How a tiny patch is helping restore lasting vision

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Researchers are working on a stem cell-based retinal implant that could be used for people with with advanced dry age-related macular degeneration. (Photo/ Britney O. Pennington)

When Anna Kuehl began losing her vision, she feared losing the ability to read and go on long walks in nature—two of her favorite pastimes. Anna had been diagnosed with age-related macular degeneration, the leading cause of vision loss in the US. She lost the central vision in her left eye, which meant she could no longer make out people’s faces clearly, drive a car, or read the time on her watch.

Anna Kuehl

But a clinical trial funded by the California Institute for Regenerative Medicine  (CIRM) helped change that. And now, new data from that trial shows the treatment appears to be long lasting.

The treatment sprang out of research done by Dr. Mark Humayun and his team at USC. In collaboration with Regenerative Patch Technologies they developed a stem cell-derived implant using cells from a healthy donor. The implant was then placed under the retina in the back of the eye. The hope was those stem cells would then repair and replace damaged cells and restore some vision.

Dr. Mark Humayun, photo courtesy USC

In the past, using donor cells meant that patients often had to be given long-term immunosuppression to stop their body’s immune system attacking and destroying the patch. But in this trial, the patients were given just two months of immunosuppression, shortly before and after the implant procedure.

In a news story on the USC website, Dr. Humayun said this was an important advantage. “There’s been some debate on whether stem cells derived from a different, unrelated person would survive in the retina without long-term immunosuppression. For instance, if you were to receive a kidney transplant, long-term immunosuppression would be required to prevent organ rejection. This study indicates the cells on the retinal implant can survive for up to two years without long-term immunosuppression.”

Cells show staying power

When one of the patients in the clinical trial died from unrelated causes two years after getting the implant, the research team were able to show that even with only limited immunosuppression, there was no evidence that the patient’s body was rejecting the donor cells.

“These findings show the implant can improve visual function in some patients who were legally-blind before treatment and that the cells on the implant survive and remain functional for at least two years despite not being matched with those of the patient,” Humayun said.

For Anna Kuehl, the results have been remarkable. She was able to read an additional 17 letters on a standard eye chart. Even more importantly, she is able to read again, and able to walk and enjoy nature again.

Dr. Humayun says the study—published in the journal Stem Cell Reports—may have implications for treating other vision-destroying diseases. “This study addresses the debate over the viability of using mismatched stem cells — this shows that a mismatched stem cell derived implant can be safe and viable over multiple years.”

First Patient Dosed in Phase 1 Clinical Trial for T1D

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

There’s some good news for a company and a therapeutic approach that CIRM has been supporting for many years.

In September 2018, CRISPR Theraputics and ViaCyte entered a partnership to discover, develop and market gene-edited stem cell-derived therapies to treat type 1 diabetes (T1D). Today, they may stand one step closer to their goal. 

Last week the companies jointly announced that they have dosed the first subject in the Phase 1 clinical trial of VCTX210 for the treatment of T1D. VCTX210 is an investigational stem cell-based therapy. It was developed combining CRISPR’s gene-editing technology with ViaCyte’s stem cell expertise to generate pancreatic beta cells that can evade the immune system.

ViaCyte, a regenerative medicine company long backed by CIRM, has developed an implantable device which contains pancreatic endoderm cells that mature over a few months and turn into insulin-producing pancreatic islet cells, the kind destroyed by T1D. 

ViaCyte’s implantable stem cell pouch

Using CRISPR technology, the genetic code of the implanted cells is modified to create beta cells that avoid all recognition by the immune system. This collaboration aims to eliminate the requirement of patients taking daily immunosuppressants to stop the immune system from attacking the implanted cells. 

The first phase of the VCTX210 clinical trial will assess the safety, tolerability, and immune evasion in patients with T1D. 

“We are excited to work with CRISPR Therapeutics and ViaCyte to carry out this historic, first-in-human transplant of gene-edited, stem cell-derived pancreatic cells for the treatment of diabetes designed to eliminate the need for immune suppression,” said James Shapiro, a clinical investigator in the trial. “If this approach is successful, it will be a transformative treatment for patients with all insulin-requiring forms of diabetes.”

CIRM has been a big investor in ViaCyte’s work for many years and has invested more than $72 million in nine different awards.  

Breaking down barriers: Expanding patient access and accelerating research

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

10 years ago I was presented with an incredibly unique opportunity- to become the fifth patient with spinal cord injuries to participate in the world’s first clinical trial testing a treatment made from human embryonic stem cells. It was not only a risky and potentially life-changing decision, but also one that I had to make in less than a week. 

