Sequencing data helps us understand the genes involved in heart cell development

skin cells to beating heart

Human heart cells generated in the laboratory. Image courtesy of Nathan Palapant at the University of Queensland

Heart disease is the leading cause of death for both men and women in the United States and is estimated to be responsible for 31% of all deaths globally. This disease encompasses a wide variety of conditions that all effect how well your heart is able to pump blood to the rest of your body. One of the reasons that heart disease is so devastating is because, unlike many other organs in our bodies, heart tissue is not able to repair itself once it is damaged. Now scientists at the Institute for Molecular Bioscience at the University of Queensland and the Garvan Institute for Medical Research in Australia have conducted a tour de force study to exquisitely understand the genes involved in heart development.

The findings of the study are published in the journal Cell Stem Cell. in a press release, Dr. Nathan Palapant, one of the the lead authors, says this type of research could pay dividends for heart disease treatment because:

“We think the answers to heart repair almost certainly lie in understanding heart development. If we can get to grips with the complex choreography of how the heart builds itself in the first place, we’re well placed to find new approaches to helping it rebuild after damage.”

To determine which genes are involved in heart cell development, the investigators use a method called single cell RNA sequencing. This technique allowed them to measure how 17,000 genes (almost every gene that is active in the heart) were being turned on and off during various stages of heart cell development in 40,000 human pluripotent stem cells (stem cells that are capable of becoming any other cell type) experimentally induced to turn into heart cells.  This data set, the first of its kind, is a critical new resource for all scientists studying heart development and disease.

Interestingly, this study also addressed a commonly present, but rarely discussed issue with scientific studies: how applicable are results generated in vitro (in the lab) rather than the body, in the context of human health and disease? It is well known that heart cells generated in the lab do not have the exact same characteristics as mature heart cells found in our bodies, but the extent and precise nature of those discrepancies is not well understood. These scientists find that a gene called HOPX, which is one of earliest markers of heart cell development, is not always expressed when it should be during in vitro cardiac cell development, which, in turn, affects expression of other genes that are downstream of HOPX later on in development. Therefore, these scientists suggest that mis-expression of HOPX  might be one reason why in vitro heart cells express different genes and are distinct from heart cells in humans.

The scientists also learned that HOPX is responsible for controlling whether the developing heart cell moves past the “immature” dividing phase to the mature phase where cells grow bigger, but do not divide. This finding shows that this data set is powerful both for determining differences between laboratory grown cells versus mature human cells, but also provides critical biological information about heart cell development.

Joseph Powell, another lead author of this research, further explains how this work contributes to the important fundamentals of heart cell development:

“Each cell goes through its own series of complex, nuanced changes. They are all different, and changes in one cell affect the activity of other cells. By tracking those changes across the different stages of development, we can learn a huge amount about how different sub-types of heart cells are controlled, and how they work together to build the heart.”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s