Stewart.

Like Takahashi, McIntyre spent a good deal of time explaining the rationale and research that underpin the trial, which takes advantage of the immune-modulating properties of mesenchymal stromal cells (also called mesenchymal stem cells or MSCs) to suppress and reverse the effects of septic shock. This work includes reviews of more than 50 studies that looked at the effects of MSCs in both human trials and animal studies.

McIntyre also discussed research she did with mice in 2010 as a proof-of-concept, where the MSC therapy was delayed for six days. This delay is important as it better simulates the time frame in which most patients arrive in the hospital. As McIntryre pointed out, if the therapy only worked when given within hours of disease development, what good would it be for patients who come in on day six?

Fortunately, the therapy worked in the mice, even after a delayed timeframe, providing a green light for safety testing in humans. The small first human trial is currently underway for nine patients (with a control arm of 21) with results not yet published – although one of the patients shared his experience earlier this year. McIntyre relayed that the early data is very encouraging – enough that the team is moving ahead with a Phase 2 randomized trial in 10 centres across Canada in 2017.

Stiff Person Syndrome

Tina Ceroni’s story is much more personal. She is only the second person in the world to have received an experimental stem cell treatment for Stiff Person Syndrome, a rare neurologic condition that causes uncontrolled and sustained contractions of the arm, leg or other muscles. Often misdiagnosed initially as Multiple Sclerosis or anxiety/depression, SPS is also an autoimmune disease for which the cause is unknown.

Tina Ceroni

Tina Ceroni (The Ottawa Hospital)

I’ve written about Tina’s story before – about how she was hospitalized 47 times in one year and how a chance meeting with another SPS patient propelled Ceroni on a journey that included an intensive stem cell therapy under the guidance of Dr. Harry Atkins at the Ottawa Hospital, in which her blood stem cells were harvested from her bone marrow and used to repopulate her system after her immune system was wiped clean with chemotherapy.

Now a stem cell advocate, Ceroni’s story keeps getting better – not merely in how powerfully and passionately she tells it, but in the continued good health she enjoys after her treatment and in her efforts to share it more broadly.

Most importantly, she drives home a key message:

“My story underscores the importance of clinical trials…. My experience will help to change the future for others. I am living proof that a clinical trial for stem cell therapy can have a life-changing outcome.”

“Often hope is the only medicine we have.”

It’s important that patients like Ceroni continue share their story, not just with the research community to give a human face to the work they do, but to show that solid research is making an impact, one that can be measured in lives saved.


Lisa Willemse

Lisa Willemse

This article is published simultaneously, with permission by the author, Lisa Willemse, on the Ontario Institute for Regenerative Medicine (OIRM) Expression blog.

Deleting a single gene can boost blood stem cell regeneration

A serious side effect that cancer patients undergoing chemotherapy experience is myelosuppression. That’s a big word for a process that involves the decreased production of the body’s immune cells from hematopoietic stem cells (HSCs) or blood stem cells in the bone marrow. Without these important cells that make up the immune system, patients are at risk for major infections and even death.

Human blood (red) and immune cells (green) are made from hematopoietic/blood stem cells. Photo credit: ZEISS Microscopy.

Human blood (red) and immune cells (green) are made from hematopoietic/blood stem cells. Photo credit: ZEISS Microscopy.

Scientists are trying to find ways to treat cancer patients that have undergone myelosuppressive therapies, as well as patients that need bone marrow transplants to replace their own bone marrow that’s been damaged or removed. One possible solution is boosting the regenerative capacity of HSCs. Transplanting HSCs that are specially primed to reproduce rapidly into cells of the immune system could improve the outcome of bone marrow transplants in patients.

Deleting Grb10 boost blood stem cell regeneration

A CIRM-funded team from the UCLA Broad Stem Cell Institute and the Jonsson Comprehensive Cancer Center has identified a single gene that can be manipulated to boost HSC regeneration in mice. The study, which was published in Cell Reports, found that deleting or turning off expression of an imprinted gene called Grb10 in HSCs caused these blood stem cells to reproduce more robustly after being transplanted into mice that had their bone marrow removed.

I just used another big word in that last paragraph, so let me explain. An imprinted gene is a gene that is expressed or activated based on which parent it was inherited from. Typically, you receive one copy of a gene from your mother and one from your father and both are expressed – a process called Mendelian inheritance. But imprinted genes are different – they are marked with specific epigenetic tags that silence their expression in the sperm or egg cells of the parents. Thus if you inherited an imprinted gene from your mother, the other copy of that gene from your father would be expressed and vice versa.

