CIRM Board Approves Continued Funding for SPARK and Alpha Stem Cell Clinics

Yesterday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved $8.5 million to continue funding of the Summer Program to Accelerate Regenerative Medicine Knowledge (SPARK) and Alpha Stem Cell Clinics (ASCC).

This past February, the Board approved continued funding for stem cell focused educational programs geared towards undergraduate, masters, pre/postdoctoral, and medical students. The SPARK program is an existing CIRM educational program that provides for a summer internship for high school students.

To continue support for SPARK, the Board has approved $5.1 million to be allocated to ten new awards ($509,000 each) with up to a five-year duration to support 500 trainees.  The funds will enable high school students all across California to directly take part in summer research at various institutions with a stem cell, gene therapy, or regenerative medicine focus.  The goal of these programs is to prepare and inspire the next generation of scientists and provide opportunities for California’s diverse population, including those who might not have the opportunity to take part in summer research internships due to socioeconomic constraints.

CIRM’s ASCC Network is a unique regenerative medicine-focused clinical trial network that currently consists of five medical centers across California who specialize in accelerating stem cell and gene-therapy clinical trials by leveraging of resources to promote efficiency, sharing expertise, and enhancing chances of success for the patients. To date, over 105 trials in various disease indications have been supported by the ASCC Network.  While there are plans being developed for a significant ASCC Network expansion by some time next year, funding for all five sites has ended or are approaching the end of their current award period. To maintain the level of activity of the ASCC Network until expansion funding is available next year, the Board approved $3.4 million to be allocated to five supplemental awards (up to $680,000 each) in order to provide continued funding to all five sites; the host institutions will be required to match the CIRM award.  These funds will support talent retention and program key activities such as the coordination of clinical research, management of patient and public inquiries, and other operational activities vital to the ASCC Network.

“Education and infrastructure are two funding pillars critical for creating the next generation of researchers and conducting stem cell based clinical trials” says Maria T. Millan, M.D., President and CEO of CIRM.  “The importance of these programs was acknowledged in Proposition 14 and we expect that they will continue to be important components of CIRM’s programs and strategic direction in the years to come.”

The Board also awarded $14.5 million to fund three translational stage research projects (TRAN1), whose goal is to support early development activities necessary for advancement to a clinical study or broad end use of a potential therapy.

The awards are summarized in the table below:

ApplicationTitleInstitution Award
TRAN1-12245  Development of novel synNotch CART cell therapy in patients with recurrent EGFRvIII+ glioblastoma    UCSF    $2,663,144
TRAN1-12258  CAR-Tnm cell therapy for melanoma targeting TYRP-1    UCLA  $5,904,462  
TRAN1-12250HSC-Engineered Off-The-Shelf CAR-iNKT Cell Therapy for Multiple Myeloma  UCLA  $5,949,651

New Study Shows CIRM-Supported Therapy Cures More than 95% of Children Born with a Fatal Immune Disorder

Dr. Donald B. Kohn; Photo courtesy UCLA

A study published in the New England Journal of Medicine shows that an experimental form of stem cell and gene therapy has cured 48 of 50 children born with a deadly condition called ADA-SCID.

Children with ADA-SCID, (severe combined immunodeficiency due to adenosine deaminase deficiency) lack a key enzyme that is essential for a healthy, functioning immune system. As a result, even a simple infection could prove fatal to these children and, left untreated, most will die within the first two years of life.

In the study, part of which was supported by CIRM, researchers at the University of California Los Angeles (UCLA) and Great Ormond Street Hospital (GOSH) in London took some of the children’s own blood-forming stem cells and, in the lab, corrected the genetic mutation that causes ADA-SCID. They then returned those cells to the children. The hope was that over time the corrected stem cells would create a new blood supply and repair the immune system.

In the NEJM study the researchers reported outcomes for the children two and three years post treatment.

“Between all three clinical trials, 50 patients were treated, and the overall results were very encouraging,” said Dr. Don Kohn, a distinguished professor of microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. “All the patients are alive and well, and in more than 95% of them, the therapy appears to have corrected their underlying immune system problems.”

