A new stem cell derived tool for studying brain diseases

Sergiu Pasca’s three-dimensional culture makes it possible to watch how three different brain-cell types – oligodendrocytes (green), neurons (magenta) and astrocytes (blue) – interact in a dish as they do in a developing human  brain.
Courtesy of the Pasca lab

Neurological diseases are among the most daunting diagnoses for a patient to receive, because they impact how the individual interacts with their surroundings. Central to our ability to provide better treatment options for these patients, is scientists’ capability to understand the biological factors that influence disease development and progression. Researchers at the Stanford University School of Medicine have made an important step in providing neuroscientists a better tool to understand the brain.

While animal models are excellent systems to study the intricacies of different diseases, the ability to translate any findings to humans is relatively limited. The next best option is to study human stem cell derived tissues in the laboratory. The problem with the currently available laboratory-derived systems for studying the brain, however, is the limited longevity and diversity of neuronal cell types. Dr. Sergiu Pasca’s team was able to overcome these hurdles, as detailed in their study, published in the journal Nature Neuroscience.

A new approach

Specifically, Dr. Pasca’s group developed a method to differentiate or transform skin derived human induced pluripotent stem cells (iPSCs – which are capable of becoming any cell type) into brain-like structures that mimic how oligodendrocytes mature during brain development. Oligodendrocytes are most well known for their role in myelinating neurons, in effect creating a protective sheath around the cell to protect its ability to communicate with other brain cells. Studying oligodendrocytes in culture systems is challenging because they arise later in brain development, and it is difficult to generate and maintain them with other cell types found in the brain.

These scientists circumvented this problem by using a unique combination of growth factors and nutrients to culture the oligodendrocytes, and found that they behaved very similarly to oligodendrocytes isolated from humans. Most excitingly, they observed that the stem cell-derived oligodendrocytes were able to myelinate other neurons in the culture system. Therefore they were both physically and functionally similar to human oligodendrocytes.

Importantly, the scientists were also able to generate astrocytes alongside the oligodendrocytes. Astrocytes perform many important functions such as providing essential nutrients and directing the electrical signals that help cells in the brain communicate with each other. In a press release, Dr. Pasca explains the importance of generating multiple cell types in this in vitro system:

“We now have multiple cell types interacting in one single culture. This permits us to look close-up at how the main cellular players in the human brain are talking to each other.”

This in vitro or laboratory-developed system has the potential to help scientists better understand oligodendrocytes in the context of diseases such as multiple sclerosis and cerebral palsy, both of which stem from improper myelination of brain nerve cells.

This work was partially supported by a CIRM grant.

CIRM-supported Type I Diabetes treatment enters clinical trials in Europe

Viacyte images

ViaCyte’s President & CEO, Paul Laikind

ViaCyte, a company that CIRM has supported for many years, has announced international expansion of a clinical trial to test their therapeutic PEC-Direct product in patients with Type I Diabetes.

The first European patient in Brussels was implanted with the PEC-Direct product candidate that, in animal models, is able to form functional beta cells. Patients with Type I Diabetes are unable to control blood glucose levels because their immune system attacks insulin-producing beta cells, which are responsible for regulating blood sugar.

viacyte device

ViaCyte PEC-Direct product candidate

The hope is that PEC-Direct would eliminate the need for patients to take daily doses of insulin, the current treatment standard to prevent the side effects of high blood glucose levels, such as heart disease, kidney damage and nerve damage.

The PEC-Direct product is implanted under the skin. The progenitor cells inside it are designed to mature in to human pancreatic islet cells, including glucose-responsive insulin-secreting beta cells, following implant. These are the cells destroyed by Type 1 Diabetes

In this first phase of the clinical trial, patients are administered a subtherapeutic dose of the drug to ensure that that the implants are able to generate beta cells in the body. The next part of the trial will determine whether or not the formed beta cells are able to produce appropriate levels of insulin and modulate blood glucose levels. A sister trial is currently underway in North America as well. This work is a collaboration between ViaCyte and The Center for Beta Cell Therapy in Diabetes.

Separately, ViaCyte has also made important headway to make stem cells more effective in different types of diseases by programming them to evade the immune system. This progress has been cited by the Global Human Embryonic Stem Cells Market report as a key development in growing the overall global stem cell market.

