Rare Disease, Type 1 Diabetes, and Heart Function: Breakthroughs for Three CIRM-Funded Studies

This past week, there has been a lot of mention of CIRM funded studies that really highlight the importance of the work we support and the different disease areas we make an impact on. This includes important research related to rare disease, Type 1 Diabetes (T1D), and heart function. Below is a summary of the promising CIRM-funded studies released this past week for each one of these areas.

Rare Disease

Comparison of normal (left) and Pelizaeus-Merzbacher disease (PMD) brains (right) at age 2. 

Pelizaeus-Merzbacher disease (PMD) is a rare genetic condition affecting boys. It can be fatal before 10 years of age and symptoms of the disease include weakness and breathing difficulties. PMD is caused by a disruption in the formation of myelin, a type of insulation around nerve fibers that allows electrical signals in the brain to travel quickly. Without proper signaling, the brain has difficulty communicating with the rest of the body. Despite knowing what causes PMD, it has been difficult to understand why there is a disruption of myelin formation in the first place.

However, in a CIRM-funded study, Dr. David Rowitch, alongside a team of researchers at UCSF, Stanford, and the University of Cambridge, has been developing potential stem cell therapies to reverse or prevent myelin loss in PMD patients.

Two new studies, of which Dr. Rowitch is the primary author, published in Cell Stem Cell, and Stem Cell Reports, respectively report promising progress in using stem cells derived from patients to identify novel PMD drugs and in efforts to treat the disease by directly transplanting neural stem cells into patients’ brains. 

In a UCSF press release, Dr. Rowitch talks about the implications of his findings, stating that,

“Together these studies advance the field of stem cell medicine by showing how a drug therapy could benefit myelination and also that neural stem cell transplantation directly into the brains of boys with PMD is safe.”

Type 1 Diabetes

Viacyte, a company that is developing a treatment for Type 1 Diabetes (T1D), announced in a press release that the company presented preliminary data from a CIRM-funded clinical trial that shows promising results. T1D is an autoimmune disease in which the body’s own immune system destroys the cells in the pancreas that make insulin, a hormone that enables our bodies to break down sugar in the blood. CIRM has been funding ViaCyte from it’s very earliest days, investing more than $72 million into the company.

The study uses pancreatic precursor cells, which are derived from stem cells, and implants them into patients in an encapsulation device. The preliminary data showed that the implanted cells, when effectively engrafted, are capable of producing circulating C-peptide, a biomarker for insulin, in patients with T1D. Optimization of the procedure needs to be explored further.

“This is encouraging news,” said Dr. Maria Millan, President and CEO of CIRM. “We are very aware of the major biologic and technical challenges of an implantable cell therapy for Type 1 Diabetes, so this early biologic signal in patients is an important step for the Viacyte program.”

Heart Function

Although various genome studies have uncovered over 500 genetic variants linked to heart function, such as irregular heart rhythms and heart rate, it has been unclear exactly how they influence heart function.

In a CIRM-funded study, Dr. Kelly Frazer and her team at UCSD studied this link further by deriving heart cells from induced pluripotent stem cells. These stem cells were in turn derived from skin samples of seven family members. After conducting extensive genome-wide analysis, the team discovered that many of these genetic variations influence heart function because they affect the binding of a protein called NKX2-5.

In a press release by UCSD, Dr. Frazer elaborated on the important role this protein plays by stating that,

“NKX2-5 binds to many different places in the genome near heart genes, so it makes sense that variation in the factor itself or the DNA to which it binds would affect that function. As a result, we are finding that multiple heart-related traits can share a common mechanism — in this case, differential binding of NKX2-5 due to DNA variants.”

The full results of this study were published in Nature Genetics.

CIRM Board Approves $19.7 Million in Awards for Translational Research Program

In addition to approving funding for breast cancer related brain metastases last week, the CIRM Board also approved an additional $19.7 million geared towards our translational research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

Before getting into the details of each project, here is a table with a brief synopsis of the awards:

TRAN1 – 11532

Illustration of a healthy eye vs eye with AMD

$3.73 million was awarded to Dr. Mark Humayun at USC to develop a novel therapeutic product capable of slowing the progression of age-related macular degeneration (AMD).

