It’s traditional this time of year to send messages of gratitude to friends and family and colleagues. And we certainly have much to be thankful for.
Thanks to the voters of California, who passed Proposition 14, we have a bright, and busy, future. We have $5.5 billion to continue our mission of accelerating stem cell treatments to patients with unmet medical needs.
That means the pipeline of promising projects that we have supported from an early stage can now apply to us to help take that work out of the lab and into people.
It means research areas, particularly early-stage work, where we had to reduce our funding as we ran out of money can now look forward to increased support.
It means we can do more to bring this research, and it’s potential benefits, to communities that in the past were overlooked.
We have so many people to thank for all this. The scientists who do the work and championed our cause at the ballot box. The voters of California who once again showed their support for and faith in science. And the patients and patient advocates, the reason we were created and the reason we come to work every day.
As Dr. Maria Millan, our President & CEO, said in a letter to our team; “We are continually faced by great opportunities brilliantly disguised as insoluble problems.” Here’s to the opportunities made possible by CIRM and for its continuation made possible by Prop 14!”
And none of this would be possible without the support of all of you. And for that we are truly Thankful.
From everyone at CIRM, we wish you a happy, peaceful and safe Thanksgiving.
One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.
But there are equally exciting signs of progress that are not always so obvious to the untrained eye- those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.
These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”. For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.
A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use.
Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.
A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.
These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.
The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.
Caption for Graphic:This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).
The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.
We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.
Project: stem cell therapy to enhance bone healing in theelderly
– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)
One of the wonders of regenerative medicine is its broad applicability, which provides us with the opportunity to build upon existing knowledge and concepts. In the midst of a global pandemic, researchers have responded to the needs of patients severely afflicted with COVID-19 by repurposing existing therapies being developed to treat patients. The California Institute for Regenerative Medicine (CIRM) responded immediately to the pandemic and to researchers wanting to help by providing $5 million in emergency funding for COVID-19 related projects. In a short time span, this funding has driven innovation in the form of 17 new projects targeting COVID-19, many of which are based on previously developed concepts being repurposed to deal with the novel coronavirus.
One such example is a clinical trial funded by CIRM that uses natural killer (NK) cells, a type of white blood cell that is a vital part of the immune system, which are administered to patients with COVID-19. NK cells play an important role in defense against cancer and in fighting off viral infections. In fact, this exact same therapy was previously used in a clinical trial for patients with Acute Myeloid Leukemia, a type of blood cancer.
Another clinical trial funded by CIRM uses mesenchymal stromal cells (MSCs), a type of stem cell, to treat acute respiratory distress syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs. As a result of ARDS, oxygen cannot get into the body and patients have difficulty breathing. ARDS is one of the most serious and lethal consequences of COVID-19, which is why this trial was expanded after the coronavirus pandemic to include COVID-19 positive patients.
Despite these great strides in driving innovation of therapies, one challenge that still needs to be tackled is providing patients access to these therapies, particularly people from underrepresented and underserved communities. In California alone, there have been over 621,000 positive cases as of August 2020, with more cases every day. However, the impact of the pandemic is disproportionately affecting the Latinx and African American communities more than others. An analysis by the Los Angeles Times found that the Latinx and African American communities have double the mortality rate from the coronavirus in Los Angeles County. Additionally, a surge in cases is being seen in poorer communities in comparison to wealthier ones.
Until a vaccine can be successfully developed and implemented to obtain herd immunity, the number of cases will continue to climb. There is also the challenge of the long term health effects of COVID-19, which can consist of neurological, breathing, and heart problems according to an article in Science. Unfortunately, a study published in the New England Journal of Medicine found that despite disproportionately higher rates of COVID-19 infection, hospitalization and death among people of color, they are significantly underrepresented in COVID-19 clinical trials.
The challenge of underrepresentation in clinical trials and research needs to be addressed by creating a more diverse population of study participants, so as to better generalize results to the U.S. population as a whole. CIRM Board Member Ysabel Duron, a leading figure in cancer education in the Latinx community, has advocated for more inclusion and outreach efforts directed towards underserved and underrepresented communities. By communicating with patients in underserved and underrepresented communities, building relationships established on a foundation of trust, and connecting patients with potential trial matches, underrepresentation can be alleviated.