CIRM is proud to be a supporter of companies such as ViaCyte that are conducting groundbreaking research to make stem cell therapy an effective and realistic treatment option for many different diseases.

 

 

Using 3D printer to develop treatment for spinal cord injury

3d-printed-device

3D printed device

Spinal cord injuries (SCIs) affect approximately 300,000 Americans, with about 18,000 new cases occurring per year. One of these patients, Jake Javier, who we have written about many times over the past several years, received ten million stem cells as part of a CIRM-funded clinical trial and a video about his first year at Cal Poly depicts how these injuries can impact someone’s life.

Currently, there is nothing that completely reverses SCI damage and most treatment is aimed at rehabilitation and empowering patients to lead as normal a life as possible under the circumstances. Improved treatment options are necessary both to improve patients’ overall quality of life, and to reduce associated healthcare costs.

Scientists at UC San Diego’s School of Medicine and Institute of Engineering in Medicine have made critical progress in providing SCI patients with hope towards a more comprehensive and longer lasting treatment option.

shaochen chen

Prof. Shaochen Chen and his 3D printer

In a study partially funded by CIRM and published in Nature Medicine, Dr. Mark Tuszynski’s and Dr. Shaochen Chen’s groups used a novel 3D printing method to grow a spinal cord in the lab.

Previous studies have seen some success in lab grown neurons or nerve cells, improving SCI in animal models. This new study, however, is innovative both for the speed at which the neurons are printed, and the extent of the neuronal network that is produced.

To achieve this goal, the scientists used a biological scaffold that directs the growth of the neurons so they grow to the correct length and generate a complete neuronal network. Excitingly, their 3D printing technology was so efficient that they were able to grow implants for an animal model in 1.6 seconds, and a human-sized implant in just ten minutes, showing that their technology is scalable for injuries of different sizes.

When they tested the spinal cord implants in rats, they found that not only did the implant repair the damaged spinal cord tissue, but it also provided sustained improvement in motor function up to six months after implantation.

Just as importantly, they also observed that blood vessels had infiltrated the implanted tissue. The absence of vascularized tissue is one of the main reasons engineered implants do not last long in the host, because blood vessels are necessary to provide nutrients and support tissue growth. In this case, the animal’s body solved the problem on its own.

In a press release, one of the co-first authors of the paper, Dr. Kobi Koffler, states the importance and novelty of this work:

“This marks another key step toward conducting clinical trials to repair spinal cord injuries in people. The scaffolding provides a stable, physical structure that supports consistent engraftment and survival of neural stem cells. It seems to shield grafted stem cells from the often toxic, inflammatory environment of a spinal cord injury and helps guide axons through the lesion site completely.”

In order to make this technology viable for human clinical trials, the scientists are testing their technology in larger animal models before moving into humans, as well as investigating how to improve the longevity of the neuronal network by introducing proteins into the scaffolds.

 

 

Midwest universities are making important tools to advance stem cell research

580b4-ipscell

iPSCs are not just pretty, they’re also pretty remarkable

Two Midwest universities are making headlines for their contributions to stem cell research. Both are developing important tools to advance this field of study, but in two unique ways.

Scientists at the University of Michigan (UM), have compiled an impressive repository of disease-specific stem cell lines. Cell lines are crucial tools for scientists to study the mechanics of different diseases and allows them to do so without animal models. While animal models have important benefits, such as the ability to study a disease within the context of a living mammal, insights gained from such models can be difficult to translate to humans and many diseases do not even have good models to use.

The stem cell lines generated at the Reproductive Sciences Program at UM, are thanks to numerous individuals who donated extra embryos they did not use for in vitro fertilization (IVF). Researchers at UM then screened these embryos for abnormalities associated with different types of disease and generated some 36 different stem cell lines. These have been donated to the National Institute of Health’s (NIH) Human Embryonic Stem Cell Registry, and include cell lines for diseases such as cystic fibrosis, Huntington’s Disease and hemophilia.

Using one such cell line, Dr. Peter Todd at UM, found that the genetic abnormality associated with Fragile X Syndrome, a genetic mutation that results in developmental delays and learning disabilities, can be corrected by using a novel biological tool. Because Fragile X Syndrome does not have a good animal model, this stem cell line was critical for improving our understanding of this disease.

In the next state over, at the University of Wisconsin-Madison (UWM), researchers are doing similar work but using induced pluripotent stem cells (iPSCs) for their work.