AMD is an eye disease that causes severe vision impairment, resulting in the inability to read, drive, recognize faces, and blindness if left untreated.  It is the leading cause of vision loss in the U.S. and currently affects over 2 million Americans.  By the year 2050, it is projected that the number of affected individuals will more than double to over 5 million.  A layer of cells in the back of the eye called the retinal pigment epithelium (RPE) provide support to photoreceptors (PRs), specialized cells that play an important role in our ability to process images.  The dysfunction and/or loss of RPE cells plays a critical role in the loss of PRs and hence the vision problems observed in AMD.  One form of AMD is known as dry AMD (dAMD) and accounts for about 90% of all AMD cases.

The approach that Dr. Humayun is developing will use a biologic product produced by human embryonic stem cells (hESCs). This material will be injected into the eye of patients with early development of dAMD, supporting the survival of photoreceptors in the affected retina.

TRAN1 – 11579

Illustration depicting the role neuronal relays play in muscle sensation

$6.23 million was awarded to Dr. Mark Tuszynski at UCSD to develop a neural stem cell therapy for spinal cord injury (SCI).

According to data from the National Spinal Cord Injury Statistical Center, as of 2018, SCI affects an estimated 288,000 people in the United States alone, with about 17,700 new cases each year. There are currently no effective therapies for SCI. Many people suffer SCI in early adulthood, leading to life-long disability and suffering, extensive treatment needs and extremely high lifetime costs of health care.

The approach that Dr. Tuszynski is developing will use hESCs to create neural stem cells (NSCs).  These newly created NSCs would then be grafted at the site of injury of those with SCI.  In preclinical studies, the NSCs have been shown to support the formation of neuronal relays at the site of SCI.  The neuronal relays allow the sensory neurons in the brain to communicate with the motor neurons in the spinal cord to re-establish muscle control and movement.

TRAN1 – 11548

Graphic depicting the challenges of traumatic brain injury (TBI)

$4.83 million was awarded to Dr. Brian Cummings at UC Irvine to develop a neural stem cell therapy for traumatic brain injury (TBI).

TBI is caused by a bump, blow, or jolt to the head that disrupts the normal function of the brain, resulting in emotional, mental, movement, and memory problems. There are 1.7 million people in the United States experiencing a TBI that leads to hospitalization each year. Since there are no effective treatments, TBI is one of the most critical unmet medical needs based on the total number of those affected and on a cost basis.

The approach that Dr. Cummings is developing will also use hESCs to create NSCs.  These newly created NSCs would be integrated with injured tissue in patients and have the ability to turn into the three main cell types in the brain; neurons, astrocytes, and oligodendrocytes.  This would allow for TBI patients to potentially see improvements in issues related to memory, movement, and anxiety, increasing independence and lessening patient care needs.

TRAN1 – 11628

Illustration depicting the brain damage that occurs under hypoxic-ischemic conditions

$4.96 million was awarded to Dr. Evan Snyder at Sanford Burnham Prebys to develop a neural stem cell therapy for perinatal hypoxic-ischemic brain injury (HII).

HII occurs when there is a lack of oxygen flow to the brain.  A newborn infant’s body can compensate for brief periods of depleted oxygen, but if this lasts too long, brain tissue is destroyed, which can cause many issues such as developmental delay and motor impairment.  Current treatment for this condition is whole-body hypothermia (HT), which consists of significantly reducing body temperature to interrupt brain injury.  However, this is not very effective in severe cases of HII. 

The approach that Dr. Snyder is developing will use an established neural stem cell (NSC) line.   These NSCs would be injected and potentially used alongside HT treatment to increase protection from brain injury.

Stem Cell Roundup: Rainbow Sherbet Fruit Fly Brains, a CRISPR/iPSC Mash-up and more

This week’s Round Up is all about the brain with some CRISPR and iPSCs sprinkled in:

Our Cool Stem Cell Image of the Week comes from Columbia University’s Zuckerman Institute:

Mann-SC-Hero-01-19-18

(Credit: Jon Enriquez/Mann Lab/Columbia’s Zuckerman Institute).