To help in addressing these disparities, CIRM has taken action by changing the requirements for its discovery stage research projects, which promote promising new technologies that could be translated to enable broad use and improve patient care, and clinical trial stage projects.
For clinical trials, all proposals must include a written plan in the application for outreach and study participation by underserved and disproportionately affected populations. Priority will be given to projects with the highest quality plans in this regard. For discovery projects, all proposals must provide a statement describing how their overall study plan and design has considered the influence of race, ethnicity, sex and gender diversity. Additionally, all proposals should discuss the limitations, advantages, and/or challenges in developing a product or tools that addresses the unmet medical needs of California’s diverse population, including underserved communities. There is still much more work that needs to be done to address health disparities, but steps such as these can help steer progress in the right direction.
Driving innovation while addressing health disparities among people of color is just one of many opportunities and challenges of regenerative medicine in a post pandemic world. This blog post is part of Signal’s fifth annual blog carnival. Please click here to read what other bloggers think about this topic.
Dr. Jianhua Yu (left), Dr. Helen Blau (center), and Dr. Albert Wong (right)
The COVID-19 virus targets many different parts of the body, often with deadly or life-threatening consequences. This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved investments in three early-stage research programs taking different approaches to battling the virus.
Dr. Jianhua Yu at the Beckman Research Institute of City of Hope was awarded $150,000 to use stem cells from umbilical cord blood to attack the virus. Dr. Yu and his team have many years of experience in taking cord blood cells and turning them into what are called chimeric antigen receptor (CAR) natural killer (NK) cells. The goal is to deploy these CAR NK cells to specifically target cells infected with COVID-19. This leverages the body of work at the City of Hope to develop this technology for cancer.
Dr. Helen Blau of Stanford University was awarded $149,996 to target recovery of muscle stem cells of the diaphragm in COVID-19 patients who have an extended period on a ventilator.
Patients with severe coronavirus often suffer respiratory failure and end up on mechanical ventilation that takes over the work of breathing. Over time, the diaphragm, the main muscle responsible for inhaling and exhaling, weakens and atrophies. There is no treatment for this kind of localized muscle wasting and it is anticipated that some of these patients will take months, if not years, to fully recover. Dr. Blau’s team proposes to develop a therapy with Prostaglandin E2 and Bupivacaine based on data generated by Dr. Blau’s group that these drugs, already approved by the FDA for other indications, have the potential to stimulate muscle stem cell recovery.
Dr. Albert Wong, also from Stanford University, was awarded $149,999 to develop vaccine candidates against COVID-19.
Most vaccine candidates are focused on getting the body to produce an antibody response to block the virus. However, Dr. Wong thinks that to be truly effective, a vaccine also needs to produce a CD8+ T cell response to augment an effective immune response to remove the COVID-19 infected cells that are hijacked by the virus to spread and cause illness. This team will use the experience it gained using CIRM funds to vaccine against glioblastoma, a deadly brain cancer, to advance a similar approach to produce an effective cellular immune response to combat COVID-19.
“CIRM is committed to supporting novel, multi-pronged approaches to battle this COVID-19 crisis that leverage solid science and knowledge gained in other areas.” says Dr. Maria T. Millan, the President & CEO of CIRM. “These three projects highlight three very different approaches to combatting the acute devastating health manifestations of COVID-19 as well as the debilitating sequelae that impact the ability to recover from the acute illness. Through this COVID funding opportunity, CIRM is enabling researchers to re-direct work they have already done, often with CIRM support, to quickly develop new approaches to COVID-19.”