The Human Stem Cell Gene Editing Service has proved to be an important resource in expediting research projects across campus. They use CRISPR-Cas9 technology (an efficient method to mutate or edit the DNA of any organism), to generate human stem cell lines that contain disease specific mutations. Researchers use these cell lines to determine how the mutation affects cells and/or how to correct the cellular abnormality the mutation causes. Unlike the work at UM, these stem cell lines are derived from iPSCs  which can be generated from easy to obtain human samples, such as skin cells.

The gene editing services at UWM have already proved to be so popular in their short existence that they are considering expanding to be able to accommodate off-campus requests. This highlights the extent to which both CRISPR technology and stem cell research are being used to answer important scientific questions to advance our understanding of disease.

CIRM also created an iPSC bank that researchers can use to study different diseases. The  Induced Pluripotent Stem Cell (iPSC) Repository is  the largest repository of its kind in the world and is used by researchers across the globe.

The iPSC Repository was created by CIRM to house a collection of stem cells from thousands of individuals, some healthy, but some with diseases such as heart, lung or liver disease, or disorders such as autism. The goal is for scientists to use these cells to better understand diseases and develop and test new therapies to combat them. This provides an unprecedented opportunity to study the cell types from patients that are affected in disease, but for which cells cannot otherwise be easily obtained in large quantities.

New hope for stem cell therapy in patients with leukemia

LeukemiaWhiteBloodCell

Leukemia white blood cell

Of the many different kinds of cancer that affect humans, leukemia is the most common in young people. As with many types cancer, doctors mostly turn to chemotherapy to treat patients. Chemotherapy, however, comes with its own share of issues, primarily severe side effects and the constant threat of disease recurrence.

Stem cell therapy treatment has emerged as a potential cure for some types of cancer, with leukemia patients being among the first groups of patients to receive this type of treatment. While exciting because of the possibility of a complete cure, stem cell therapy comes with its own challenges. Let’s take a closer look.

Leukemia is characterized by abnormal white blood cells (also known as the many different types of cells that make up our immune system) that are produced at high levels. Stem cell therapy is such an appealing treatment option because it involves replacing the patient’s aberrant blood stem cells with healthy ones from a donor, which provides the possibility of complete and permanent remission for the patient.

Unfortunately, in approximately half of patients who receive this therapy, the donor cells (which turn into immune cells), can also destroy the patients healthy tissue (i.e. liver, skin etc…), because the transplanted blood stem cells recognize patient’s tissue as foreign. While doctors try to lessen this type of response (also known as graft versus host disease (GVHD)), by suppressing the patient’s immune system, this procedure lessens the effectiveness of the stem cell therapy itself.

Now scientists at the University of Zurich have made an important discovery – published in the journal Science Translational Medicine – that could mitigate this potentially fatal response in patients. They found that a molecule called GM-CSF, is a critical mediator of the severity of GVHD. Using a mouse model, they showed that if the donor cells were unable to produce GM-CSF, then mice fared significantly better both in terms of less damage to tissues normally affected by GVHD, such as the skin, and overall survival.

While exciting, the scientists were concerned about narrowing in on this molecule as a potential target to lessen GVHD, because GM-CSF, an important molecule in the immune system, might also be important for ensuring that the donor immune cells do their jobs properly. Reassuringly, the researchers found that blocking GM-CSF’s function had no effect on the ability of the donor cells to exert their anti-cancer effect. This was surprising because previously the ability of donor cells to cause GVHD, versus protect patients from the development of cancer was thought to occur via the same biological mechanisms.

Most excitingly, however, was that finding that high levels of GM-CSF are also observed in patient samples, and that the levels of GM-CSF correlate to the severity of GVHD. Dr. Burkhard Becher and his colleagues, the authors of this study, now want to run a clinical trial to determine whether blocking GM-CSF blocks GVHD in humans like it does in mice. In a press release, Dr. Becher states the importance of these findings:

“If we can stop the graft-versus-host response while preserving the anti-cancer effect, this procedure can be employed much more successfully and with fewer risks to the patient. This therapeutic strategy holds particular promise for patients with the poorest prognosis and highest risk of fatality.”