Scientists have discovered that imprinted genes are important for human development and also for directing what cell types adult stem cells like HSCs develop into. The team from UCLA led by senior author Dr. John Chute, was interested in answering a different question: are imprinted genes involved in determining the function of HSCs? They compared two different populations of HSCs derived from mouse bone marrow: a normal, healthy population and HSCs exposed to total body irradiation (TBI), which destroys the immune system. They discovered that the expression of an imprinted gene called Grb10 was dramatically higher in HSCs exposed to TBI compared to healthy HSCs.

Cell Reports

Deleting Grb10  increases blood stem cell regeneration in the bone marrow of irradiated mice (bottom) compared to normal mice (top). Cell Reports

Because Grb10 is an imprinted gene, the scientists deleted either the paternal or maternal copy of that gene in mice. While deleting the paternal Grb10 gene had no effect on the function of HSCs, maternal deletion dramatically boosted the capacity of HSCs to divide and make more copies of themselves. Without the maternal copy of Grb10, HSCs were able to regenerate at a much faster scale than normal HSCs.

To further prove their point, the team transplanted normal HSCs and HSCs that lacked Grb10 into TBI or fully irradiated mice. HSCs that lacked Grb10 were able to regenerate themselves and produce other immune cells more robustly 20 weeks after transplantation compared to normal HSCs.

Potential applications and future studies

This study offers two important findings. First, they discovered that Grb10 plays an important role “in regulating HSC self-renewal following transplantation and HSC regeneration in response to injury.” Second, they found that inhibiting Grb10 function in HSCs could have potential therapeutic applications for boosting “hematopoietic regeneration in the setting of HSC transplantation or following myelosuppressive injury.” Patients in need of bone marrow transplants could potentially receive more benefit from transplants of HSCs that don’t express the Grb10 gene.

In my opinion, further studies should be done to further understand the role of Grb10 in regulating HSC self-renewal and regeneration. What is the benefit of having this gene expressed in HSCs if inhibiting its expression leads to an increased regenerative capacity? Is it to prevent cancer from forming? Additionally, the authors will need to address the potential long-term side effects of inhibiting Grb10 expression in HSCs. They did report that mice that lacked the Grb10 gene did not develop blood cancers at one year of age which is good news. They also suggested that instead of deleting Grb10, new drugs could be identified that inhibit Grb10 function in HSCs.

Meeting the scientists who are turning their daughter’s cells into a research tool – one that could change her life forever

There’s nothing like a face-to-face meeting to really get to know someone. And when the life of someone you love is in the hands of that person, then it’s a meeting that comes packed with emotion and importance.

lilly-grossman

Lilly Grossman

Last week Gay and Steve Grossman got to meet the people who are working with their daughter Lilly’s stem cells. Lilly was born with a rare, debilitating condition called ADCY5-related dyskinesia. It’s an abnormal involuntary movement disorder caused by a genetic mutation that results in muscle weakness and severe pain. Because it is so rare, little research has been done on developing a deeper understanding of it, and even less on developing treatments.

buck-team

The Grossmans and Chris Waters meet the Buck team

 

That’s about to change. CIRM’s Induced Pluripotent Stem Cell  iPSC Bank – at the Buck Institute for Research on Aging – is now home to some of Lilly’s cells, and these are being turned into iPS cells for researchers to study the disease, and to hopefully develop and test new drugs or other therapies.

Gay said that meeting the people who are turning Lilly’s tissue sample into a research tool was wonderful:

“I think meeting the people who are doing the actual work at the lab is so imperative, and so important. I want them to see where their work is going and how they are not only affecting our lives and our daughter’s life but also the lives of the other kids who are affected by this rare disease and all rare diseases.”

Joining them for the trip to the Buck was Chris Waters, the driving force behind getting the Bank to accept new cell lines. Chris runs Rare Science a non-profit organization that focuses on children with rare diseases by partnering with patient family communities and foundations.

chris-gay-steve1

Steve and Gay Grossman and Chris Waters

In a news release, Chris says there are currently 7,000 identified rare diseases and 50 percent of those affect children; tragically 30 percent of those children die before their 5th birthday:

“The biggest gap in drug development is that we are not addressing the specific needs of children, especially those with rare diseases.  We need to focus on kids. They are our future. If it takes 14 years and $2 billion to get FDA approval for a new drug, how is that going to address the urgent need for a solution for the millions of children across the world with a rare disease? That’s why we created Rare Science. How do we help kids right now, how do we help the families? How do we make change?”

Jonathan Thomas, the Chair of the CIRM Board, said one way to help these families and drive change is by adding samples of stem cells from rare diseases like ADCY5 to the iPSC Bank:

“Just knowing the gene that causes a particular problem is only the beginning. By having the iPSCs of individuals, we can start to investigate the diseases of these kids in the labs. Deciphering the biology of why there are similarities and dissimilarities between these children could the open the door for life changing therapies.”