Dr. Brigitte Gomperts (left) and Dr. Gay Crooks (right), UCLA Image Credit: UCLA Broad Stem Cell Center
This past Friday, the CIRM Board approved funding for its first clinical study for COVID-19. In addition to this, the Board also approved two discovery stage research projects, which support promising new technologies that could be translated to enable broad use and improve patient care. Before we go into more detail, the two awards are summarized in the table below:
The discovery grant for $150,000 was given to Dr. Gay Crooks at UCLA to study how specific immune cells called T cells respond to COVID-19. The goal of this is to inform the development of vaccines and therapies that harness T cells to fight the virus. Typically, vaccine research involves studying the immune response using cells taken from infected people. However, Dr. Crooks and her team are taking T cells from healthy people and using them to mount strong immune responses to parts of the virus in the lab. They will then study the T cells’ responses in order to better understand how T cells recognize and eliminate the virus.
This method uses blood forming stem cells and then converts them into specialized immune cells called dendritic cells, which are able to devour proteins from viruses and chop them into fragments, triggering an immune response to the virus.
In a press release from UCLA, Dr. Crooks says that, “The dendritic cells we are able to make using this process are really good at chopping up the virus, and therefore eliciting a strong immune response”
The discovery grant for $149,998 was given to Dr. Brigitte Gomberts at UCLA to study a lung organoid model made from human stem cells in order to identify drugs that can reduce the number of infected cells and prevent damage in the lungs of patients with COVID-19. Dr. Gomberts will be testing drugs that have been approved by the U.S. Food and Drug Administration (FDA) for other purposes or have been found to be safe in humans in early clinical trials. This increases the likelihood that if a successful drug is found, it can be approved more rapidly for widespread use.
In the same press release from UCLA, Dr. Gomberts discusses the potential drugs they are evaluating.
“We’re starting with drugs that have already been tested in humans because our goal is to find a therapy that can treat patients with COVID-19 as soon as possible.”
Today the governing Board of the California Institute for Regenerative Medicine (CIRM) continued its commitment to help with the coronavirus pandemic by awarding $749,999 to Dr. John Zaia at City of Hope. He will be conducting a clinical study to administer blood plasma from recovered COVID-19 patients to treat those with the virus. This marks CIRM’s first clinical study for COVID-19 after approving emergency funding a month earlier.
Plasma is a component of blood that carries proteins called antibodies that are usually involved in defending our bodies against viral infections. Blood plasma from patients that have recovered from COVID-19, referred to as convalescent plasma, contain antibodies against the virus that can be used as a potential treatment for COVID-19. Currently, there are challenges with this approach that include: properly identifying convalescent plasma donors i.e. recovered patients, determining eligibility of those with convalescent plasma that want to donate, collection of the plasma, treating patients, and determining if the plasma was effective.
Dr. Zaia and his team at City of Hope will create the COVID-19 Coordination Program, which addresses solutions for all of the challenges listed above. The program will partner with the medical teams at CIRM’s Alpha Stem Cell Clinic Network, as well as infectious disease, pulmonary and critical care teams from medical centers and community hospitals across the state. Potential donors will be identified and thoroughly screened for eligibility per the established National and State blood banking safety requirements. Finally, the convalescent plasma will be collected from eligible donors and administered by licensed physicians to COVID-19 patients, who will be evaluated for response to the treatment and potential recovery.
“We are in the midst of very challenging times where there is not yet an approved treatment for COVID-19. In response to this, CIRM launched and executed an emergency COVID-19 funding program, which was made possible by our Board, patient advocates, California scientists, external scientific expert reviewers, and our dedicated team,” said Maria T. Millan, MD, President and CEO of CIRM. “With CIRM funding, the City of Hope COVID-19 Coordination program will tap into CIRM’s network of researchers, physicians, and our Alpha Clinics to deliver this treatment to patients in need. It will also serve the critical role of gathering important scientific data about the plasma, safety, and clinical data from treated patients.”
The Board also approved a discovery stage research project that utilizes stem cell models for a novel approach to vaccine development against the virus causing COVID-19 and another project that uses a unique lung stem cell organoid to identify an effective drug against the virus.
It’s never easy to tell someone that they are too late, that they missed the deadline. It’s particularly hard when you know that the person you are telling that to has spent years working on a project and now needs money to take it to the next level. But in science, as in life, it’s always better to tell people what they need to know rather than what they would like to hear.