Japanese scientists implant first Parkinson’s patient with replacement neurons derived from stem cells

Parkinsons

Neurons derived from stem cells.Credit: Silvia Riccardi/SPL

Currently, more than 10 million people worldwide live with Parkinson’s disease (PD). By 2020, in the US alone, people living with Parkinson’s are expected to outnumber the cases of multiple sclerosis, muscular dystrophy and Lou Gehrig’s disease combined.

There is no cure for Parkinson’s and treatment options consist of medications that patients ultimately develop tolerance to, or surgical therapies that are expensive. Therefore, therapeutic options that offer long-lasting treatment, or even a cure, are essential for treating PD.

Luckily for patients, Jun Takahashi’s team at Kyoto University has pioneered a stem cell based therapy for PD patients.

To understand their treatment strategy, however, we first have to understand what causes this disease. Parkinson’s results from decreased numbers of neurons that produce dopamine, a molecule that helps control muscle movements. Without proper dopamine production, patients experience a wide range of movement abnormalities, including the classic tremors that are associated with PD.

The current treatment options only target the symptoms, as opposed to the root cause of the disease. Takashi’s group decided to go directly to the source and improve dopamine production in these patients by correcting the dopaminergic neuron shortage.

The scientists harvested skin cells from a healthy donor and reprogrammed them to become induced pluripotent stem cells (iPSCs), or stem cells that become any type of cell. These iPSCs were then turned into the precursors of dopamine-producing neurons and implanted into 12 brain regions known to be hotspots for dopamine production.

The procedure was carried out in October and the patient, a male in his 50s, is still healthy. If his symptoms continue to improve and he doesn’t experience any bad side effects,  he will receive a second dose of dopamine-producing stem cells. Six other patients are scheduled to receive this same treatment and Takashi hopes that, if all goes well, this type of treatment can be ready for the general public by 2023.

This treatment was first tested in monkeys, where the researchers saw that not only did the implanted stem cells improve Parkinson’s symptoms and survive in the brain for at least two years, but they also did not cause any negative side effects.

This is only the third time iPSCs have been used as a treatment option in humans. The first was for macular degeneration in 2014.

CIRM is funding a similar, albeit earlier-stage program, with Jeanne Loring at Scripps.

 

CIRM invests $1.3 million to study stem cells in metabolic liver disease

Grikscheit

Dr. Tracy Grikscheit. Image courtesy of Children’s Hospital LA.

Metabolic liver disease, is an emerging public health concern in Western countries, but has largely been overshadowed by health issues such as cancer and diabetes. Chronic liver disease (of which metabolic liver disease is a significant contributor) however, is a significant public health concern, evidenced by its contribution to nearly 2 million deaths per year worldwide.

The primary treatment option for metabolic liver disease is a liver transplant. In fact, of the liver transplants performed every year, 14% are due to damage associated with metabolic disorders. With any organ transplant, however, such a procedure comes with drawbacks, the most frustrating of which is the need for patients to wait for an organ donor.

As transplants are not a reasonable or feasible option for many people, alternative treatment options are necessary.  Enter Dr. Tracy Grikscheit, a doctor-scientist at the Children’s Hospital Los Angeles, who hopes to make liver transplant a thing of the past for the millions of people who live with metabolic liver disease.

Dr. Grikscheit was awarded a $1.3 million grant to study how stem cells can be used to treat liver disease caused by metabolic disorders. In a press release, Dr. Grikscheit details the importance and practicality of using stem cells to treat liver disease:

“Liver-based metabolic diseases are the perfect starting point to apply cellular therapy to liver disorders. The only current therapy — a liver transplant — is costly and in short supply. Plus, it requires suppressing the patient’s immune system, which has long-term consequences.”

The project, termed UPLiFT for Universal Pluripotent Stem Cell Therapy, aims to use pluripotent stem cells (cells that can turn into any cell in the body) to correct liver associated disorders like Crigler-Najjar Syndrome. A genetic mutation in liver cells of these patients makes them unable to covert bilirubin (a byproduct of red blood cell degradation) to its non-toxic form. Dr. Grikscheit hopes to bypass the need for a liver transplant by giving these patients pluripotent stem cells that can become liver cells without the genetic mutation, and are able to convert bilirubin to its non-toxic form. The use of pluripotent stem cells would also potentially eliminate the need for lifelong immunosuppressive therapy

Dr. Grikscheit will use the CIRM grant to test safety and efficacy of the stem cell treatment in pre-clinical trials to determine the optimal cell dosage that will be both safe and relieve disease symptoms, as well as assessing any off-target effects of the treatment. She has previously received a grant from CIRM to study stem cell therapy options for digestive neuromuscular condition, which you can read about here.

