Scientists use stem cell ‘mini-brains’ to better understand signs of frontotemporal dementia

Dementia is a general term that describes a set of diseases that impair the ability to remember, think, or make decisions that interfere with doing everyday activities. According to the World Health Organization (WHO), around 50 million people worldwide have dementia with nearly 10 million new cases every year. Although it primarily affects older people it is not a normal part of aging. As our population ages its critical to better understand why this occurs.

Frontotemporal dementia is a rare form of dementia where people start to show signs between the ages of 40 and 60. It affects the front and side (temporal) areas of the brain, hence the name. It leads to behavior changes and difficulty with speaking and thinking. This form of the disease is caused by a genetic mutation called tau, which is known to be associated with Alzheimer’s disease and other dementias.

A CIRM supported study using induced pluripotent stem cells (iPSCs) led by Kathryn Bowles, Ph.D. and conducted by a team of researchers at Mount Sinai were able to recreate much of the damage seen in a widely studied form of the frontotemporal dementia by growing special types of ‘mini-brains’, also known as cerebral organoids.

iPSCs are a kind of stem cell that can be created from skin or blood cells through reprogramming and have the ability to turn into virtually any other kind of cell. The team used iPSCs to create thousands of tiny, 3D ‘mini-brains’, which mimic the early growth and development of the brain.

The researchers examined the growth and development of these ‘mini-brains’ using stem cells derived from three patients, all of whom carried a mutation in tau. They then compared their results with those observed in “normal” mini-brains which were derived from patient stem cells in which the disease-causing mutation was genetically corrected.

After six months, signs of neurodegeneration were seen in the patient ‘mini-brains’. The patient-derived ‘mini-brains’ had fewer excitatory neurons compared to the “normal” ones which demonstrates that the tau mutation was sufficient to cause higher levels of cell death of this specific class of neurons. Additionally, the patient-derived ‘mini-brains’ also had higher levels of harmful versions of tau protein and elevated levels of inflammation.

In a news release from Mount Sinai, Dr. Bowles elaborated on the results of this study.

“Our results suggest that the V337M mutant tau sets off a vicious cycle in the brain that puts excitatory neurons under great stress. It hastens the production of new proteins needed for maturation but prevents disposal of the proteins that are being replaced.”

The full results of this study were published in Cell.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.