To make matters more complicated, I was to be poked, prodded, and extensively scanned on a daily basis for several months as part of the follow-up process. I lived nearly two hours away from the hospital and I was newly paralyzed. How would this work? I wanted my decision-making process to be solely based on the amazing science and the potential that with my participation, the field might advance. Instead, I found myself spending countless hours contemplating the extra work I was asking my family to take on in addition to nursing me back to life. 

In this instance, I was “lucky”. I had access to family and friends who were able and willing to make any kind of sacrifice to ensure my happiness. I lived quite a distance away from the hospital, but everyone around me had a car. They had the means to skip work, keep the gas tank filled, and make the tedious journey. I also had an ally, which was perhaps my biggest advantage. The California Institute for Regenerative Medicine (CIRM) was the funding agency behind the groundbreaking clinical trial and I’ll never forget the kind strangers who sat on my bedside and delighted me with stories of hope and science. 

Accelerating the research

The field of regenerative medicine has gained so much momentum since my first introduction to stem cells in a small hospital room. Throughout the decade and especially in recent years there have been benchmark FDA approvals, increased funding and regulatory support. The passage of Proposition 14 in 2020 has positioned CIRM to continue to accelerate research from discovery to clinical and to drive innovative, real-world solutions resulting in transformative treatments for patients. 

Now, thanks to Prop 14 we have some new goals, including working to try and ensure that the treatments our funding helps develop are affordable and accessible to a diverse community of patients in an equitable manner, including those often overlooked or underrepresented in the past. Unsurprisingly, one of the big goals outlined in our new 5-year Strategic Plan is to deliver real world solutions through the expansion of the CIRM Alpha Stem Cell Clinics network and the creation of a network of Community Care Centers of Excellence.

The Alpha Stem Cell Clinics and Community Care Centers of Excellence will work in collaboration to achieve a wide set of goals. These goals include enabling innovative clinical research in regenerative medicine, increasing diverse patient access to transformative therapies, and improving patient navigation of clinical trials. 

Breaking down the barriers 

The dilemma surrounding the four-hour long round-trip journey for an MRI or a vial of blood isn’t just unique to me and my experience participating in a clinical trial. It is well recognized and documented that geographic disparities in clinical trial sites as well as limited focus on community outreach and education about clinical trials impede patient participation and contribute to the well-documented low participation of under-represented patients in clinical studies.

As outlined in our Strategic Plan, the Alpha Stem Cell Clinic Network and Community Care Centers will collaboratively extend geographic access to CIRM-supported clinical trials across the state. Community Care Centers will have direct access and knowledge about the needs of their patient populations including, culturally and linguistically effective community-based education and outreach. In parallel, Alpha Stem Cell Clinics will be designed to support the anticipated outreach and education efforts of future Community Care Centers.

To learn more about CIRM’s approach to deliver real world solutions for patients, check out our new 5-year Strategic Plan

How two California researchers are advancing world class science to develop real life solutions

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

In our recently launched 5-year Strategic Plan, the California Institute for Regenerative Medicine (CIRM) profiled two researchers who have leveraged CIRM funding to translate basic biological discoveries into potential real-world solutions for devastating diseases.

Dr. Joseph Wu is director of the Stanford Cardiovascular Institute and the recipient of several CIRM awards. Eleven of them to be exact! Over the past 10 years, Dr. Wu’s lab has extensively studied the application of induced pluripotent stem cells (iPSCs) for cardiovascular disease modeling, drug discovery, and regenerative medicine. 

Dr. Wu’s extensive studies and findings have even led to a cancer vaccine technology that is now being developed by Khloris Biosciences, a biotechnology company spun out by his lab. 

Through CIRM funding, Dr. Wu has developed a process to produce cardiomyocytes (cardiac muscle cells) derived from human embryonic stem cells for clinical use and in partnership with the agency. Dr. Wu is also the principal investigator in the first-in-US clinical trial for treating ischemic heart disease. His other CIRM-funded work has also led to the development of cardiomyocytes derived from human induced pluripotent stem cells for potential use as a patch.

Over at UCLA, Dr. Lili Yang and her lab team have generated invariant Natural Killer T cells (iNKT), a special kind of immune system cell with unique features that can more effectively attack tumor cells. 