 

Mechanical forces are the key to speedy recovery after blood cancer treatment

MIT-Stem-Cell-Mechanics_0

Mesenchymal stem cells grown on a surface with specialized mechanical properties. Image courtesy of Krystyn Van Vliet at MIT.

Blood cancers, such as leukemia and lymphoma, are projected to be responsible for 10% of all new cancer diagnoses this year. These types of cancers are often treated by killing the patient’s bone marrow (the site of blood cell manufacturing), with a treatment called irradiation. While effective for ridding the body of cancerous cells, this treatment also kills healthy blood cells. Therefore, for a time after the treatment, patients are particularly vulnerable to infections, because the cellular components of the immune system are down for the count.

Now scientists at MIT have devised a method to make blood cells regenerate faster and  minimize the window for opportunistic infections.

Using multipotent stem cells (stem cells that are able to become multiple cell types) grown on a new and specialized surface that mimics bone marrow, the investigators changed the stem cells into different types of blood cells. When transplanted into mice that had undergone irradiation, they found that the mice recovered much more quickly compared to mice given stem cells grown on a more traditional plastic surface that does not resemble bone marrow as well.

This finding, published in the journal Stem Cell Research and Therapy, is particularly revolutionary, because it is the first time researchers have observed that mechanical properties can affect how the cells differentiate and behave.

The lead author of the study attributes the decreased recovery time to the type of stem cell that was given to mice compared to what humans are normally given after irradiation. Humans are given a stem cell that is only able to become different types of blood cells. The mice in this study, however, were give a stem cell that can become many different types of cells such as muscle, bone and cartilage, suggesting that these cells somehow changed the bone marrow environment to promote a more efficient recovery. They attributed a large part of this phenomenon to a secreted protein call ostepontin, which has previously been describe in activating the cells of the immune system.

In a press release, Dr. Viola Vogel, a scientist not related to study, puts the significance of these findings in a larger context:

“Illustrating how mechanopriming of mesenchymal stem cells can be exploited to improve on hematopoietic recovery is of huge medical significance. It also sheds light onto how to utilize their approach to perhaps take advantage of other cell subpopulations for therapeutic applications in the future.”

Dr. Krystyn Van Vliet, explains the potential to expand these findings beyond the scope of just blood cancer treatment:

“You could imagine that by changing their culture environment, including their mechanical environment, MSCs could be used for administration to target several other diseases such as Parkinson’s disease, rheumatoid arthritis, and others.”

 

A 3-D model of heart tissue gives scientists a leg up in studying heart disease

Screen Shot 2018-09-24 at 9.45.49 AM

3-D printed cardiac microtissue generated from human stem cells. Image credit to Zhen Ma PhD, courtesy of the Gladstone Institutes

Hank Gathers was a 23-year-old basketball player at Loyola Marymount University with numerous accolades to his name and a promising future in the sport. This all came to an end when he suddenly collapsed in the middle of one of his games and subsequently passed away.  It was the beginning of numerous such sudden death instances in the sporting world, that have been traced to hypertrophic cardiomyopathy (HCM)

HCM affects approximately 1 in 200 people and belongs to a family of diseases called  cardiomyopathies, all of which impair the ability of heart muscle to effectively pump blood throughout your body. While there are several environmental factors that can contribute to the onset of HCM, one of the most common factors is a genetic mutation in a particular myosin binding protein called MYBPC3. This protein is responsible for both proper development of heart tissue, as well as controlling heart muscle contraction. Mutation in this gene is also associated with the most common type of cardiomyopathy, called dilated cardiomyopathy.

In HCM, mutation of MYBPC3 results in enlarged heart muscle with irregular contraction patterns. There is no cure, but medications to alleviate symptoms are available as well as surgical options. Surgery, however, can lead to serious complications and is not an option for everyone. Better understanding of the disease is necessary to develop treatment options that are effective for all patients.