Two of the children did not respond to the therapy and both were returned to the current standard-of-care therapy. One subsequently underwent a bone marrow transplant. None of the children in the study experienced serious side-effects.

“This is encouraging news for all families affected by this rare but deadly condition,” says Maria T. Millan, MD, President and CEO of CIRM. “It’s also a testament to the power of persistence. Don Kohn has been working on developing this kind of therapy for 35 years. To see it paying off like this is a remarkable testament to his skill as a researcher and determination to help these patients.”

Friends, Romans, countrymen, lend me your ears – we have a podcast for you.

It seems like everyone, including my dog Freddie, has a podcast these days. So now we do too.

According to the Podcasthosting.org website there are some two million podcasts in the world. Make that two million and one. That’s because CIRM is launching its own podcast and doing it with one of the biggest names in biotech.

Our podcast is called – with a nod to The Who – “Talking ’bout (Re)Generation” and the first episode features our President & CEO Dr. Maria Millan interviewing Dr. Derrick Rossi, the co-founder of Moderna. Moderna, as I am sure you know, is the maker of one of the most effective vaccines against COVID.

In the interview Dr. Rossi talks about his early days as a postdoc at Stanford – supported by CIRM – and the career arc that led him to help create the company behind the vaccine, and what his plans are for the future. It’s a fun, chatty, lively interview; one you can listen to in the car, at home or wherever you listen to your podcasts.

We want the podcast to be fun for your ear holes and interesting and engaging for your brain. We’re going to be talking to scientists and researchers, doctors and nurses, patients and patient advocates and anyone else we think has something worth listening to.

We have other episodes planned and will share those with you in the near future. In the meantime, if you have any ideas or individuals you think would make a good subject for a podcast let us know, we are always happy to hear from you.

In the meantime, enjoy the show.

CIRM Board Approves Clinical Trials for Blood Cancer and Pediatric Brain Tumors

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $14.4 million for two new clinical trials for blood cancer and pediatric brain tumors.

These awards bring the total number of CIRM-funded clinical trials to 70. 

$6.0 million was awarded to Immune-Onc Therapeutics to conduct a clinical trial for patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML), both of which are types of blood cancer. AML affects approximately 20,000 people in the United States each year and has a 5-year survival rate of about 25 percent. Anywhere from 15-30 percent of CMML cases eventually progress into AML.

Paul Woodard, M.D. and his team will treat AML and CMML patients with an antibody therapy called IO-202 that targets leukemic stem cells.  The antibody works by blocking a signal named LILRB4 whose expression is connected with decreased rates of survival in AML patients.  The goal is to attain complete cancer remissions and prolonged survival.

$8.4 million was also awarded to City of Hope to conduct a clinical trial for children with malignant brain tumors.  Brain tumors are the most common solid tumor of childhood, with roughly 5,000 new diagnoses per year in the United States.

Leo D. Wang, M.D., Ph.D. and his team will treat pediatric patients with aggressive brain tumors using chimeric antigen receptor (CAR) T cell therapy.  The CAR T therapy involves obtaining a patient’s own T cells, which are an immune system cell that can destroy foreign or abnormal cells, and modifying them so that they are able to identify and destroy the brain tumors.  The aim of this approach is to improve patient outcome.

“Funding the most promising therapies for aggressive blood cancer and brain tumors has always aligned with CIRM’s mission,” says Maria T. Millan, M.D., President and CEO of CIRM.  “We are excited to fund these trials as the first of many near-term and future stem cell- and regenerative medicine-based approaches that CIRM will be able to support with bond funds under Proposition 14”.

Charting a course for the future

A new home for stem cell research?

Have you ever been at a party where someone says “hey, I’ve got a good idea” and then before you know it everyone in the room is adding to it with ideas and suggestions of their own and suddenly you find yourself with 27 pages of notes, all of them really great ideas. No, me neither. At least, not until yesterday when we held the first meeting of our Scientific Strategy Advisory Panel.