More recently, using stem cells from donor cord-blood and peripheral blood samples, Dr. Yang and her team of researchers were able to produce up to 300,000 doses of hematopoietic stem cell-engineered iNKT (HSC–iNKT) cells. The hope is that this new therapy could dramatically reduce the cost of producing immune cell products in the future. 

Additionally, Dr. Yang and her team have used iNKT cells to develop both autologous (using the patient’s own cells), and off-the-shelf anti-cancer therapeutics (using donor cells), designed to target blood cell cancers.

The success of her work has led to the creation of a start-up company called Appia Bio. In collaboration with Kite Pharma, Appia Bio is planning on developing and commercializing the promising technology. 

CIRM has been an avid supporter of Dr. Yang and Dr. Wu’s research because they pave the way for development of next-generation therapies. Through our new Strategic Plan, CIRM will continue to fund innovative research like theirs to accelerate world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and the world.

Visit this page to learn more about CIRM’s new 5-year Strategic Plan and stay tuned as we share updates on our 5-year goals here on The Stem Cellar.

Producing insulin for people who can’t

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

ViaCyte’s implantable stem cell pouch

One of the huge advantages of a stem cell agency like CIRM (not that there is anything out there quite like us, but anyway) is our ability to support projects as they progress from a great idea to a therapy actually being tested in people.

Exhibit A on that front came via a news release from ViaCyte, a company that is developing a new approach to helping people with severe Type 1 Diabetes (T1D).

Unlike type 2 diabetes, which is largely diet & lifestyle related and develops over time, T1D is an autoimmune condition where the person’s immune system attacks and destroys the insulin-producing cells in the pancreas. Without those cells and insulin the body is not able to regulate blood sugar levels and that can lead to damage to the heart, kidneys, eyes and nerves. In severe cases it can be fatal.

ViaCyte (which has been supported with more than $72 million from CIRM) has developed a pouch that can be implanted under the skin in the back. This pouch contains stem cells that over a period of a few months turn into insulin-producing pancreatic islet cells, the kind destroyed by T1D. The goal is for these cells to monitor blood flow and when they detect blood sugar or glucose levels are high, can secrete insulin to restore them to a safe level.

They tested this approach in 15 patients in a Phase 1 clinical trial in Canada. Their findings, published in the journals Cell Stem Cell and Cell Reports Medicine, show that six months after implantation, the cells had turned into insulin-producing islet cells. They also showed a rise in C-peptide levels after patients ate a meal. C-peptides are a sign your body is producing insulin so the rise in that number was a good indication the implanted cells were boosting insulin production.

As Dr. James Shapiro, the Chair of Canada Research and one of the lead authors of the study says, that’s no small achievement: “The data from these papers represent a significant scientific advance. It is the first reported evidence that differentiated stem cells implanted in patients can generate meal-regulated insulin secretion, offering real hope for the incredible potential of this treatment.”

And that wasn’t all. The researchers say that patients spent 13 percent more time in the target range for blood sugar levels than before the treatment, and some were even able to reduce the amount of insulin they injected.

Now this is only a Phase 1 clinical trial so the goal was to test the safety of the pouch, called PEC-Direct (VC-02), to see if the body would tolerate it being implanted and to see if it is effective. The beauty of this method is that the device is implanted under the skin so it can be removed easily if any problems emerge. So far none have.

Ultimately the hope is that this approach will help patients with T1D better regulate their blood sugar levels, improve their health outcomes, and one day even achieve independence from the burden of daily insulin injections.

Type 1 diabetes therapy gets go-ahead for clinical trial

ViaCyte’s implantable cell-based therapy for type 1 diabetes

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Taking even the most promising therapy and moving it out of the lab and into people is an incredibly complex process and usually requires a great team. Now, two great teams have paired up to do just that with a therapy for type 1 diabetes (T1D). ViaCyte and CRISPR Therapeutics have put their heads together and developed an approach that has just been given clearance by Health Canada to start a clinical trial.

Regular readers of this blog know that CIRM has been a big supporter of ViaCyte for many years, investing more than $72 million in nine different awards. They have developed an implantable device containing embryonic stem cells that develop into pancreatic progenitor cells, which are precursors to the islet cells destroyed by T1D. The hope is that when this device is transplanted under a patient’s skin, the progenitor cells will develop into mature insulin-secreting cells that can properly regulate the glucose levels in a patient’s blood.