When CIRM launched the iPSC Initiative – working with CDI, Coriell, the Buck Institute and researchers around California – the goal was to build the largest iPSC Bank in the world.  Adding new lines, such as the cells from people with ADCY5, means the collection will be even more diverse than originally planned.

Chris hopes this action will serve as a model for other rare diseases, creating stem cell lines from them to help close the gap between discovery research and clinical impact. And she says seeing the people who are turning her idea into reality is just amazing:

“Oh my gosh. It’s just great to be here, to see all these people who are making this happen, they’re great. And I think they benefit too, by being able to put a human face on the diseases they are working on. I think you learn so much by meeting the patients and their families because they are the ones who are living with this every day. And by understanding it through their eyes, you can improve your research exponentially. It just makes so much more sense.”

bears

RARE Bears for RARE Science

To help raise funds for this work Rare Science is holding a special auction, starting tomorrow, of RARE Bears. These are bears that have been hand made by, and this is a real thing, “celebrity quilters”, so you know the quality is going to be amazing. All proceeds from the auction go to help RARE Science accelerate the search for treatments for the 200 million kids around the world who are undiagnosed or who have a rare disease.

 

A patient perspective on how stem cells could give a second vision to the blind

October is Blindness Awareness month. In honor of the patients who suffer from diseases of blindness and of the scientists and doctors who work tirelessly to develop treatments and cures for these diseases, we are featuring an interview with Kristin Macdonald, a woman who is challenged by Retinitis Pigmentosa (RP).

RP is a genetically inherited disease that affects the photoreceptors at the back of the eye in an area called the retina. It’s a hard disease to diagnose because the first signs are subtle. Patients slowly lose their peripheral vision and ability to see well at night. As the disease progresses, the window of sight narrows and patients experience “tunnel vision”. Eventually, they become totally blind. Currently, there is no treatment for RP, but stem cell research might offer a glimmer of hope.

Kristin MacDonald

Kristin MacDonald

Kristin Macdonald was the first patient treated in a CIRM-funded stem cell trial for RP run by Dr. Henry Klassen at UC Irvine. She is a patient advocate and inspirational speaker for the blind and visually impaired, and is also a patient ambassador for Americans for Cures. Kristin is an amazing woman who hasn’t let RP prevent her from living her life. It was my pleasure to interview her to learn more about her life’s vision, her experience in CIRM’s RP trial, and her thoughts on patient advocacy and the importance of stem cell research.


Q: Tell us about your experience with being diagnosed with RP?

I was officially diagnosed with RP at 31. RP is a very difficult thing to diagnose, and I had to go through a series of doctors before we figured it out. The signs were there in my mid-to-late twenties, but unfortunately I didn’t really know what they were.

Being diagnosed with RP was really surprising to me. I grew up riding horses and doing everything. I had 20/20 vision and didn’t need any reading glasses. I started getting these night vision symptoms in my mid-to-late 20s in New York when I was in Manhattan. It was then that I started tripping, falling and getting clumsy. But I didn’t know what was happening and I was having such a great time with my life that I just denied it. I didn’t want to acknowledge that anything was wrong.

So I moved out to Los Angeles to pursue an acting and television career, and I just kept ignoring that thing in the brain that says “something’s wrong”. By the time I broke my arm for the second time, I had to go to see a doctor. And that’s when they diagnosed me.

Q: How did you boost yourself back up after being diagnosed with RP?

RP doesn’t come with an instruction booklet. It’s a very gradual adjustment emotionally, physically and spiritually. The first thing I did was to get out of denial, which was a really scary place to be because you can break your leg that way. You have to acknowledge what’s happening in life otherwise you’ll never get anywhere or past anything. That was my first stage of getting over denial. As I slowly started to accept things, I learned to live in the moment, which in a way is a big thing in life because we should all be living for today.

I think the fear of someone telling you that you’re going to go into the dark when you’ve always lived your life in the light can be overwhelming at times. I used to go to the mall and sometimes a door to a store would be gone or an elevator that I used to see is gone. What I did to deal with these fears and changes was to become as proactive as possible. I enlisted all of the best people around me in the business. I started doing charitable work for the Center for the Partially Sighted and for the Foundation for Fighting Blindness. I sat on the board of AIRSLA.org, an internet radio service for the blind and visually impaired, where I still do my radio show. Through that, I met other people who were going through the same type of thing and would come into my home to teach me independent living skills.