And so, we have posted
a notice on our website for researchers thinking about applying for funding
that, except in a very few cases, they are too late, that there is no money
available for new projects, whether it’s Discovery, Translational or Clinical.
Here’s that notice:
CIRM anticipates
that the budget allocation of funds for new awards under the CIRM clinical
program (CLIN1, CLIN2 and CLIN3) may be depleted within the next two to three
months. CIRM will accept applications for the monthly deadline on June 28, 2019
but will suspend application submissions after that date until further notice.
All applicants should note that the review of submitted applications may be
halted at any point in the process if funds are depleted prior to completion of
the 3-month review cycle. CIRM will notify applicants of such an occurrence.
Therefore, submission and acceptance of an application to CIRM does not
guarantee the availability of funds or completion of a review cycle.
The submission
of applications for the CIRM/NHLBI Cure Sickle Cell Initiative (CLIN1 SCD,
CLIN2 SCD) are unaffected and application submissions for this program will
remain open.
We do, of course, have enough money set aside to continue
funding all the projects our Board has already approved, but we don’t have
money for new projects (except for some sickle cell disease projects).
In truth our funding has lasted a lot longer than anyone
anticipated. When Proposition 71 was approved the plan was to give CIRM $300
million a year for ten years. That was back in 2004. So what happened?
Well, in the early years stem cell science was still very
much in its infancy with most of the work being done at a basic or Discovery
level. Those typically don’t require very large sums so we were able to fund
many projects without hitting our $300m target. As the field progressed,
however, more and more projects were at the clinical trial stage and those need
multiple millions of dollars to be completed. So, the money went out faster.
To date we have funded 55 clinical trials and our
early support has helped more than a dozen other projects get into clinical
trials. This includes everything from cancer and stroke, to vision loss and
diabetes. It’s a good start, but we feel there is so much more to do.
Followers of news about CIRM know there is talk about a possible ballot initiative next year that would provide another $5.5 billion in funding for us to help complete the mission we have started.
Over the years we have built a pipeline of promising
projects and without continued support many of those projects face a difficult
future. Funding at the federal level is under threat and without CIRM there
will be a limited number of funding alternatives for them to turn to.
Telling researchers we don’t have any money to support their
work is hard. Telling patients we don’t have any money to support work that
could lead to new treatments for them, that’s hardest of all.
April 11th is World Parkinson’s Disease Awareness Day. To mark the occasion, we’re featuring the work of CIRM-funded researchers who are pursuing new, promising ideas to treat patients with this debilitating neurodegenerative disease.
Research: Birgitt and her team at the Parkinson’s Institute in Sunnyvale, California, are using CRISPR gene editing technology to reduce the levels of a toxic protein called alpha synuclein, which builds up in the dopaminergic brain cells affected by Parkinson’s disease.
Birgitt Schuele
“My hope is that I can contribute to stopping disease progression in Parkinson’s. If we can develop a drug that can get rid of accumulated protein in someone’s brain that should stop the cells from dying. If someone has early onset PD and a slight tremor and minor walking problems, stopping the disease and having a low dose of dopamine therapy to control symptoms is almost a cure.”
Parkinson’s disease in a dish. Dopaminergic neurons made from Parkinson’s patient induced pluripotent stem cells. (Image credit: Birgitt Schuele)
Research: Jeanne Loring and her team at the Scripps Research Institute in La Jolla, California, are deriving dopaminergic neurons from the iPSCs of Parkinson’s patients. Their goal is to develop a personalized, stem cell-based therapy for PD.
Jeanne Loring
“We are working toward a patient-specific neuron replacement therapy for Parkinson’s disease. By the time PD is diagnosed, people have lost more than half of their dopamine neurons in a specific part of the brain, and loss continues over time. No drug can stop the loss or restore the neurons’ function, so the best possible option for long term relief of symptoms is to replace the dopamine neurons that have died. We do this by making induced pluripotent stem cells from individual PD patients and turning them into the exact type of dopamine neuron that has been lost. By transplanting a patient’s own cells, we will not need to use potentially dangerous immunosuppressive drugs. We plan to begin treating patients in a year to two years, after we are granted FDA approval for the clinical therapy.”