This is a group that was set up as part of Proposition 14, the ballot initiative that refunded CIRM last November (thanks again everyone who voted for that). The idea was to create a panel of world class scientists and regulatory experts to help guide and advise our Board on how to advance our mission. It’s a pretty impressive group too. You can see who is on the SSAP here.  

The meeting involved some CIRM grantees talking a little about their work but mostly highlighting problems or obstacles they considered key issues for the future of the field as a whole. And that’s where the ideas and suggestions really started flowing hard and fast.

It started out innocently enough with Dr. Amander Clark of UCLA talking about some of the needs for Discovery or basic research. She advocated for a consortium approach (this quickly became a theme for many other experts) with researchers collaborating and sharing data and findings to help move the field along.

She also called for greater diversity in research, including collecting diverse cell samples at the basic research level, so that if a program advanced to later stages the findings would be relevant to a wide cross section of society rather than just a narrow group.

Dr. Clark also said that as well as supporting research into neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, there needed to be a greater emphasis on neurological conditions such as autism, bipolar disorder and other mental health problems.

(CIRM is already committed to both increasing diversity at all levels of research and expanding mental health research so this was welcome confirmation we are on the right track).

Dr. Mike McCun called for CIRM to take a leadership role in funding fetal tissue research, things the federal government can’t or won’t support, saying this could really help in developing an understanding of prenatal diseases.

Dr. Christine Mummery, President of ISSCR, advocated for support for early embryo research to deepen our understanding of early human development and also help with issues of infertility.

Then the ideas started coming really fast:

  • There’s a need for knowledge networks to share information in real-time not months later after results are published.
  • We need standardization across the field to make it easier to compare study results.
  • We need automation to reduce inconsistency in things like feeding and growing cells, manufacturing cells etc.
  • Equitable access to CRISPR gene-editing treatments, particularly for underserved communities and for rare diseases where big pharmaceutical companies are less likely to invest the money needed to develop a treatment.
  • Do a better job of developing combination therapies – involving stem cells and more traditional medications.

One idea that seemed to generate a lot of enthusiasm – perhaps as much due to the name that Patrik Brundin of the Van Andel Institute gave it – was the creation of a CIRM Hotel California, a place where researchers could go to learn new techniques, to share ideas, to collaborate and maybe take a nice cold drink by the pool (OK, I just made that last bit up to see if you were paying attention).

The meeting was remarkable not just for the flood of ideas, but also for its sense of collegiality.  Peter Marks, the director of the Food and Drug Administration’s Center for Biologics Evaluation and Research (FDA-CBER) captured that sense perfectly when he said the point of everyone working together, collaborating, sharing information and data, is to get these projects over the finish line. The more we work together, the more we will succeed.

How a CIRM scholar helped create a life-saving COVID vaccine

Dr. Derrick Rossi might be the most famous man whose name you don’t recognize. Dr. Rossi is the co-founder of Moderna. Yes, that Moderna. The COVID-19 vaccine Moderna. The vaccine that in clinical trials proved to be around 95 percent effective against the coronavirus.

Dr. Rossi also has another claim to fame. He is a former CIRM scholar. He did some of his early research, with our support, in the lab of Stanford’s Dr. Irv Weissman.

So how do you go from a lowly post doc doing research in what, at the time, was considered a rather obscure scientific field, to creating a company that has become the focus of the hopes of millions of people around the world?  Well, join us on Wednesday, January 27th at 9am (PST) to find out.

CIRM’s President and CEO, Dr. Maria Millan, will hold a live conversation with Dr. Rossi and we want you to be part of it. You can join us to listen in, and even post questions for Dr. Rossi to answer. Think of the name dropping credentials you’ll get when say to your friends; “Well, I asked Dr. Rossi about that and he told me…..”

Being part of the conversation is as simple as clicking on this link:

After registering, you will receive a confirmation email containing information about joining the webinar.

We look forward to seeing you there.

A guide to healing

Dr. Evan Snyder

Having grown up in an era where to find your way around you had to use paper maps, a compass and a knowledge of the stars (OK, I’m not actually that old!) I’m forever grateful to whoever invented the GPS. It’s a lifesaver, and I daresay has also saved more than a few marriages!

