Replacement brain cells offer hope for Parkinson’s treatment

A colony of iPSCs from a Parkinson’s patient (left) and dopaminergic neurons made from these iPSCs (right) to model PD. (Image credit: Jeanne Loring)

A new study that used adult blood stem cells to create replacement brain nerve cells appears to help rats with Parkinson’s.

In Parkinson’s, the disease attacks brain nerve cells that produce a chemical called dopamine. The lack of dopamine produces a variety of symptoms including physical tremors, depression, anxiety, insomnia and memory problems. There is no cure and while there are some effective treatments they tend to wear off over time.

In this study, researchers at Arizona State University took blood cells from humans and, using the iPSC method, changed those into dopamine-producing neurons. They then cultured those cells in the lab before implanting them in the brains of rats which had Parkinson’s-like symptoms.

They found that rats given cells that had been cultured in the lab for 17 days survived in greater numbers and seemed to be better at growing new connections in their brains, compared to rats given cells that had been cultured for 24 or 37 days.

In addition, those rats given larger doses of the cells experienced a complete reversal of their symptoms, compared to rats given smaller doses.

In a news release, study co-author Dr. Jeffrey Kordower, said: “We cannot be more excited by the opportunity to help individuals who suffer from [a] genetic form of Parkinson’s disease, but the lessons learned from this trial will also directly impact patients who suffer from sporadic, or non-genetic forms of this disease.”

The study, published in the journal npj Regenerative Medicine, says this approach might also help people suffering from other neurological diseases like Alzheimer’s or Huntington’s disease.

Smoking marijuana could be bad for your heart, but there is an unusual remedy

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Smoking medical marijuana: Photo courtesy Elsa Olofsson

Millions of Americans use marijuana for medical reasons, such as reducing anxiety or helping ease the side effects of cancer therapy. Millions more turn to it for recreational reasons, saying it helps them relax. Now a new study says those who smoke marijuana regularly might be putting themselves at increased risk of heart disease and heart attack.

There has long been debate about the benefits versus the risks for using cannabis, with evidence on both sides to support each position. For example some studies have shown taking oral cannabinoids can help people cope with the nausea brought on by chemotherapy. Other studies have shown that regular use of marijuana can cause problems such as marijuana use disorder, a condition where the user is showing physical or psychological problems but has difficulty controlling or reducing their use of cannabis.

Now this latest study, from researchers at Stanford Medicine,  shows that THC, the psychoactive part of the drug, can cause inflammation in endothelial cells. These are the cells that line the interior of blood vessels. When these cells become inflamed it can cause a constriction of the vessels and reduce blood flow. Over time this can create conditions that increase the risk of heart disease and heart attack.

The researchers, led by Dr. Joe Wu, began by analyzing data from the UK Biobank. This included information about some 35,000 people who reported smoking marijuana. Of these around 11,000 smoked more than once a month. The researchers found that regular marijuana smokers:

  • Were significantly more likely than others to have a heart attack.
  • Were also more likely to have their first heart attack before the age of 50, increasing their risk of subsequent attacks.

The team then used the iPSC method to create human endothelial cells and, in the lab, found that THC appeared to promote inflammation in the cells. They also found signs it created early indications of atherosclerosis, where there is a buildup of fat and plaque in the arteries.

They then tested mice which had been bred to have high levels of cholesterol and who were given a high fat diet. Some of the mice were then injected with THC, at a level comparable to smoking one marijuana cigarette a day. Those mice had far larger amounts of atherosclerosis plaque in their arteries compared to the mice who didn’t get the THC.

In a news release, Dr.Wu, the lead author of the study, said: “There’s a growing public perception that marijuana is harmless or even beneficial. Marijuana clearly has important medicinal uses, but recreational users should think carefully about excessive use.”

On the bright side, the team also reported that the damage caused by THC can be stopped by genistein, a naturally occurring compound found in soy and fava beans. The study, in the journal Cell, also found that genistein blocked the bad impact of THC without impeding the good impacts.

“As more states legalize the recreational use of marijuana, users need to be aware that it could have cardiovascular side effects,” said Dr. Wu. “But genistein works quite well to mitigate marijuana-induced damage of the endothelial vessels without blocking the effects marijuana has on the central nervous system, and it could be a way for medical marijuana users to protect themselves from a cardiovascular standpoint.”

It’s hard to be modest when people keep telling you how good you are

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

I have a confession. Deep down I’m shallow. So when something I am part of is acknowledged as one of the best, I delight in it (my fellow bloggers Katie and Esteban also delight in it, I am just more shameless about letting everyone know.)

