A recap on last week: two gut wrenching studies

Fluorescent pictures of a human colon organoid
Image credit: Dr Thierry Jarde

With everyone stocking up on food essentials this past week, it brings to mind the vital role that our stomach plays in order to properly digest these foods. This week, we wanted to share two separate studies related to aspects of the gut.

Promising results for a gut-related condition

Gastroparesis is a painful condition in which the stomach is unable to empty itself of food. Symptoms include heartburn, abdominal cramps, nausea, vomiting, and feeling full quickly when eating. In extremely severe cases, patients can experience dehydration, malnutrition and bezoars, a small stone-like matter that forms when food hardens and can block the opening from the stomach into the pylorus (small intestine).

A new study, led by Dr. Prabhash Dadhich and Dr. Khalil N Bitar at Wake Forest School of Medicine showed how a stem cell-combo therapy could bring long-term relief to these patients.

The team of scientists used interstitial cells of Cajal (ICCs), a type of stem cell found in the gastrointestinal tract, in combination with neural stem cells. An animal model similar to gastroparesis was then made using tissue from the small intestine of rats. The combination of stem cells were then injected into the small intestine tissue, where the cells were able to survive and integrate with host muscle layers.

In a news release, Dr. Bitar explains how this approach could potentially restore stomach muscle function and enable normal food digestion.

“Our analysis also confirmed the reinstatement and restoration of the stomach muscles’ functionality, both of which are critical in the treatment of pylorus dysfunctionality. These findings are very promising. We hope this study opens avenues for future cell-based clinical applications.”

The full study was published in Stem Cells Journals.

Superbug can damage stem cells in the gut

Clostridioides difficile (C. diff)
Image courtesy of the Central for Disease Control (CDC) website

A collaboration by the Monash Biomedicine Discovery Institute (BDI) has revealed that a bacterial superbug can prevent stem cells in the gut from regenerating the inner lining of the intestine.

Clostridioides difficile (C. diff) is a bacterial germ that is responsible for more than half of all hospital infections related to the gut and causes severe diarrhea. It usually grows after antibiotic treatment is administered to a patient.

The team of scientists found that C. diff damages stem cells in the colon, which in turn can cause problems with tissue repair and recovery.

In a press release, Professor Helen Abud, an expert in stem cell biology and one of the authors of this study, explains how this discovery can have wider implications.

“Our study provides the first direct evidence that a microbial infection alters the functional capacity of gut stem cells. It adds a layer of understanding about how the gut repairs after infection and why this superbug can cause the severe damage that it does. The reason it’s important to have that understanding is that we’re rapidly running out of antibiotics – we need to find other ways to prevent and treat these infections.”

The full results to this study were published in Proceedings of the National Academy of Sciences (PNAS).

How quitting smoking helps your lungs regenerate; a discovery could lead to new ways to repair damaged lungs; and encouraging news in a stroke recovery trial

Photo courtesy Lindsay Fox

Smoking is one of the leading causes of preventable death not just in the US, but worldwide. According to the US Centers for Disease Control and Prevention tobacco causes an estimated seven million deaths around the world, every single year. And for every person who dies, another 30 live with a serious smoking-related illness. Clearly quitting is a good idea. Now a new study adds even more incentive to do just that.

Scientists at the Welcome Trust Sanger Institute and University College London in the UK, found that quitting smoking did more than just stop further damage to the lungs. They found that cells in the lining of the lungs that were able to avoid being damaged, were able to regrow and repopulate the lung, helping repair damaged areas.

In an article in Science Daily Dr Peter Campbell, a joint senior author of the study, said: “People who have smoked heavily for 30, 40 or more years often say to me that it’s too late to stop smoking — the damage is already done. What is so exciting about our study is that it shows that it’s never too late to quit — some of the people in our study had smoked more than 15,000 packs of cigarettes over their life, but within a few years of quitting many of the cells lining their airways showed no evidence of damage from tobacco.”

The study is published in the journal Nature.

Researchers at UCLA have also made a discovery that could help people with lung disease.

They examined the lungs of people with cancer and compared them to the lungs of healthy people. They were able to identify a group of molecules, called the Wnt/beta-catenin signaling pathway, that appear to influence the activity of stem cells that are key to maintaining healthy lungs. Too much activity can tilt the balance away from healthy lungs to ones with mutations that are more prone to developing tumors.

