Scientists use stem cell ‘mini-brains’ to better understand signs of frontotemporal dementia

Dementia is a general term that describes a set of diseases that impair the ability to remember, think, or make decisions that interfere with doing everyday activities. According to the World Health Organization (WHO), around 50 million people worldwide have dementia with nearly 10 million new cases every year. Although it primarily affects older people it is not a normal part of aging. As our population ages its critical to better understand why this occurs.

Frontotemporal dementia is a rare form of dementia where people start to show signs between the ages of 40 and 60. It affects the front and side (temporal) areas of the brain, hence the name. It leads to behavior changes and difficulty with speaking and thinking. This form of the disease is caused by a genetic mutation called tau, which is known to be associated with Alzheimer’s disease and other dementias.

A CIRM supported study using induced pluripotent stem cells (iPSCs) led by Kathryn Bowles, Ph.D. and conducted by a team of researchers at Mount Sinai were able to recreate much of the damage seen in a widely studied form of the frontotemporal dementia by growing special types of ‘mini-brains’, also known as cerebral organoids.

iPSCs are a kind of stem cell that can be created from skin or blood cells through reprogramming and have the ability to turn into virtually any other kind of cell. The team used iPSCs to create thousands of tiny, 3D ‘mini-brains’, which mimic the early growth and development of the brain.

The researchers examined the growth and development of these ‘mini-brains’ using stem cells derived from three patients, all of whom carried a mutation in tau. They then compared their results with those observed in “normal” mini-brains which were derived from patient stem cells in which the disease-causing mutation was genetically corrected.

After six months, signs of neurodegeneration were seen in the patient ‘mini-brains’. The patient-derived ‘mini-brains’ had fewer excitatory neurons compared to the “normal” ones which demonstrates that the tau mutation was sufficient to cause higher levels of cell death of this specific class of neurons. Additionally, the patient-derived ‘mini-brains’ also had higher levels of harmful versions of tau protein and elevated levels of inflammation.

In a news release from Mount Sinai, Dr. Bowles elaborated on the results of this study.

“Our results suggest that the V337M mutant tau sets off a vicious cycle in the brain that puts excitatory neurons under great stress. It hastens the production of new proteins needed for maturation but prevents disposal of the proteins that are being replaced.”

The full results of this study were published in Cell.

Overcoming one of the biggest challenges in stem cell research

Imagine you have just designed and built a new car. Everyone loves it. It’s sleek, fast, elegant, has plenty of cup holders. People want to buy it. The only problem is you haven’t built an assembly line to make enough of them to meet demand. Frustrating eh.

Overcoming problems in manufacturing is not an issue that just affects the auto industry (which won’t make Elon Musk and Tesla feel any better) it’s something that affects many other areas too – including the field of regenerative medicine. After all, what good is it developing a treatment for a deadly disease if you can’t make enough of the therapy to help the people who need it the most, the patients.

As the number of stem cell therapies entering clinical trials increases, so too does the demand for large numbers of high quality, rigorously tested stem cells. And because each of those therapies is unique, that places a lot of pressure on existing manufacturing facilities to meet the demand.

IABS panel

Representatives from the US FDA, Health Canada, EMA, FDA China, World Health Organization discuss creating a manufacturing roadmap for stem cell therapies: Photo Geoff Lomax

So, with that in mind CIRM teamed up with the International Alliance for Biological Standardization (IABS) to hold the 4th Cell Therapy Conference: Manufacturing and Testing of Pluripotent Stem Cells to try and identify the key problems and chart out solutions.

The conference brought together everyone who had a stake in this issue, including leading experts in cell manufacturing, commercial sponsors developing stem cell treatments, academic researchers, the World Health Organization, the US Food and Drug Administration (FDA), international regulatory bodies as well as patient and patient advocates too (after all, who has a greater stake in this).

Commercial sponsors and academic researchers presented case studies of how they worked through the development of manufacturing process for their stem cell treatments.

Some key points quickly emerged:

  • Scale up and quality control of stem cell manufacturing is vital to the development of stem cell treatments.
  • California is a world leader in stem cell manufacturing.
  • There have been numerous innovations in cell manufacturing that serve to support quality, quantity, performance and cost control.
  • The collective experience of the field is leading to standardization of definitions (so we all use the same language), standardization of processes to release quality cells, manufacturing and standardization of testing (so we all meet the same safety requirements).
  • Building consensus among stakeholders is important for accelerating stem cell treatments to patients.

Regulatory experts emphasized the importance of thinking about manufacturing early on in the research and product development phase, so that you can avoid problems in later stages.

There were no easy answers to many of the questions posed, but there was agreement on the importance of developing a stem cell glossary, a common set of terms and definitions that we can all use. There was also agreement on the key topics that need to continue to be highlighted such as safety testing, compatibility, early locking-in of quality processes when feasible, and scaling up.

In the past our big concern was developing the therapies. Now we have to worry about being able to manufacture enough of the cells to meet demand. That’s progress.

A technical summary is being developed and we will announce when it is available.