Skin cells from a Parkinson’s patient (left) were reprogrammed into induced pluripotent stem cells (center) that were matured into dopaminergic neurons (right) to model Parkinson’s disease. (Image credit: Jeanne Loring)
Research: Justin Cooper-White and his team at Scaled Biolabs in San Francisco are developing a tool that will make clinical-grade dopaminergic neurons from the iPSCs of PD patients in a rapid and cost-effective manner.
Justin Cooper-White
“Treating Parkinson’s disease with iPSC-derived dopaminergic neuron transplantation has a strong scientific and clinical rationale. Even the best protocols are long and complex and generally have highly variable quality and yield of dopaminergic neurons. Scaled Biolabs has developed a technology platform based on high throughput microfluidics, automation, and deep data which can optimize and simplify the road from iPSC to dopaminergic neuron, making it more efficient and allowing a rapid transition to GMP-grade derivation of these cells. In our first 6 months of CIRM-funded work, we believe we have already accelerated and simplified the production of a key intermediate progenitor population, increasing the purity from the currently reported 40-60% to more than 90%. The ultimate goal of this work is to get dopaminergic neurons to the clinic in a robust and economical manner and accelerate treatment for Parkinson’s patients.”
High throughput differentiation of dopaminergic neuron progenitors in microbioreactor chambers in Scaled Biolabs’ cell optimization platform. Different chambers receive different differentiation factors, so that optimal treatments for conversion to dual-positive cells can be determined (blue: nuclei, red: FOXA2, green: LMX1A).
Research: Xinnan Wang and her team at Stanford University are studying the role of mitochondrial dysfunction in the brain cells affected in Parkinson’s disease.
Xinnan Wang
“Mitochondria are a cell’s power plants that provide almost all the energy a cell needs. When these cellular power plants are damaged by stressful factors present in aging neurons, they release toxins (reactive oxygen species) to the rest of the neuron that can cause neuronal cell death (neurodegeneration). We hypothesized that in Parkinson’s mutant neurons, mitochondrial quality control is impaired thereby leading to neurodegeneration. We aimed to test this hypothesis using neurons directly derived from Parkinson’s patients (induced pluripotent stem cell-derived neurons).”
Dopaminergic neurons derived from human iPSCs shown in green, yellow and red. (Image credit: Atossa Shaltouki, Stanford)
The CIRM Board discusses the future of the Stem Cell Agency
Budgets are very rarely exciting things; but they are important. For example, it’s useful for a family to know when they go shopping exactly how much money they have so they know how much they can afford to spend. Stem cell agencies face the same constraints; you can’t spend more than you have. Last week the CIRM Board looked at what we have in the bank, and set us on a course to be able to do as many of the things we want to, with the money we have left.
First some context. Last year CIRM spent a shade over $306 million on a wide range of research from Discovery, the earliest stage, through Translational and into Clinical trials. We estimate that is going to leave us with approximately $335 million to spend in the coming years.
A couple of years ago our Board approved a 5 year Strategic Plan that laid out some pretty ambitious goals for us to achieve – such as funding 50 new clinical trials. At the time, that many clinical trials definitely felt like a stretch and we questioned if it would be possible. We’re proving that it is. In just two years we have funded 26 new clinical trials, so we are halfway to our goal, which is terrific. But it also means we are in danger of using up all our money faster than anticipated, and not having the time to meet all our goals.
Doing the math
So, for the last couple of months our Leadership Team has been crunching the numbers and looking for ways to use the money in the most effective and efficient way. Last week they presented their plan to the Board.
It boiled down to a few options.
Keep funding at the current rate and run out of money by 2019
Limit funding just to clinical trials, which would mean we could hit our 50 clinical trial goal by 2020 but would not have enough to fund Discovery and Translational level research
Place caps on how much we fund each clinical trial, enabling us to fund more clinical trials while having enough left over for Discovery and Translational awards
The Board went for the third option for some good reasons. The plan is consistent with the goals laid out in our Strategic Plan and it supports Discovery and Translational research, which are important elements in our drive to develop new therapies for patients.