I remember the first day when an independent living counselor from the Center for the Partially Sighted came to my house and said we have to check in and see what your adjustment to blindness is like. Those words cut through me. “Adjustment to blindness”. It felt like I was going to prison, that’s how it felt like to me back then. But I am so glad I reached out to the Center for the Partially Sighted because they gave me invaluable instructions on how to function as a blind person. They helped me realize I could really live a good life and be whole, and that blindness would never define me.

I also worked a lot on my spiritual side. I read a lot of positive thinking books and found comfort in my faith in god and the support from my family, friends and my boyfriend. I can’t even enumerate how good they’ve been to me.

Q: How has being blind impacted your ability to do the things you love?

I’m a very social person, so giving up my car and suddenly being confined at night was crushing to me. And we didn’t have Uber back then! During that time, I had to learn how to lead a full life socially. I still love to do salsa dancing but it’s tricky. If I stand on the sidelines, some of the dancers will pass you by because they don’t know you’re blind. I also learned how to horseback ride and swim in the ocean – just a different way. I go in the water on a surf leash. Or I ride around the ring with my best friend guiding me.

Kristin loves to ride horses.

Kristin doesn’t let being mostly blind stop her from riding horses.

Q: What treatments have you had for RP?

I investigated just about everything that was out there. [Laughs] After I was diagnosed, I became very proactive to find treatments. But after a while, I became discouraged because these treatments either didn’t work or still needed time for the FDA to give approval.

I did participate in a study nine years ago and had genetically modified cells put into my eye. I had two surgeries: one to put the cells in and one to take them out because the treatment hadn’t done anything. I didn’t get any improvement, and that was crushing to me because I had hoped and waited so long.

I just kept praying, waiting, reading and hoping. And then boom, all the sudden I got a phone call from UC Irvine saying they wanted me to participate in their stem cell trial for RP. They said I’d be the third person in the world to have it done and the first in their clinical trial. They told me I was to be the first North American patient to have progenitor cells put in my eye, which is pretty amazing.

Q: Was it easy to decide to participate in the UC Irvine CIRM-funded trial?

Yes. But don’t get me wrong, I’m human. I was a little scared. It’s a new thing and you have to sign papers saying that you understand that we don’t exactly know what the results will be. Essentially, you are agreeing to be a pathfinder.

Luckily, I have not had any adverse effects since the trial. But I’ve always had a great deal of faith in stem cells. For years, I’ve been hearing about it and I’ve always put my hopes in stem cells thinking that that’s going to be the answer for blindness.

Q: Have you seen any improvements in your sight since participating in this trial?

I was treated a year ago in June. The stem cell transplant was in my left eye, my worse eye that has never gotten better. It’s been about 15 months now, and I started to see improvement after about two months following the treatment. When I would go into my bathroom, I noticed that it was a lot brighter. I didn’t know if I was imagining things, but I called a friend and said, “I don’t know if I’m imagining things but I’m getting more light perception in this eye.”

Sure enough, over a period of about eight months, I had gradual improvement in light perception. Then I leveled off, but now there is no question that I’m photo sensitive. When I go out, I use my sunglasses, and I see a whole lot more light.

Because I was one of the first patients in the trial, they had to give me a small dose of cells to test for safety. So it was amazing that a smaller dose of cells was still able to help me gain back some sight! One of the improvements that I’ve had is that I can actually see the image of my finger waving back and forth on my left side, which I couldn’t before when I put mascara on. I say this because I have put lip pencil all over my mouth by accident. That must have been a real sight! For a woman, putting on makeup is really important.

Q: What was your experience like participating in the UC Irvine trial?

Dr. Klassen who runs the UC Irvine stem cell trial for RP is an amazing person. He was in the room with me during the transplant procedure. I have such a high regard and respect for Dr. Klassen because he’s been working on the cure for RP as long as I’ve had it. He’s someone who’s dedicated his life to trying to find an answer to a disease that I’ve been dealing with on a day-to-day basis.

Dr. Klassen had the opportunity to become a retinal surgeon and make much more money in a different area. But because it was too crushing to talk to patients and give them such a sad diagnosis, he decided he was going to do something about it. When I heard that, I just never forgot it. He’s a wonderful man and he’s really dedicated to this cause.

Q: How have you been an advocate for RP and blindness?

I’ve been an advocate for the visually impaired in many different aspects. I have raised money for different research foundations and donated my time as a host and an MC to various charities through radio shows. I’ve had a voice in the visually impaired community in one way or another on and off for 15 years.

I also started getting involved in Americans for Cures only a few months ago. I am helping them raise awareness about Proposition 71, which created CIRM, and the importance of funding stem cell research in the future.