And that is just what happened with this blog, The Stem Cellar. We have been named as one of the “22 best biology and stem cell blogs of 2022”. And not just by anyone. We were honored by Dr. Paul Knoepfler, a stem cell scientist, avid blogger and all-round renaissance man (full disclosure, Paul is a recipient of CIRM funding but that has nothing to do with this award. Obviously.)

We are particularly honored to be on the list because Paul includes some heavy hitters including The Signals Blog, a site that he describes this way:

“This one from our friends in Canada is fantastic. They literally have dozens of authors, which is probably the most of any stem cell-related website, and their articles include many interesting angles. They post really often too. I might rank Signal and The Stem Cellar as tied for best stem cell blog in 2021.”

Now I’m really blushing.

Other highly regarded blogs are EuroStemCell, the Mayo Clinic Regenerative Medicine Blog and Stem Cell Battles (by Don Reed, a good friend of CIRM’s)

Another one of the 22 is David Jensen’s California Stem Cell report which is dedicated to covering the work of, you guessed it, CIRM. So, not only are we great bloggers, we are apparently great to blog about. 

As a further demonstration of my modesty I wanted to point out that Paul regularly produces ‘best of’ lists, including his recent “50 influencers on stem cells on Twitter to follow” which we were also on.

The bootcamp helping in the fight against rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Emil Kakkis at the Rare Entrepreneur Bootcamp

Imagine you or someone you love is diagnosed with a rare disease and then told, “There is no cure, there are no treatments and because it’s so rare no one is even doing any research into developing a treatment.” Sadly for millions of people that’s an all-too-common occurrence.

There are around 7,000 rare diseases affecting some 25-30 million Americans. Some of these are ultra-rare conditions where worldwide there may be only a few hundred people, or even a few dozen, diagnosed with it. And of all these rare diseases, only 5% have an approved therapy.

For the people struggling with a rare disease, finding a sense of hope in the face of all this can be challenging. Some say it feels as if they have been abandoned by the health care system. Others fight back, working to raise both awareness about the disease and funds to help support research to develop a treatment. But doing that without experience in the world of fund raising and drug development can pose a whole new series of challenges.

That’s where Ultragenyx comes into the picture. The company has a simple commitment to patients. “We aim to develop safe and effective treatments for many serious rare diseases as fast as we can, and we are committed to helping the whole rare disease community move forward by sharing our science and expertise to advance future development, whether by us or others.”

They live up to that commitment by hosting a Rare Entrepreneur Bootcamp. Every year they bring together a dozen or so patient or family organizations that are actively raising funds for a potential treatment approach and give them a 3-day crash course in what they’ll need to know to have a chance to succeed in rare disease drug development.

A panel discussion at the Rare Entrepreneur Bootcamp

Dr. Emil Kakkis, the founder of Ultragenyx, calls these advocates “warriors” because of all the battles they are going to face. He told them, “Get used to hearing no, because you are going to hear that a lot. But keep fighting because that’s the only way you get to ‘yes’.”

The bootcamp brings in experts to coach and advise the advocates on everything from presentation skills when pitching a potential investor, to how to collaborate with academic researchers, how to design a clinical trial, what they need to understand about manufacturing or intellectual property rights.

In a blog about the event, Arjun Natesan, vice president of Translational Research at Ultragenyx, wrote, “We are in a position to share what we’ve learned from bringing multiple drugs to market – and making the process easier for these organizations aligns with our goal of treating as many rare disease patients as possible. Our aim is to empower these organizations with guidance and tools and help facilitate their development of life-changing rare disease treatments.”

For the advocates it’s not just a chance to gain an understanding of the obstacles ahead and how to overcome them, it’s also a chance to create a sense of community. Meeting others who are fighting the same fight helps them realize they are not alone, that they are part of a bigger, albeit often invisible, community, working tirelessly to save the lives of their children or loved ones.  

CIRM also has a commitment to supporting the search for treatments for rare diseases. We are funding more than two dozen clinical trials, in addition to many earlier stage research projects, targeting rare conditions.

New funding opportunity in CIRM’s Discovery stage programs: the Foundation Awards 

Applications for CIRM’s new Discovery stage Foundation Awards (DISC 0) are due May 26th, 2022 by 2:00 PM PDT. 