One of the challenges in earlier testing was developing a cell-based therapy that could evade the immune system, so that people didn’t need to have their immune system suppressed to prevent it attacking and destroying the cells. This particular implantable version sprang out of an early stage award we made to ViaCyte (DISC2-10591). ViaCyte and CRISPR Therapeutics helped with the design of the therapeutic called VCTX210.

In a news release, Michael Yang, the President and CEO of ViaCyte, said getting approval for the trial was a major milestone: “Being first into the clinic with a gene-edited, immune-evasive cell therapy to treat patients with type 1 diabetes is breaking new ground as it sets a path to potentially broadening the treatable population by eliminating the need for immunosuppression with implanted cell therapies. This approach builds on previous accomplishments by both companies and represents a major step forward for the field as we strive to provide a functional cure for this devastating disease.”

The clinical trial, which will be carried out in Canada, is to test the safety of the therapy, whether it creates any kind of reaction after being implanted in the body, and how well it does in evading the patient’s immune system. In October our podcast – Talking ‘Bout (re)Generation – highlighted work in T1D and included an interview with Dr. Manasi Jaiman, ViaCyte’s Vice President for Clinical Development. Here’s an excerpt from that podcast.

Dr. Manasi Jaimin, ViaCyte VP Clinical development

Wit, wisdom and a glimpse into the future

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

As of this moment, there are over two million podcasts and over 48 million episodes to listen to on your favorite listening device. If you’re a true crime enthusiast like me, you’ve surely heard of Casefile or one of the other 94 podcasts on the topic. But what if you’re looking for something a little less ghastly and a little more uplifting?

Dr. Daylon James, co-host of The Stem Cell Podcast

The Stem Cell Podcast is an informative and entertaining resource for scientists and science enthusiasts (or really, anyone) interested in learning about the latest developments in stem cell research.

Dr. Arun Sharma, co-host of The Stem Cell Podcast

On their latest episode, dynamic co-hosts and research scientists Dr. Daylon James and Dr. Arun Sharma sit down with our President & CEO, Dr. Maria Millan, to discuss the impact of California’s culture of innovation on CIRM, the challenge of balancing hope vs. hype in the context of stem cell research/therapies, and the evolution of the agency over the past 15 years.

Listen on as Dr. Millan highlights some of CIRM’s greatest victories and shares our mission for the future.

Getting under the skin of people with type 1 diabetes – but in a good way

THIS BLOG IS ALSO AVAILABLE AS AN AUDIOCAST

As someone with a family history of type 1 diabetes (T1D) I know how devastating the condition can be. I also know how challenging it can be to keep it under control and the consequences of failing to do that. Not maintaining healthy blood sugar levels can have a serious impact on the heart, kidney, eyes, nerves, and blood vessels. It can even be fatal.

Right now, controlling T1D means being careful about what you eat, when you eat and how much you eat. It also means regularly checking your blood throughout the day to see if the glucose level is too high or too low. If it’s too high you need to inject insulin; if it’s too low you need to take a fast-acting carbohydrate such as fruit juice or glucose to try and restore it to a healthy level.

That’s why two new approaches to T1D that CIRM has supported are so exciting. They both use small devices implanted under the skin that contain stem cells. The cells can both monitor blood sugar and, if it’s too high, secrete insulin to bring it down.

We sat down with two key members of the Encellin and ViaCyte teams, Dr. Crystal Nyitray and Dr. Manasi Jaiman, to talk about their research, how it works, and what it could mean for people with T1D. That’s in the latest episode of our podcast ‘Talking ‘Bout (re)Generation’.

I think you are going to enjoy it.

This is the size of the implant that ViaCyte is using.
This is the size of the implant Encellin is using

Dr. Crystal Nyitray, CEO & Co-founder Encellin

Dr. Manasi Jaiman, Vice President, Clinical Development ViaCyte

Building embryo-like cells in the lab

Dr. Magdalena Zernicka-Goetz: Photo courtesy Caltech

Human embryonic stem cells (hESCs) have many remarkable properties, not the least of which is their ability to turn into every other kind of cell in our body. But there are limits to what researchers can do with embryonic stem cells. One issue is that there aren’t always hESCs available – they come from eggs donated by couples who have undergone in vitro fertilization. Another is that researchers can only develop these cells in the laboratory for 14 days (though that rule may be changing).

Now researchers at Caltech have developed a kind of hESC-in-a-dish that could help make it easier to answer questions about human development without the need to wait for a new line of hESCs.