I may in this lifetime get actual vision again, a real second vision. But in the meantime, I’ve been working on my higher self, which is good because a friend of mine who is totally blind reminded me today, “Kristin, just remember, don’t live for tomorrow just getting that eye sight back”. My friend was born blind. I told him he is absolutely right. I know I can lead a joyful life either way. But trust me, having a cure for RP would be the icing on the cake for me.

Q: Why is it important to be a patient advocate?

I think it’s so important from a number of different aspects, and I really felt this at the International Society for Stem Cell Research (ISSCR) conference in San Francisco this summer when certain people came to talk to me afterwards, especially researchers and scientists. They don’t get to see the perspective of the patient because they are on the other side of the fence.

I think it’s very important to be a patient advocate because when you have a personal story, it resonates with people much more than just reading about something or hearing about something on a ballot.  It’s really vital for the future. Everybody has somebody or knows somebody who had macular degeneration or became visually impaired. If they don’t, they need to be educated about it.

Q: Tell us about your Radio Show.

My radio show “Second Vision” is about personal development and reinventing yourself and your life’s vision when the first one fails. It was the first internet radio show to support the blind and visually impaired, so that’s why I’m passionate about it. I’ve had scores of authors on there over the years who’ve written amazing books about how to better yourself and personal stories from people who have overcome adversity from all different types of challenges in terms of emotional health, physical health or problems in their lives. You can find anything on the Second Vision website from interviews on Reiki and meditation to Erik Weihenmayer, the blind man who climbed the seven summits (the highest mountains of each of the seven continents).

Q: Why is stem cell research important?

I do think that stem cells will help people with blindness. I don’t know whether it will be a 100% treatment. Scientists may have to do something else along the way to perfect stem cell treatments whether it’s gene therapy or changing the number of cells or types of cells they inject into the eye. I really do have a huge amount of faith in stem cells. If they can regenerate other parts of the body, I think the eye will be no different.

To read more about Kristin Macdonald and her quest for a Second Vision, please visit her website.


Related Links:

How research on a rare disease turned into a faster way to make stem cells

Forest Gump. (Paramount Pictures)

Forest Gump. (Paramount Pictures)

If Forest Gump were a scientist, I’d like to think he would have said his iconic line a little differently. Dr. Gump would have said, “scientific research is like a box of chocolates – you never know what you’re gonna get.”

A new CIRM-funded study coming out of the Gladstone Institutes certainly proves this point. Published yesterday in the Proceedings of the National Academy of Sciences, the study found that a specific genetic mutation known to cause a rare disease called fibrodysplasia ossificans progressiva (FOP) makes it easier to reprogram adult skin cells into induced pluripotent stem cells (iPSCs).

Shinya Yamanaka received the Nobel Prize in medicine in 2012 for his seminal discovery of the iPSC technology, which enabled scientists to generate patient specific pluripotent stem cell lines from adult cells like skin and blood. These iPSC lines are useful for modeling disease in a dish, identifying new therapeutic drugs, and potentially for clinical applications in patients. However, one of the rate-limiting steps to this technology is the inefficient process of making iPSCs.

Yamanaka, a senior investigator at Gladstone, knows this problem all too well. In a Gladstone news release he commented, “inefficiency in creating iPSCs is a major roadblock toward applying this technology to biomedicine. Our study identified a surprising way to increase the number of iPSCs that we can generate.”

So how did Yamanaka and his colleagues discover this new trick for making iPSCs more efficiently? Originally, their intentions were to model a rare genetic disease called FOP. It’s commonly known as “stone man syndrome” because the disease converts normal muscle and connective tissue into bone either spontaneously or spurred by injury. Bone growth begins at a young age starting at the neck and progressively moving down the body. Because there is no treatment or cure, patients typically have a lifespan of only 40 years.

The Gladstone team wanted to understand this rare disease better by modeling it in a dish using iPSCs generated from patients with FOP. These patients had a genetic mutation in the ACVR1 gene, which plays an important role in the development of the embryo. FOP patients have a mutant form of ACVR1 that overstimulates this developmental pathway and boosts the activity of a protein called BMP (bone morphogenic protein). When BMP signaling is ramped up, they discovered that they could produce significantly more iPSCs from the skin cells of FOP patients compared to normal, healthy skin cells.

First author on the study, Yohei Hayashi, explained their hypothesis for why this mutation makes it easier to generate iPSCs:

“Originally, we wanted to establish a disease model for FOP that might help us understand how specific gene mutations affect bone formation. We were surprised to learn that cells from patients with FOP reprogrammed much more efficiently than cells from healthy patients. We think this may be because the same pathway that causes bone cells to proliferate also helps stem cells to regenerate.”