This rainbow sherbet-colored scientific art is a microscopy image of a fruit fly nervous system in which brain cells were randomly labeled with different colors. It was a figure in a Neuron study published this week showing how cells derived from the same stem cells can go down very different developmental paths but then later are “reunited” to carry out key functions, such as in this case, the nervous system control of leg movements.


A new therapeutic avenue for Parkinson’s diseaseBuck Institute

Many animal models of Parkinson’s disease are created by mutating specific genes to cause symptoms that mimic this incurable, neurodegenerative disorder. But, by far, most cases of Parkinson’s are idiopathic, a fancy term for spontaneous with no known genetic cause. So, researchers at the Buck Institute took another approach: they generated a mouse model of Parkinson’s disease using the pesticide, paraquat, exposure to which is known to increase the risk of the idiopathic form of Parkinson’s.

Their CIRM-funded study in Cell Reports showed that exposure to paraquat leads to cell senescence – in which cells shut down and stop dividing – particularly in astrocytes, brain cells that support the function of nerve cells. Ridding the mice of these astrocytes relieved some of the Parkinson’s like symptoms. What makes these results so intriguing is the team’s analysis of post-mortem brains from Parkinson’s patients also showed the hallmarks of increased senescence in astrocytes. Perhaps, therapeutic approaches that can remove senescent cells may yield novel Parkinson’s treatments.


Discovery may advance neural stem cell treatments for brain disordersSanford-Burnham Prebys Medical Discovery Institute (via Eureka Alert)

Another CIRM-funded study published this week in Nature Neuroscience may also help pave the way to new treatment strategies for neurologic disorders like Parkinson’s disease. A team at Sanford Burnham Prebys Medical Discovery Institute (SBP) discovered a novel gene regulation system that brain stem cells use to maintain their ability to self-renew.

The study centers around messenger RNA, a molecular courier that transcribes a gene’s DNA code and carries it off to be translated into a protein. The team found that the removal of a chemical tag on mRNA inside mouse brain stem cells caused them to lose their stem cell properties. Instead, too many cells specialized into mature brain cells leading to abnormal brain development in animal studies. Team lead Jing Crystal Zhao, explained how this finding is important for future therapeutic development:

CrystalZhao_headshot

Crystal Zhao

“As NSCs are increasingly explored as a cell replacement therapy for neurological disorders, understanding the basic biology of NSCs–including how they self-renew–is essential to harnessing control of their in vivo functions in the brain.”


Researchers Create First Stem Cells Using CRISPR Genome ActivationThe Gladstone Institutes

Our regular readers are most likely familiar with both CRISPR gene editing and induced pluripotent stem cell (iPSC) technologies. But, in case you missed it late last week, a Cell Stem Cell study out of Sheng Ding’s lab at the Gladstone Institutes, for the first time, combined the two by using CRISPR to make iPSCs. The study got a lot of attention including a review by Paul Knoepfler in his blog The Niche. Check it out for more details!

 

Stanford scientists are growing brain stem cells in bulk using 3D hydrogels

This blog is the final installment in our #MonthofCIRM series. Be sure to check out our other blogs highlighting important advances in CIRM-funded research and initiatives.

Neural stem cells from the brain have promising potential as cell-based therapies for treating neurological disorders such as Alzheimer’s disease, Parkinson’s, and spinal cord injury. A limiting factor preventing these brain stem cells from reaching the clinic is quantity. Scientists have a difficult time growing large populations of brain stem cells in an efficient, cost-effective manner while also maintaining the cells in a stem cell state (a condition referred to as “stemness”).

CIRM-funded scientists from Stanford University are working on a solution to this problem. Dr. Sarah Heilshorn, an associate professor of Materials Science and Engineering at Stanford, and her team are engineering 3D hydrogel technologies to make it easier and cheaper to expand high-quality neural stem cells (NSCs) for clinical applications. Their research was published yesterday in the journal Nature Materials.

Stem Cells in 3D

Similar to how moviegoers prefer to watch the latest Star Wars installment in 3D, compared to the regular screen, scientists are turning to 3D materials called hydrogels to grow large numbers of stem cells. Such an environment offers more space for the stem cells to proliferate and expand their numbers while keeping them happy in their stem cell state.