The team, led by Magdalena Zernicka-Goetz, used a line of expanded pluripotent cells (EPSCs), originally derived from a human embryo, to create a kind of 3D model that mimics some of the activities of an embryo.

The cool thing about these cells is that, because they were originally derived from an embryo, they retain some “memory” of how they are supposed to work. In a news release Zernicka-Goetz says this enables them to display elements of both polarization and cavitation, early crucial phases in the development of a human embryo.

“The ability to assemble the basic structure of the embryo seems to be a built-in property of these earliest embryonic cells that they are simply unable to ‘forget.’ Nevertheless, either their memory is not absolutely precise or we don’t yet have the best method of helping the cells recover their memories. We still have further work to do before we can get human stem cells to achieve the developmental accuracy that is possible with their equivalent mouse stem cell counterparts.”

Being able to create these embryo-like elements means researchers can generate cells in large numbers and won’t be so dependent on donated embryos.

In the study, published in the journal Nature Communications, the researchers say this could help them develop a deeper understanding of embryonic development.

Understanding human development is of fundamental biological and clinical importance. Despite its significance, mechanisms behind human embryogenesis remain largely unknown…. this stem cell platform provides insights into the design of stem cell models of embryogenesis.

CIRM funds clinical trials targeting heart disease, stroke and childhood brain tumors

Gary Steinberg (Jonathan Sprague)

Heart disease and stroke are two of the leading causes of death and disability and for people who have experienced either their treatment options are very limited. Current therapies focus on dealing with the immediate impact of the attack, but there is nothing to deal with the longer-term impact. The CIRM Board hopes to change that by funding promising work for both conditions.

Dr. Gary Steinberg and his team at Stanford were awarded almost $12 million to conduct a clinical trial to test a therapy for motor disabilities caused by chronic ischemic stroke.  While “clot busting” therapies can treat strokes in their acute phase, immediately after they occur, these treatments can only be given within a few hours of the initial injury.  There are no approved therapies to treat chronic stroke, the disabilities that remain in the months and years after the initial brain attack.

Dr. Steinberg will use embryonic stem cells that have been turned into neural stem cells (NSCs), a kind of stem cell that can form different cell types found in the brain.  In a surgical procedure, the team will inject the NSCs directly into the brains of chronic stroke patients.  While the ultimate goal of the therapy is to restore loss of movement in patients, this is just the first step in clinical trials for the therapy.  This first-in-human trial will evaluate the therapy for safety and feasibility and look for signs that it is helping patients.

Another Stanford researcher, Dr. Crystal Mackall, was also awarded almost $12 million to conduct a clinical trial to test a treatment for children and young adults with glioma, a devastating, aggressive brain tumor that occurs primarily in children and young adults and originates in the brain.  Such tumors are uniformly fatal and are the leading cause of childhood brain tumor-related death. Radiation therapy is a current treatment option, but it only extends survival by a few months.

Dr. Crystal Mackall and her team will modify a patient’s own T cells, an immune system cell that can destroy foreign or abnormal cells.  The T cells will be modified with a protein called chimeric antigen receptor (CAR), which will give the newly created CAR-T cells the ability to identify and destroy the brain tumor cells.  The CAR-T cells will be re-introduced back into patients and the therapy will be evaluated for safety and efficacy.

Joseph Wu Stanford

Stanford made it three in a row with the award of almost $7 million to Dr. Joe Wu to test a therapy for left-sided heart failure resulting from a heart attack.  The major issue with this disease is that after a large number of heart muscle cells are killed or damaged by a heart attack, the adult heart has little ability to repair or replace these cells.  Thus, rather than being able to replenish its supply of muscle cells, the heart forms a scar that can ultimately cause it to fail.  

Dr. Wu will use human embryonic stem cells (hESCs) to generate cardiomyocytes (CM), a type of cell that makes up the heart muscle.  The newly created hESC-CMs will then be administered to patients at the site of the heart muscle damage in a first-in-human trial.  This initial trial will evaluate the safety and feasibility of the therapy, and the effect upon heart function will also be examined.  The ultimate aim of this approach is to improve heart function for patients suffering from heart failure.

“We are pleased to add these clinical trials to CIRM’s portfolio,” says Maria T. Millan, M.D., President and CEO of CIRM.  “Because of the reauthorization of CIRM under Proposition 14, we have now directly funded 75 clinical trials.  The three grants approved bring forward regenerative medicine clinical trials for brain tumors, stroke, and heart failure, debilitating and fatal conditions where there are currently no definitive therapies or cures.”