To be sure that enhanced BMP signaling caused by the ACVR1 mutation was the key to generating more iPSCs, they blocked this signal and discovered that much fewer iPSCs were made from FOP patient skin cells.

Senior Investigator Bruce Conklin, who was a co-author on this study, succinctly summarized the importance of their findings:

“This is the first reported case showing that a naturally occurring genetic mutation improves the efficiency of iPSC generation. Creating iPSCs from patient cells carrying genetic mutations is not only useful for disease modeling, but can also offer new insights into the reprogramming process.”

Gladstone investigators Bruce Conklin and Shinya Yamanaka. (Photo courtesy of Chris Goodfellow, Gladstone Institutes)

Gladstone investigators Bruce Conklin and Shinya Yamanaka. (Photo courtesy of Chris Goodfellow, Gladstone Institutes)

Ingenious CIRM-funded stem cell approach to treating ALS gets go-ahead to start clinical trial

svend

Clive Svendsen

Amyotrophic lateral sclerosis (ALS), better known as Lou Gehrig’s disease, was first identified way back in 1869 but today, more than 150 years later, there are still no effective treatments for it. Now a project, funded by CIRM, has been given approval by the Food and Drug Administration (FDA) to start a clinical trial that could help change that.

Clive Svendsen and his team at Cedars-Sinai are about to start a clinical trial they hope will help slow down the progression of the disease. And they are doing it in a particularly ingenious way. More on that in a minute.

First, let’s start with ALS itself. It’s a particularly nasty, rapidly progressing disease that destroys motor neurons, those are the nerve cells in the brain and spinal cord that control movement. People with ALS lose the ability to speak, eat, move and finally, breathe. The average life expectancy after diagnosis is just 3 – 4 years. It’s considered an orphan disease because it affects only around 30,000 people in the US; but even with those relatively low numbers that means that every 90 minutes someone in the US is diagnosed with ALS, and every 90 minutes someone in the US dies of ALS.

Ingenious approach

In this clinical trial the patients will serve as their own control group. Previous studies have shown that the rate of deterioration of muscle movement in the legs of a person with ALS is the same for both legs. So Svendsen and his team will inject specially engineered stem cells into a portion of the spine that controls movement on just one side of the body. Neither the patient nor the physician will know which side has received the cells. This enables the researchers to determine if the treated leg is deteriorating at a slower rate than the untreated leg.

The stem cells being injected have been engineered to produce a protein called glial cell line derived neurotrophic factor (GDNF) that helps protect motor neurons. Svendsen and the team hope that by providing extra GDNF they’ll be able to protect the motor neurons and keep them alive.

Reaching a milestone

In a news release announcing the start of the trial, Svendsen admitted ALS is a tough disease to tackle:

“Any time you’re trying to treat an incurable disease, it is a long shot, but we believe the rationale behind our new approach is strong.”

Diane Winokur, the CIRM Board patient advocate for ALS, says this is truly a milestone:

“In the last few years, thanks to new technologies, increased interest, and CIRM support, we finally seem to be seeing some encouraging signs in the research into ALS. Dr. Svendsen has been at the forefront of this effort for the 20 years I have followed his work.  I commend him, Cedars-Sinai, and CIRM.  On behalf of those who have suffered through this cruel disease and their families and caregivers, I am filled with hope.”

You can read more about Clive Svendsen’s long journey to this moment here.

 

Stem cell stories that caught our eye: Blood stem cells on a diet, Bladder control after spinal cord injuries, new ALS insights

Putting blood stem cells on a diet. (Karen Ring)

valine

Valine. Image: BMRB

Scientists from Stanford and the University of Tokyo have figured out a new way to potentially make bone marrow transplants more safe. Published yesterday in the journal Science, the teams discovered that removing an essential amino acid, called valine, from the diets of mice depleted their blood stem cells and made it easier for them to receive bone marrow transplants from other mice without the need for radiation or chemotherapy. Removing valine from human blood stem cells yielded similar results suggesting that this therapeutic approach could potentially change and improve the way that certain cancer patients are treated.

In an interview with Science Magazine, senior author Satoshi Yamazaki explained how current bone marrow transplants are toxic to patients and that an alternative, safer form of treatment is needed.

“Bone marrow transplantation is a toxic therapy. We have to do it to treat diseases that would otherwise be fatal, but the quality of life afterward is often not good. Relative to chemotherapy or radiation, the toxicity of a diet deficient in valine seems to be much, much lower. Mice that have been irradiated look terrible. They can’t have babies and live for less than a year. But mice given a diet deficient in valine can have babies and will live a normal life span after transplantation.”