To find the ideal conditions to grow NSCs in 3D, Heilshorn’s team tested two important properties of hydrogels: stiffness and degradability (or how easy it is to remodel the structure of the hydrogel material). They designed a range of hydrogels, made from proteins with elastic qualities, that varied in these two properties. Interestingly, they found that the stiffness of the material did not have a profound effect on the “stemness” of NSCs. This result contrasts with other types of adult stem cells like muscle stem cells, which quickly differentiate into mature muscle cells when exposed to stiffer materials.

On the other hand, the researchers found that it was crucial for the NSCs to be able to remodel their 3D environment. NSCs maintained their stemness by secreting enzymes that broke down and rearranged the molecules in the hydrogels. If this enzymatic activity was blocked, or if the cells were grown in hydrogels that couldn’t be remodeled easily, NSCs lost their stemness and stopped proliferating. The team tested two other hydrogel materials and found the same results. As long as the NSCs were in a 3D environment they could remodel, they were able to maintain their stemness.

NSCs maintain their stemness in hydrogels that can be remodeled easily. Nestin (green) and Sox2 (red) are markers that indicate “high-quality” NSCs. (Image courtesy of Chris Madl, Stanford)

Caption: NSCs maintain their stemness in hydrogels that can be remodeled easily. Nestin (green) and Sox2 (red) are markers that indicate “high-quality” NSCs. (Images courtesy of Chris Madl)

Christopher Madl, a PhD student in the Heilshorn lab and the first author on the study, explained how remodeling their 3D environment allows NSCs to grow robustly in an interview with the Stem Cellar:

Chris Madl

“In this study, we identified that the ability of the neural stem cells to dynamically remodel the material was critical to maintaining the correct stem cell state. Being able to remodel (or rearrange) the material permitted the cells to contact each other.  This cell-cell contact is responsible for maintaining signals that allow the stem cells to stay in a stem-like state. Our findings allow expansion of neural stem cells from relatively low-density cultures (aiding scale-up) without the use of expensive chemicals that would otherwise be required to maintain the correct stem cell behavior (potentially decreasing cost).”

To 3D and Beyond

When asked what’s next on the research horizon, Heilshorn said two things:

Sarah Heilshorn

“First, we want to see if other stem cell types – for example, pluripotent stem cells – are also sensitive to the “remodel-ability” of materials. Second, we plan to use our discovery to create a low-cost, reproducible material for efficient expansion of stem cells for clinical applications. In particular, we’d like to explore the use of a single material platform that is injectable, so that the same material could be used to expand the stem cells and then transplant them.”

Heilshorn is planning to apply the latter idea to advance another study that her team is currently working on. The research, which is funded by a CIRM Tools and Technologies grant, aims to develop injectable hydrogels containing NSCs derived from human induced pluripotent stem cells to treat mice, and hopefully one day humans, with spinal cord injury. Heilshorn explained,

“In our CIRM-funded studies, we learned a lot about how neural stem cells interact with materials. This lead us to realize that there’s another critical bottleneck that occurs even before the stage of transplantation: being able to generate a large enough number of high-quality stem cells for transplantation. We are developing materials to improve the transplantation of stem cell-derived therapies to patients with spinal cord injuries. Unfortunately, during the transplantation process, a lot of cells can get damaged. We are now creating injectable materials that prevent this cell damage during transplantation and improve the survival and engraftment of NSCs.”

An injectable material that promotes the expansion of large populations of clinical grade stem cells that can also differentiate into mature cells is highly desired by scientists pursuing the development of cell replacement therapies. Heilshorn and her team at Stanford have made significant progress on this front and are hoping that in time, this technology will prove effective enough to reach the clinic.

Extra dose of patience needed for spinal cord injury stem cell therapies, rat study suggests

2017 has been an exciting year for Asterias Biotherapeutics’ clinical trial which is testing a stem cell-based therapy for spinal cord injury. We’ve written several stories about patients who have made remarkable recoveries after participating in the trial (here and here).