The California Institute for Regenerative Medicine (CIRM) is pleased to announce a brand new funding opportunity within our Discovery stage programs, the DISC 0 Foundation Awards which will support rigorous studies addressing critical basic knowledge gaps in the biology of stem cells and regenerative medicine approaches, and to advance stem cell-based tools.

Projects funded through the Foundation Awards should propose impactful or innovative research that culminates in a discovery or technology that would:

  • Advance our understanding of the biology of stem or progenitor cells that is relevant to human biology and disease; or 
  • Advance the application of genetic research that is relevant to human biology and disease and pertains to stem cells and regenerative medicine; or
  • Advance the development or use of human stem cells as tools for biomedical innovation; or 
  • Lead to the greater applicability of regenerative medicine discoveries to communities representing the full spectrum of diversity.

Please visit our website to access the DISC 0 PA and read about program requirements. Applications are due May 26th, 2022 by 2:00 PM PDT.

We look forward to your applications!

Turning back the clock to make old skin cells young again

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Dr. Diljeet Gill, photo courtesy Babraham Institute, Cambridge UK

Sometimes when I am giving public presentations people ask if stem cells are good for the face. I always say that if stem cells could help improve people’s faces would I look like this. It’s a line that gets a laugh but it’s also true. The ads you see touting stem cells as being beneficial for skin are all using plant stem cells. But now some new research has managed to turn back the clock for skin cells, and it might do a lot more than just help skin look younger.

Back in 2007 Japanese scientist Shinya Yamanaka discovered a way to turn ordinary skin cells back into an embryonic-like state, meaning those cells could then be turned into any other cell in the body. He called these cells induced pluripotent stem cells or iPSCs. Dr. Yamanaka was later awarded the Nobel Prize for Medicine for this work.

Using this work as their starting point, a team at Cambridge University in the UK, have developed a technique that can rewind the clock on skin cells but stop it less than a third of the way through, so they have made the cells younger but didn’t erase their identity as skin cells.

The study, published in the journal ELifeSciences, showed the researchers were able to make older skin cells 30 years younger. This wasn’t about restoring a sense of youthful beauty to the skin, instead it was about something far more important, restoring youthful function to the skin.

In a news release, Dr Diljeet Gill, a lead author on the study, said: “Our understanding of ageing on a molecular level has progressed over the last decade, giving rise to techniques that allow researchers to measure age-related biological changes in human cells. We were able to apply this to our experiment to determine the extent of reprogramming our new method achieved.”

The team proved the potential for their work using fibroblasts, the most common kind of cell found in connective tissues such as skin. Fibroblasts are important because they produce collagen which helps provide support and structure to tissues and also helps in healing wounds. When the researchers examined the rejuvenated skin cells they found they were producing more collagen than cells that had not been rejuvenated. They also saw signs that these rejuvenated cells could help heal wounds better than the old cells.

The researchers also noted that this approach had an effect on other genes linked to age-related conditions, such Alzheimer’s disease and the development of cataracts.

The researchers acknowledge that this is all very early on, but the fact that they were able to make the cells behave and act like younger cells, without losing their identity as skin cells, holds tremendous promise not just for conditions affecting the skin, but for regenerative medicine as a whole.

Dr. Diljeet concluded: “Our results represent a big step forward in our understanding of cell reprogramming. We have proved that cells can be rejuvenated without losing their function and that rejuvenation looks to restore some function to old cells. The fact that we also saw a reverse of ageing indicators in genes associated with diseases is particularly promising for the future of this work.”

Making the list of people to follow

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

If you are walking down the street on a dark night, being followed is not necessarily something you want. But if you are online, having someone follow you is almost always a positive thing. And when that person is Dr. Paul Knoepfler it’s most definitely a plus.

Paul is a stem cell scientist at UC Davis (full disclosure, we have funded some of his work). He’s also one of the longest-running and most active bloggers about regenerative medicine and an ever-present presence on Twitter. His blog is always a great read and, for those of us without a science background, easy to follow and understand.

Dr. Paul Knoepfler, UC Davis: Photo courtesy UC Davis

That’s why it’s quite an honor that Paul has listed the California Institute for Regenerative Medicine’s as one of the 50 Influencers on stem cells to follow on Twitter.

Paul says this does not necessarily mean the most influential in the field of research because many researchers – such as Nobel Prize winner Dr. Shinya Yamanaka – don’t use Twitter. He says in making the list he looked for a few key elements.

“I particularly appreciate those accounts that include a mix of info, news, and opinion with original content or opinions of their own too.

“I emphasized inclusion of those accounts who regularly tweet. Also, I aimed for a good mixture of accounts across the globe, not just in the U.S. I also included stem cell policy researchers and bioethicists.”

“I picked this list of 50… for 2022 based simply on my impressions of their influence or because they do interesting tweets and/or have a fresh perspective on things, not strictly based on metrics.”

Whatever the reason, we’re delighted, and honored to be on Paul’s list.

And if you would like to see why we made the ’50 to Follow list’, then follow us on Twitter

Promoting stem cell therapies, racial justice and fish breeding

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Jan Nolta, PhD, in her lab at UC Davis; Photo courtesy UC Davis

Working at CIRM you get to meet many remarkable people and Dr. Jan Nolta certainly falls into that category. Jan is the Director of the Stem Cell Program at UC Davis School of Medicine. She also directs the Institute for Regenerative Cures and is scientific director of both the Good Manufacturing Practice clean room facility at UC Davis and the California Umbilical Cord Blood Collection Program.

As if that wasn’t enough Jan is part of the team helping guide UC Davis’ efforts to expand its commitment to diversity, equity and inclusion using a variety of methods including telemedicine, to reach out into rural and remote communities.

She is on the Board of several enterprises, is the editor of the journal Stem Cells and, in her copious spare time, has dozens of aquariums and is helping save endangered species.

So, it’s no wonder we wanted to chat to her about her work and find out what makes her tick. Oh, and what rock bands she really likes. You might be surprised!

That’s why Jan is the guest on the latest edition of our podcast ‘Talking ‘Bout (re)Generation’.

I hope you enjoy it.

Joining the movement to fight rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

It’s hard to think of something as being rare when it affects up to 30 million Americans and 300 million people worldwide. But the truth is there are more than 6,000 conditions – those affecting 200,000 people or fewer – that are considered rare.  

Today, February 28th, is Rare Disease Day. It’s a day to remind ourselves of the millions of people, and their families, struggling with these diseases. These conditions are also called or orphan diseases because, in many cases, drug companies were not interested in adopting them to develop treatments.

At the California Institute for Regenerative Medicine (CIRM), we have no such reservations. In fact last Friday our governing Board voted to invest almost $12 million to support a clinical trial for IPEX syndrome. IPEX syndrome is a condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. This leads to the development of Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive. It’s diagnosed in infancy, most of those affected are boys, and it is often fatal.

Taylor Lookofsky (who has IPEX syndrome) and his father Brian

IPEX is one of two dozen rare diseases that CIRM is funding a clinical trial for. In fact, more than one third of all the projects we fund target a rare disease or condition. Those include:

Some might question the wisdom of investing hundreds of millions of dollars in conditions that affect a relatively small number of patients. But if you see the faces of these patients and get to know their families, as we do, you know that often agencies like CIRM are their only hope.

Dr. Maria Millan, CIRM’s President and CEO, says the benefits of one successful approach can often extend far beyond one rare disease.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives. Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders.”

CIRM is proud to fund and spread awareness of rare diseases and invites you to watch this video about how they affect families around the world.

It’s nice to be appreciated

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Photo: courtesy City of Hope

No one likes to be taken for granted, to feel that people only like you because you have scads of cash and they want some of it. That’s why it’s so lovely when you feel you are appreciated because of all the things money makes possible.

That’s how it felt when we saw City of Hope’s news release about our funding to train the next generation of scientists and leaders in the field of regenerative medicine. CIRM has awarded COH $4.86 million as part of its Research Training Program in Stem Cell Biology and Regenerative Medicine.

The program provides stem cell and gene therapy research training for up to 6 graduate students and 12 postdocs at the Beckman Research Institute of City of Hope. In addition to 3 years of research, the training includes coursework, patient engagement and community outreach activities.

In a news release, Dr. Nadia Carlesso, chair of the Department of Stem Cell Biology and Regenerative Medicine, said this funding is important in training a new generation of scientists.

“This program originates from City of Hope’s longstanding expertise in conducting clinical trials and applying fundamental stem cell biology and gene therapy to the treatment of diseases. The program reflects City of Hope’s commitment to ensuring that future scientific leaders understand the varied needs of diverse patient populations, and the inequities that presently affect both biomedical research and the development of and access to innovative therapies.”

Students in the program will have access to world class research facilities and will also benefit from the fact that their classrooms and laboratories are within walking distance from where patients are treated. We believe the best scientists need to have experience in working both at the laboratory bench and at the bedside, not only developing new therapies, but being able to deliver those therapies in a caring, compassionate way.