Having a way to guide people where they need to be is amazing. Now researchers at Sanford Burnham Prebys Medical Discovery Institute have come up with a similar tool for stem cells. It’s a drug that can help guide stem cells to go where they need to go, to repair damaged tissue and improve the healing process.

In a news release Evan Snyder, MD, PhD, the senior author of the study, explained in wonderfully simply terms what they have done:

“The ability to instruct a stem cell where to go in the body or to a particular region of a given organ is the Holy Grail for regenerative medicine. Now, for the first time ever, we can direct a stem cell to a desired location and focus its therapeutic impact.”

More than a decade ago Snyder and his team discovered that when our body suffers an injury the result is often inflammation and that this then sends out signals for stem cells to come and help repair the damage. This is fine when the problem is a cut or sprain, short term issues in need of a quick fix. But what happens if it’s something more complex, such as a heart attack or stroke where the need is more long term.

In the study, funded in part by CIRM, the team took a molecule, called CXCL12, known to help guide stem cells to damaged tissue, and used it to create a drug called SDV1a. Snyder says this new drug has several key properties.

“Since inflammation can be dangerous, we modified CXCL12 by stripping away the risky bit and maximizing the good bit. Now we have a drug that draws stem cells to a region of pathology, but without creating or worsening unwanted inflammation.”

To test the drug to see how well it worked the team implanted SDV1a and some human brain stem cells into mice with Sandhoff disease, a condition that progressively destroys cells in the brain and spinal cord. They were able to demonstrate that the drug helped the stem cells migrate to where they were needed and to help in repairing the damage. The treated mice had a longer lifespan and better motor function, as well as developing symptoms later than untreated mice.

The team is now testing this drug to see if it has any impact on ALS, also known as Lou Gehrig’s disease. And Snyder says there are other areas where it could prove effective.

“We are optimistic that this drug’s mechanism of action may potentially benefit a variety of neurodegenerative disorders, as well as non-neurological conditions such as heart disease, arthritis and even brain cancer. Interestingly, because CXCL12 and its receptor are implicated in the cytokine storm that characterizes severe COVID-19, some of our insights into how to selectively inhibit inflammation without suppressing other normal processes may be useful in that arena as well.”

CIRM’s President & CEO, Dr. Maria Millan, says this kind of work highlights the important role the stem cell agency plays, in providing long-term support for promising but early stage research.

“Thanks to decades of investment in stem cell science, we are making tremendous progress in our understanding of how these cells work and how they can be harnessed to help reverse injury or disease. Dr. Snyder’s group has identified a drug that could boost the ability of neural stem cells to home to sites of injury and initiate repair. This candidate could help speed the development of stem cell treatments for conditions such as spinal cord injury and Alzheimer’s disease.”

The discovery is published in the Proceedings of the National Academy of Sciences (PNAS)

CIRM-funded therapy to ease the impact of chemotherapy

Treatments for cancer have advanced a lot in recent years, but many still rely on the use of chemotherapy to either shrink tumors before surgery or help remove cancerous cells the surgery missed. The chemo can be very effective, but it’s also very toxic. Angiocrine Bioscience Inc. is developing a way to reduce those toxic side effects, and they just got a nice vote of confidence for that approach.

The US Food and Drug Administration (FDA) has granted Angiocrine Regenerative Medicine Advanced Therapy (RMAT) designation for their product AB-205.

RMAT is a big deal. It means the therapy, in this case AB-205, has already shown it is safe and potentially beneficial to patients, so the designation means that if it continues to be safe and effective it may be eligible for a faster, more streamlined approval process. And that means it can get to the patients who need it, outside of a clinical trial, faster.

What is AB-205? Well it’s made from genetically engineered cells, derived from cord blood, designed to help alleviate or accelerate recovery from the toxic side effects of chemotherapy for people undergoing treatment for lymphoma and other aggressive cancers of the blood or lymph system.

CIRM awarded Angiocrine Bioscience $6.2 million in 2018 to help carry out the Phase 2 clinical trial testing the therapy. In a news release ,CIRM President & CEO, Dr. Maria Millan, said there is a real need for this kind of therapy.