But that doesn’t mean researchers at other companies or institutes who are also investigating spinal cord injury will be closing up shop. There’s still a long way to go with the Asterias trial and there’s still a lot to be learned about the cellular and molecular mechanisms of spinal cord injury repair, which could lead to alternative options for victims. Continued studies will also provide insights on optimizing the methods and data collection used in future clinical trials.

Human neuronal stem cells extend axons (green) three months after transplantation in rat model of spinal cord injury. Image: UCSD

In fact, this week a team of UC San Diego scientists report in the Journal of Clinical Investigation that, based on brain stem cell transplant studies in a rat model of spinal cord injury, recovery continues long after the cell therapy is injected. These findings suggest that collecting clinical trial data too soon may give researchers the false impression that their therapy is not working as well as they had hoped.

In this study, funded in part by CIRM, the researchers examined brain stem cells – or neural stem cells, in lab lingo – that were derived from human embryonic stem cells. These neural stem cells (NSCs) aren’t fully matured and give rise to nerve cells as well as support cells called glia. Previous studies have shown that when NSCs are transplanted into rodent models of spinal cord injury, the cells mature into nerve cells, make connections with nerves within the animal and can help restore some limb movement.

But the timeline for the maturation of the NSCs after transplantation into the injury site wasn’t clear because most studies only measured recovery for a few weeks or months. To get a clearer picture, the UCSD team analyzed the fate and impact of human NSCs in adult rats with spinal cord injury from 1 month to 1.5 years – the longest time such an experiment has been carried out so far. The results confirmed that the transplanted NSCs did indeed survive through the 18-month time point and led to recovery of movement in the animals’ limbs.

To their surprise, the researchers found that the NSCs continued to mature and some cell types didn’t fully specialize until 6 months or even 12 months after the transplantation. This timeline suggests that although the human cells are placed into the hostile environment of an injury site in an animal model, they still follow a maturation process seen during human development.

The researchers also focused on the fate of the nerve cells’ axons, the long, thin projections that relay nerve signals and make connections with other nerve cells. Just as is seen with normal human development, these axons were very abundant early in the experiment but over several months they went through a pruning process that’s critical for healthy nerve function.

Altogether, these studies provide evidence that waiting for the clinical trial results of stem cell-based spinal cord injury therapies will require an extra dose of patience. Team lead, Dr. Mark Tuszynski, director of the UC San Diego Translational Neuroscience Institute, summed it up this way in a press release:

Mark Tuszynski, UCSD

“The bottom line is that clinical outcome measures for future trials need to be focused on long time points after grafting. Reliance on short time points for primary outcome measures may produce misleadingly negative interpretation of results. We need to take into account the prolonged developmental biology of neural stem cells. Success, it would seem, will take time.”

Harnessing DNA as a programmable instruction kit for stem cell function

DNA is the fundamental molecule to all living things. The genetic sequences embedded in its double-helical structure contain the instructions for producing proteins, the building blocks of our cells. When our cells divide, DNA readily unzips into two strands and makes a copy of itself for each new daughter cell. In a Nature Communications report this week, researchers at Northwestern University describe how they have harnessed DNA’s elegant design, which evolved over a billion years ago, to engineer a programmable set of on/off instructions to mimic the dynamic interactions that cells encounter in the body. This nano-sized toolkit could provide a means to better understand stem cell behavior and to develop regenerative therapies to treat a wide range of disorders.

Stupp

Instructing cells with programmable DNA-protein hybrids: switching bioactivity on and off Image: Stupp lab/Northwestern U.

While cells are what make up the tissues and organs of our bodies, it’s a bit more complicated than that. Cells also secrete proteins and molecules that form a scaffold between cells called the extracellular matrix. Though it was once thought to be merely structural, it’s clear that the matrix also plays a key role in regulating cell function. It provides a means to position multiple cell signaling molecules in just the right spot at the right time to stimulate a particular cell behavior as well as interactions between cells. This physical connection between the matrix, molecules and cells called a “niche” plays an important role for stem cell function.

Since studying cells in the laboratory involves growing them on plastic petri dishes, researchers have devised many methods for mimicking the niche to get a more accurate picture of how cells response to signals in the body. The tricky part has been to capture three main characteristics of the extracellular matrix all in one experiment; that is, the ability to add and then reverse a signal, to precisely position cell signals and to combine signals to manipulate cell function. That’s where the Northwestern team and its DNA toolkit come into the picture.