The scientists found that the effects of a valine-deficient diet were mostly specific to blood stem cells in the mice, but also did affect hair stem cells and some T cells. The effects on these other populations of cells were not as dramatic however as the effects on blood stem cells.

Going forward, the teams are interested to find out whether valine deficiency will be a useful treatment for leukemia stem cells, which are stem cells that give rise to a type of blood cancer. As mentioned before, this alternative form of treatment would be very valuable for certain cancer patients in comparison to the current regimen of radiation treatment before bone marrow transplantation.

Easing pain and improving bladder control in spinal cord injury (Kevin McCormack)
When most people think of spinal cord injuries (SCI) they focus on the inability to walk. But for people with those injuries there are many other complications such as intense nerve or neuropathic pain, and inability to control their bladder. A CIRM-funded study from researchers at UCSF may help point at a new way of addressing those problems.

The study, published in the journal Cell Stem Cell, zeroed in on the loss in people with SCI of a particular amino acid called GABA, which acts as a neurotransmitter in the central nervous system and inhibits nerve transmission in the brain, calming nervous activity.

Here’s where we move into alphabet soup, but stick with me. Previous studies showed that using cells called inhibitory interneuron precursors from the medial ganglionic eminence (MGE) helped boost GABA signaling in the brain and spinal cord. So the researchers turned some human embryonic stem cells (hESCs) into MGEs and transplanted those into the spinal cords of mice with SCI.

Six months after transplantation those cells had integrated into the mice’s spinal cord, and the mice not only showed improved bladder function but they also seemed to have less pain.

Now, it’s a long way from mice to men, and there’s a lot of work that has to be done to ensure that this is safe to try in people, but the researchers conclude: “Our findings, therefore, may have implications for the treatment of chronically spinal cord-injured patients.”

CIRM-funded study reveals potential new ALS drug target (Todd Dubnicoff)
Of the many diseases CIRM-funded researchers are tackling, Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease, has got to be one of the worst.

yeo_healthy_ipsc_derived_mo

Motor neurons derived from skin cells of a healthy donor
Image: UC San Diego

This neurodegenerative disorder attacks and kills motor neurons, the nerve cells that control voluntary muscle movement. People diagnosed with ALS, gradually lose the ability to move their limbs, to swallow and even to breathe. The disease is always fatal and people usually die within 3 to 5 years after initial diagnosis. There’s no cure for ALS mainly because scientists are still struggling to fully understand what causes it.

Stem cell-derived “disease in a dish” experiments have recently provided many insights into the underlying biology of ALS. In these studies, skin cells from ALS patients are reprogrammed into an embryonic stem cell-like state called induced pluripotent stem cells (iPSCS). These iPS cells are grown in petri dishes and then specialized into motor neurons, allowing researchers to carefully look for any defects in the cells.

This week, a UC San Diego research team using this disease in a dish strategy reported they had uncovered a cellular process that goes haywire in ALS cells. The researchers generated motor neurons from iPS cells that had been derived from the skin samples of ALS patients with hereditary forms of the disease as well as samples from healthy donors. The team then compared the activity of thousands of genes between the ALS and healthy motor neurons. They found that a particular hereditary mutation doesn’t just impair a protein called hnRNP A2/B1, it actually gives the protein new toxic activities that kill off the motor neurons.

Fernando Martinez, the first author on this study in Neuron, told the UC San Diego Health newsroom that these news results reveal an important context for their on-going development of therapeutics that target proteins like hnRNP:

“These … therapies [targeting hnRNP] can eliminate toxic proteins and treat disease. But this strategy is only viable if the proteins have gained new toxic functions through mutation, as we found here for hnRNP A2/B1 in these ALS cases.”

Eggciting News: Scientists developed fertilized eggs from mouse stem cells

A really eggciting science story came out early this week that’s received a lot of attention. Scientists in Japan reported in the journal Nature that they’ve generated egg cells from mouse stem cells, and these eggs could be fertilized and developed into living, breathing mice.

This is the first time that scientists have reported the successful development of egg cells in the lab outside of an animal. Many implications emerge from this research like gaining a better understanding of human development, generating egg cells from other types of mammals and even helping infertile women become pregnant.

Making eggs from pluripotent stem cells

The egg cells, also known as oocytes, were generated from mouse embryonic stem cells and induced pluripotent stem cells derived from mouse skin cells in a culture dish. Both stem cell types are pluripotent, meaning that they can generate almost any cell type in the human body.