A CIRM funded scientific collaboration between labs at UC Berkeley and the Gladstone Institutes has found a better way to study heart diseases such as HCM by generating a 3-D model heart tissue. While the genetic mutations that lead to cardiomyopathies are fairly well studied, how exactly the mutation leads to disease symptoms is not well understood, partially because many of those scientific studies relied on insights derived from two-dimensional culture systems. While informative in many ways, these types of cultures do not mimic the 3-D interactions that occur in nature. To overcome this challenge, these scientists used laser-guided 3-D printing system along with human cardiac stem cells to assemble the heart microtissue.

To confirm that the microtissue functioned like a real heart, they changed the structure of the printing scaffold to mimic the stress that hearts undergo during development and in different environmental conditions. They found that the microtissue derived from healthy human cardiac stem cells was able to adapt and contract normally in these changing environmental conditions.

When comparing the structure of WT and MYBPC3 generated microtissues, they surprisingly saw no different in microtissue architecture derived from WT or mutant cells. They did, however, observe functional differences between the normal and mutant tissues: mutant tissues displayed an increased contraction rate in response to stress and dysregulated contraction, both of which are hallmarks of HCM. Thus, this microtissue can mimic both normal and disease states.

Zhen Ma, lead author of the study explains the importance of this technology in a press release:

“With these microtissues we were able to observe how the human heart can develop this syndrome. Even though this is a microscopically tiny part of the heart, we could measure its contraction, the mechanical forces generated, and the calcium flow associated with the electrical signaling that triggers contraction of heart muscle. This advance gives us an opportunity to study cardiac disease in a much more precise manner.”

The most exciting aspect of this bioengineering success is its applicability beyond even heart disease. Bruce Conklin, one of the lead authors of the study explains:

“Some of the worst drug safety issues are due to problems with side effects on the heart, so we need better ways to test drugs for potential cardiac effects. It’s possible that in the future microtissues might become the preferred choice for their capability to capture a fuller range of cardiac physiology.

A cancer therapy developed at a CIRM Alpha Stem Cell Clinic tests its legs against breast cancer

Breast cancer cells

Three-dimensional culture of human breast cancer cells, with DNA stained blue and a protein on the cell surface membrane stained green. Image courtesy The National Institutes of Health

A Phase 1 clinical trial co-sponsored by CIRM and Oncternal Therapeutics, has started treating patients at UC San Diego (UCSD). The goal of the trial is to test the safety and anti-tumor activity of the Oncternal-developed drug, cirmtuzumab, in treating breast cancer.

Breast cancer is the second most common cancer to occur in women, regardless of race or ethnicity. More than 260,000 new cases are expected to be diagnosed this year in the United States alone. Typically, breast cancer cases are treated by a combination of surgery to remove the tumor locally, followed by some kind of systemic treatment, like chemotherapy, which can eliminate cancer cells in other parts of the body. In certain cases, however, surgery might not be a feasible option. Cirmtuzumab may be a viable option for these patients.

The drug acts by binding to a protein called ROR1, which is highly abundant on the surface of cancer cells. By blocking the protein Cirmtuzumab is able to promote cell death, stopping the cancer from spreading around the body.

Because ROR1 is also found on the surface of healthy cells there were concerns using cirmtuzumab could lead to damage to healthy tissue. However, a previous study revealed that using this kind of approach, at least in a healthy non-human primate model did not lead to any adverse clinical symptoms. Therefore, this protein is a viable target for cancer treatment and is particularly promising because it is a marker of many different types of cancers including leukemia, lung cancer and breast cancer.

Phase 1 clinical trials generally enroll a small number of patients who have do not have other treatment options. The primary goals are to determine if this approach is safe, if it causes any serious side-effects, what is the best dosage of the drug and how the drug works in the body. This clinical trial will enroll up to 15 patients who will receive cirmtuzumab in combination with paclitaxel (Taxol), a vetted chemotherapy drug, for six months.

Earlier this year, a similar clinical trial at UCSD began to test the effectiveness a of cirmtuzumab-based combination therapy to treat patients with B-cell cancers such as chronic lymphocytic leukemia. This trial was also partially funded by CIRM.

In a press release, Dr. Barbara Parker, the co-lead on this study states:

“Our primary objective, of course, is to determine whether the drug combination is safe and tolerable and to measure its anti-tumor activity. If it proves safe and shows effectiveness against breast cancer, we can progress to subsequent trials to determine how best to use the drug combination.”