They first immobilized a single strand of DNA onto the surface of a material where cells are grown. Then they added a hybrid molecule – they call it “P-DNA” – made up of a particular signaling protein attached to a single strand of DNA that pairs with the immobilized DNA. Once those DNA strands zip together, that tethers the signaling protein to the material where the cells encounter it, effectively “switching on” that protein signal. Adding an excess of single-stranded DNA that doesn’t contain the attached protein, pushes out the P-DNA which can be washed away thereby switching off the protein signal. Then the P-DNA can be added back to restart the signal once again.

Because the DNA sequences can be easily synthesized in the lab, it allows the researchers to program many different instructions to the cells. For instance, combinations of different protein signals can be turned on simultaneously and the length of the DNA strands can precisely control the positioning of cell-protein interactions. The researchers used this system to show that spinal cord neural stem cells, which naturally clump together in neurospheres when grown in a dish, can be instructed to spread out on the dish’s surface and begin specializing into mature brain cells. But when that signal is turned off, the cells ball up together again into the neurospheres.

Team lead Samuel Stupp looks to this reversible, on-demand control of cell activity as means to develop patient specific therapies in the future:

stupp-samuel

Samuel Stupp

“People would love to have cell therapies that utilize stem cells derived from their own bodies to regenerate tissue. In principle, this will eventually be possible, but one needs procedures that are effective at expanding and differentiating cells in order to do so. Our technology does that,” he said in a university press release.

 

 

Making brain stem cells act more like salmon than bloodhounds

Like salmon swimming against a river current, brain stem cells can travel against their normal migration stream with the help of electrical stimuli, so says CIRM-funded research published this week in Stem Cell Reports. The research, carried out by a team of UC Davis scientists, could one day provide a means for guiding brain stem cells, or neural stem cells (NSCs), to sites of disease or injury in the brain.

Min_SCR full

Human neural stem cells (green) guided by electrical stimulation migrated to and colonized the subventricular zone of rats’ brains. This image was taken three weeks after stimulation. Image: Jun-Feng Feng/UC DAVIS, Sacramento and Ren Ji Hospital, Shanghai.

NSCs are a key ingredient in the development of therapies that aim to repair damaged areas of the brain. Given the incredibly intricate structure of nerve connections, targeting these stem cells to their intended location is a big challenge for therapy development. One obstacle is mobility. Although resident NSCs can travel long distances within the brain, the navigation abilities of transplanted NSCs gets disrupted and becomes very limited.

In earlier work, the research team had shown that electrical currents could nudge NSCs to move in a petri dish (watch team lead Dr. Min Zhao describe this earlier work in the 30 second video below) so they wanted to see if this technique was possible within the brains of living rats. By nature, NSCs are more like bloodhounds than salmon, moving from one location to another by sensing an increasing gradient of chemicals within the brain. In this study, the researchers transplanted human NSCs in the middle of such a such gradient, called the rostral migration stream, that normally guides the cells to the olfactory bulb, the area responsible for our sense of smell.

Electrodes were implanted into the brains of the rats and an electrical current flowing in the opposite direction of the rostral migration stream was applied. This stimulus caused the NSCs to march in the direction of the electrical current. Even at three and four weeks after the stimulation, the altered movement of the NSCs continued. And there was indication that the cells were specializing into various types of brain cells, an important observation for any cell therapy meant to replace diseased cells.

The Scientist interviewed Dr. Alan Trounson, of the Hudson Institute of Australia, who was not involved in study, to get his take on the results:

“This is the first study I’ve seen where stimulation is done with electrodes in the brain and has been convincing about changing the natural flow of cells so they move in the opposite direction. The technique has strong possibilities for applications because the team has shown you can move cells, and you could potentially move them into seriously affected brain areas.”

Though it’s an intriguing proof-of-concept, much works remains to show this technique is plausible in the clinic. Toward that goal, the team has plans to repeat the studies in primates using a less invasive method that transmits the electrical signals through the skull.