After generating the egg cells, the scientists fertilized the eggs through in vitro fertilization (IVF) using sperm from a healthy male mouse. They allowed the fertilized eggs to grow into two cell embryos which they then transplanted into female mice. 11 out of 316 embryos (or 3.5%) produced offspring, which were then able to reproduce after they matured into adults.

mice

These mice were born from artificial eggs that were made from stem cells in a dish. (K. Hayashi, Kyushu University)

Not perfect science

While impressive, this study did identify major issues with its egg-making technique. First, less than 5% of the embryos made from the stem-cell derived eggs developed into viable mice. Second, the scientists discovered that some of their lab-grown eggs (~18%) had abnormal numbers of chromosomes – an event that can prevent an embryo from developing or can cause genetic disorders in offspring.

Lastly, to generate mature egg cells, the scientists had to add cells taken from mouse embryos in pregnant mice to the culture dish. These outside cells acted as a support environment that helped the egg cells mature and were essential for their development. The scientists are working around this issue by developing artificial reagents that could hopefully replace the need for these cells.

Egg cells made from embryonic stem cells in a dish. (K. Hayashi, Kyushu University)

Egg cells made from embryonic stem cells in a dish. (K. Hayashi, Kyushu University)

Will human eggs be next?

A big discovery such as this one immediately raises ethical questions and concerns about whether scientists will attempt to generate artificial human egg cells in a dish. Such technology would be extremely valuable to women who do not have eggs or have problems getting pregnant. However, in the wrong hands, a lot could go wrong with this technology including the creation of genetically abnormal embryos.

In a Nature news release, Azim Surani who is well known in this area of research, said that these ethical issues should be discussed now and include the general public. “This is the right time to involve the wider public in these discussions, long before and in case the procedure becomes feasible in humans.”

In an interview with Phys.org , James Adjaye, another expert from Heinrich Heine University in Germany, raised the point that even if we did generate artificial human eggs, “the final and ultimate test for fully functional human ‘eggs in a dish’ would be the fertilization using IVF, which is also ethically not allowed.”

Looking forward, senior author on the Nature study, Katsuhiko Hayashi, predicted that in a decade, lab-grown “oocyte-like” human eggs will be available but probably not at a scale for fertility treatments. Because of the technical issues his study revealed, he commented, “It is too preliminary to use artificial oocytes in the clinic.”

Creating a “Pitching Machine” to speed up our delivery of stem cell treatments to patients

hitting-machine

When baseball players are trying to improve their hitting they’ll use a pitching machine to help them fine tune their stroke. Having a device that delivers a ball at a consistent speed can help a batter be more consistent and effective in their swing, and hopefully get more hits.

That’s what we are hoping our new Translating and Accelerating Centers will do. We call these our “Pitching Machine”, because we hope they’ll help researchers be better prepared when they apply to the Food and Drug Administration (FDA) for approval to start a clinical trial, and be more efficient and effective in the way they set up and run that clinical trial once they get approval.

The CIRM Board approved the Accelerating Center earlier this summer. The $15 million award went to QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider.

The Accelerating Center will provide key core services for researchers who have been given approval to run a clinical trial, including:

  • Regulatory support and management services
  • Clinical trial operations and management services
  • Data management, biostatistical and analytical services

The reason why these kinds of service are needed is simple, as Randy Mills, our President and CEO explained at the time:

“Many scientists are brilliant researchers but have little experience or expertise in navigating the regulatory process; this Accelerating Center means they don’t have to develop those skills; we provide them for them.”

The Translating Center is the second part of the “Pitching Machine”. That is due to go to our Board for a vote tomorrow. This is an innovative new center that will support the stem cell research, manufacturing, preclinical safety testing, and other activities needed to successfully apply to the FDA for approval to start a clinical trial.

The Translating Center will:

  • Provide consultation and guidance to researchers about the translational process for their stem cell product.
  • Initiate, plan, track, and coordinate activities necessary for preclinical Investigational New Drug (IND)-enabling development projects.
  • Conduct preclinical research activities, including pivotal pharmacology and toxicology studies.
  • Manufacture stem cell and gene modified stem cell products under the highest quality standards for use in preclinical and clinical studies.

The two centers will work together, helping researchers create a comprehensive development plan for every aspect of their project.

For the researchers this is important in giving them the support they need. For the FDA it could also be useful in ensuring that the applications they get from CIRM-funded projects are consistent, high quality and meet all their requirements.

We want to do everything we can to ensure that when a CIRM-funded therapy is ready to start a clinical trial that its application is more likely to be a hit with the FDA, and not to strike out.

Just as batting practice is crucial to improving performance in baseball, we are hoping our “Pitching Machine” will raise our game to the next level, and enable us to deliver some game-changing treatments to patients with unmet medical needs.