Finding the right size cap
Here’s a look at the size of the caps on clinical trial funding. You’ll see that in the case of late stage pre-clinical work and Phase 1 clinical trials, the caps are still larger than the average amount we funded those stages last year. For Phase 2 the cap is almost the same as the average. For Phase 3 the cap is half the amount from last year, but we think at this stage Phase 3 trials should be better able to attract funding from other sources, such as industry or private investors.
Another important reason why the Board chose option three – and here you’ll have to forgive me for being rather selfish – is that it means the Administration Budget (which pays the salaries of the CIRM team, including yours truly) will be enough to cover the cost of running this research plan until 2020.
The bottom line is that for 2018 we’ll be able to spend $130 million on clinical stage research, $30 million for Translational stage, and $10 million for Discovery. The impact the new funding caps will have on clinical stage projects is likely to be small (you can see the whole presentation and details of our plan here) but the freedom it gives us to support the broad range of our work is huge.
Speeding up the way you do things isn’t always a good idea. Just ask someone who got a ticket for going 65mph in a 30mph zone. But at CIRM we have found that doing things at an accelerated pace is paying off in a big way.
When CIRM started back in 2004 we were, in many ways, a unique organization. That meant we pretty much had to build everything from scratch, creating our own ways of asking for applications, reviewing those applications, funding them etc. Fast forward ten years and it was clear that, as good a job as we did in those early days, there was room for improvement in the way we operated.
So we made some changes. Big changes.
We adopted as our mantra the phrase “operational excellence.” It doesn’t exactly trip off the tongue but it does reflect what we were aiming for. The Business Dictionary defines operational excellence as:
“A philosophy of the workplace where problem-solving, teamwork, and leadership results in the ongoing improvement in an organization.”
We didn’t want to just tinker with the way we worked, we wanted to reinvent every aspect of our operation. To do that we involved everyone in the operation. We held a series of meetings where everyone at CIRM, and I do mean everyone, was invited to join in and offer their ideas on how to improve our operation.
The end result was CIRM 2.0. At the time we described it as “a radical overhaul” of the way we worked. That might have been an understatement. We increased the speed, frequency and volume of the programs we offered, making it easier and more predictable for researchers to apply to us for funding, and faster for them to get that funding if they were approved.
For example, before 2.0 it took almost two years to go from applying for funding for a clinical trial to actually getting that funding. Today it takes around 120 days.
But it’s not just about speed. It’s also about working smarter. In the past if a researcher’s application for funding for a clinical trial failed it could be another 12 months before they got a chance to apply again. With many diseases 12 months could be a death sentence. So we changed the rules. Now if you have a project ready for a clinical trial you can apply any time. And instead of recommending or not recommending a project, basically voting it up or down, our independent panel of expert reviewers now give researchers with good but not great applications constructive feedback, enabling the researchers to make the changes needed to improve their project, and reapply for funding within 30 days.
This has not only increased the number of applications for clinical trials, it has also increased the quality of those applications.
We made similar changes in our Discovery and Translation programs. Increasing the frequency of each award, making it easier for researchers to know when the next round of funding was coming up. And we added incentives to encourage researchers to move successful projects on to the next level. We wanted to create a pipeline of the most promising projects steadily moving towards the clinic.
The motivation to do this comes from our patients. At CIRM we are in the time business. Many of the patients who are looking to stem cells to help them don’t have the luxury of time; they are rapidly running out of it. So we have a responsibility to do all we can to reduce the amount of time it takes to get the most promising therapies to them, without in any way compromising safety and jeopardizing their health.
By the end of 2016 those changes were very clearly paying dividends as we increased the frequency of reviews and the number of projects we reviewed but at the same time decreased the amount of time it took us to do all that.
But we are not done yet. We have done a good job of improving the way we work. But there is always room to be even better, to go even faster and be more efficient.