“This is a project that CIRM has supported from an earlier stage of research, highlighting our commitment to moving the most promising research out of the lab and into people. Lymphoma is the most common blood cancer and the 6th most commonly diagnosed cancer in California. Despite advances in therapy many patients still suffer severe complications from the chemotherapy, so any treatment that can reduce those complications can not only improve quality of life but also, we hope, improve long term health outcomes for patients.”

In a news release Dr. Paul Finnegan, Angiocrine’s CEO, welcomed the news.

“The RMAT designation speaks to the clinical meaningfulness and the promising efficacy data and safety profile of AB-205 based on our Phase 1b/2 study. This is an important step in accelerating the development of AB-205 towards its first market approval. We appreciate the thorough assessment provided by the FDA reviewers and the support from our partner, the California Institute for Regenerative Medicine.” 

The investment in Angiocrine marked a milestone for CIRM. It was the 50th clinical trial we had funded. It was a cause for celebration then. We’re hoping it will be a cause for an even bigger celebration in the not too distant future.

The company hopes to start a Phase 3 clinical trial in the US and Europe next year.

CIRM-Funded Clinical Trial for Sickle Cell Gives Hope to People Battling the Disease

Marissa Cors (right) with her mother Adrienne Shapiro

Marissa Cors has lived with Sickle Cell Disease (SCD) for more than 40 years. The co-founder of The Sickle Cell Experience Live, an online platform designed to bring more awareness to Sickle Cell Disease around the world, says it’s hard, knowing that at any moment you may have to put your life on hold to cope with another attack of excruciating pain.

“It is incredibly frustrating to have a disease that is constantly disrupting and interfering with your life. The daily pain and fatigue make it difficult to have a normal life. You may be experiencing manageable pain one minute and then a crisis will hit – knocking you to the ground with horrible pain and requiring pain management and hospitalization. It makes going to school or having a job or even a normal adult relationship near impossible.”

SCD is an inherited disease caused by a single gene mutation resulting in abnormal hemoglobin, which causes red blood cells to ‘sickle’ in shape.  Sickling of red blood cells clogs blood vessels and leads to progressive organ damage, pain crises, reduced quality of life, and early death. 

The disease affects around 100,000 Americans, mostly Black Americans but also members of the Latinx community. Marissa says coping with it is more than just a medical struggle. “Born into the cycle of fatigue, pain and fear. Depending on a healthcare system filled with institutionalized bias and racism. It is a life that is difficult on all facets.” 

CIRM is committed to trying find new treatments, and even a cure for SCD. That’s why the CIRM Board recently awarded $8,333,581 to Dr. David Williams at Boston Children’s Hospital to conduct a gene therapy clinical trial for sickle cell disease.  This is the second project that is part of an agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, to co-fund cell and gene therapy programs under the NHLBI’s  “Cure Sickle Cell” Initiative.  The goal of this agreement is to markedly accelerate clinical development of cell and gene therapies to cure SCD.

In recent years we have made impressive strides in developing new approaches to treating sickle cell disease,” says Dr. Maria T. Millan, President & CEO of CIRM. “But we still have work to do. That’s why this partnership, this research is so important. It reflects our commitment to pushing ahead as fast as we can to find a treatment, a cure, that will help all the people battling the disease here in the U.S. and the estimated 20 million worldwide.”

The team will take a patient’s own blood stem cells and insert a novel engineered gene to silence abnormal hemoglobin and induce normal fetal hemoglobin expression.  The modified blood stem cells will then be reintroduced back into the patient.  The goal of this therapy is to aid in the production of normal shaped red blood cells, thereby reducing the severity of the disease. 

For Marissa, anything that helps make life easier will be welcome not just for people with SCD but their families and the whole community. “A stem cell cure will end generations of guilt, suffering, pain and early death. It will give SCD families relief from the financial, emotional and spiritual burden of caring someone living with SCD. It will give all of us an opportunity to have a normal life. Go to school, go to work, live with confidence.”