UCSF Scientists find molecular link between brain stem cells and Zika Infection

The Zika virus scare came to a head in 2015, prompting the World Health Organization to declare the outbreak a global health emergency earlier this year. From a research standpoint, much of the effort has centered on understanding whether the Zika infection is actually a cause of birth defects like microcephaly and how the virus infects mothers and their unborn children.

The Zika Virus is spread by a specific type of mosquito, the Aedes aegypti.

The Zika Virus is spread to humans by mosquitos.

What’s known so far is that the Zika virus can pass from the mother to the fetus through the placenta and it can infect the developing brain of the fetus. But how exactly the virus infects brain cells is less clear.

Brain stem cells are vulnerable to Zika

Scientists from UC San Francisco (UCSF) are tackling this question and have unraveled one more piece to the Zika infection puzzle. UCSF professor Dr. Arnold Kriegstein and his team reported yesterday in the journal Cell Stem Cell that they’ve identified a protein receptor on the surface of brain stem cells that could be the culprit for Zika virus infection.

Based on previous studies that showed that the Zika virus specifically infects brain stem cells, Kriegstein and his colleagues hypothesized that these cells expressed specific proteins that made them vulnerable to Zika infection. They looked to see which genes were turned on and off in brain stem cells derived from donated fetal tissue as well as other cell types in the developing brain to identify proteins that would mediate Zika virus entry.

AXL is to blame

They found a protein receptor called AXL that was heavily expressed in a type of brain stem cell called the radial glial cell, which gives rise to the outer layer of the brain called the cerebral cortex. AXL piqued their interest because it was identified in other studies as an entry point for Zika and other similar viruses like dengue in human skin cells. Furthermore, the team confirmed that radial glial cells produce a lot of AXL protein during development and it appears during a specific window of time – the second trimester of pregnancy.

A link between radial glial cells and Zika infection made sense to first author Tomasz Nowakowski who explained in a UCSF news release,

“In the rare cases of congenital microcephaly, these [radial glial cells] are the cells that die or differentiate prematurely, which is one of the reasons we became interested in the possible link.”

The team also found that AXL was expressed in mature brain cells including astrocytes and microglia and in retinal progenitor cells in the eye. They pointed out that the presence of AXL in the developing eye could help explain why many cases of Zika infection are associated with eye defects.

Modeling Zika infection using mini-brains

The bulk of the study used stem cells isolated from donated human fetal tissue, but the team also developed a different stem cell model to confirm their results. They generated brain organoids, also coined as “mini-brains”, in a dish from human induced pluripotent stem cells. These mini-brains contain structures and cell types that closely resemble parts of the developing brain. The team studied radial glial like cells in the mini-brains and found that they also expressed AXL on their surface.

An image of tissue that’s grown in a dish shows radial glia stem cells that are red, neurons in blue and the AXL receptor in green. Photo by Elizabeth DiLullo

Mini-brains grown in a dish have radial glia stem cells (red), neurons (blue) and the AXL receptor (green). Photo by Elizabeth DiLullo, UCSF

Kriegstein and his team believe they now have a working stem cell model for how viruses like Zika can infect the brain. Using their brain organoid model, they plan to collaborate with other UCSF researchers to learn more about how Zika infection occurs and whether it really causes birth defects.

“If we can understand how Zika may be causing birth defects,” Kriegstein said, “we can start looking for compounds to protect pregnant women who become infected.”

What’s next?

While the evidence points towards AXL as one of the major entry points for Zika infection in the developing brain, the UCSF team and other scientists still need to confirm that this receptor is to blame.

Kriegstein explained:

Arnold Kriegstein, UCSF

Arnold Kriegstein, UCSF

“While by no means a full explanation, we believe that the expression of AXL by these cell types is an important clue for how the Zika virus is able to produce such devastating cases of microcephaly, and it fits very nicely with the evidence that’s available. AXL isn’t the only receptor that’s been linked with Zika infection, so next we need to move from ‘guilt by association’ and demonstrate that blocking this specific receptor can prevent infection.”

If AXL turns out to be the culprit, scientists will have to be careful about testing drugs that block its function given that AXL is important for the proliferation of brain stem cells during development. There might be a way however that such treatments could be given to at risk women before they get pregnant.


Related Links: