
Fabry disease is an X-linked genetic disorder that can damage major organs and shorten lifespan. Without a functional version of a gene called GLA, our bodies are unable to make the correct version of an enzyme that breaks down a fat, and that in turn can lead to problems in the kidneys, heart and brain. It is estimated that one person in 40,000 to 60,000 has the disease and it affects men more severely than women since men only have one copy of the X chromosome. Current treatment consists of enzyme therapy infusions every two weeks but there is currently no cure for Fabry disease.
However, a Canadian research team is conducting the world’s first pilot study to treat Fabry disease using a stem cell gene therapy approach. The researchers collected the patient’s own blood stem cells and used gene therapy to insert copies of the fully functional gene into the stem cells, allowing them to make the correct version of the enzyme. The newly modified stem cells were then transplanted back into each patient.
Five men participated in this trial and the results so far have been very encouraging. After treatment with the stem cell gene therapy, all patients began producing the corrected version of the enzyme to near normal levels within one week. With these initial results, all five patients were allowed to stop their biweekly enzyme therapy infusions. So far, only three patients decided to do so and are stable.
In a news release, Darren Bidulka, the first patient to be treated in the study, talked about how life changing this stem cell gene therapy has been for him.
“I’m really happy that this worked. What an amazing result in an utterly fascinating experience. I consider this a great success. I can lead a more normal life now without scheduling enzyme therapy every two weeks. This research is also incredibly important for many patients all over the world, who will benefit from these findings.”
CIRM is no stranger to stem cell gene therapy and its potential having funded clinical trials in various areas such as severe combined immunodeficiency (bubble baby disease), cystinosis, sickle cell disease, and various others. The broad range of genetic diseases it has been used in to treat patients further highlights its importance in scientific research.
The full results of this study were published in Nature Communications.