In a news release Dr. Brigitte Gomperts, the lead author of the study, says although this work has only been done in mice so far it has tremendous potential: “We think this could help us develop a new therapy that promotes airway health. This could not only inform the treatment of lung cancer, but help prevent its progression in the first place.”

The study is published in the journal Cell Reports.

CIRM has funded some of Dr. Gomperts earlier work in this area.

And there’s encouraging news for people trying to recover from a stroke. Results from ReNeuron’s Phase 2 clinical trial show the therapy appears to help people who have experienced some level of disability following a stroke.

ReNeuron says its CTX therapy – made from neural stem cells – was given to 23 people who had moderate to severe disability resulting from an ischemic stroke. The patients were, on average, seven months post stroke.

In the study, published in the Journal of Neurology, Neurosurgery & Psychiatry, researchers used the Modified Rankin Scale (mRS), a measure of disability and dependence to assess the impact of the therapy. The biggest improvements were seen in a group of 14 patients who had limited movement of one arm.

  • 38.5% experienced at least a one-point improvement on mRS six months after being treated.
  • 50% experienced a one-point improvement 12 months after being treated.

If that doesn’t seem like a big improvement, then consider this. Moving from an mRS 3 to 2 means that a person with a stroke regains their ability to live independently.

The therapy is now being tested in a larger patient group in the PISCES III clinical trial.

CIRM supported study finds that a gene associated with autism influences brain stem cells

Dr. Bennett Novitch, UCLA Broad Stem Cell Research Center
Image Credit: UCLA Broad Stem Cell Research Center

In a previous blog post, we discussed new findings in a CIRM supported study at the Salk Institute for Autism Spectrum Disorder (ASD), a developmental disorder that comes in broad ranges and primarily affects communication and behavior.

This week, a new study, also supported by CIRM, finds that a gene associated with ASD, intellectual disability, and language impairment can affect brain stem cells, which in turn, influence early brain development. Dr. Bennett Novitch and his team at UCLA evaluated a gene, called Foxp1, which has been previously studied for its function in the neurons in the developing brain.

Image showing brain cells with lower levels of Foxp1 function (left) and higher levels (right). neural stem cells are stained in green; secondary progenitors and neurons in red.
Image Credit: UCLA Broad Stem Cell Research Center

In this study, Dr. Novitch and his team looked at Foxp1 levels in the brains of developing mouse embryos. What they discovered is that, in normal developing mice the gene was active much earlier than previous studies had indicated. It turns out that the gene was active during the period when neural stem cells are just beginning to expand in numbers and generate a subset of brain cells found deep within the developing brain.

When mice lacked the gene entirely, there were fewer neural stem cells at early stages of brain development, as well as fewer brain cells deep within the developing brain. Alternatively, when the levels of the gene were above normal, the researchers found significantly more neural stem cells and brain cells deep within the developing brain. Additionally, higher levels of the neural stem cells were observed in mice with high levels of the gene even after they were born.

In a press release from UCLA, Dr. Novitch explains how the different levels of the gene can be tied to the variation of Foxp1 levels seen in ASD patients.

“What we saw was that both too much and too little Foxp1 affects the ability of neural stem cells to replicate and form certain neurons in a specific sequence in mice. And this fits with the structural and behavioral abnormalities that have been seen in human patients.”

The full study was published in Cell Reports.

Rare Disease, Type 1 Diabetes, and Heart Function: Breakthroughs for Three CIRM-Funded Studies

This past week, there has been a lot of mention of CIRM funded studies that really highlight the importance of the work we support and the different disease areas we make an impact on. This includes important research related to rare disease, Type 1 Diabetes (T1D), and heart function. Below is a summary of the promising CIRM-funded studies released this past week for each one of these areas.

Rare Disease

Comparison of normal (left) and Pelizaeus-Merzbacher disease (PMD) brains (right) at age 2. 

Pelizaeus-Merzbacher disease (PMD) is a rare genetic condition affecting boys. It can be fatal before 10 years of age and symptoms of the disease include weakness and breathing difficulties. PMD is caused by a disruption in the formation of myelin, a type of insulation around nerve fibers that allows electrical signals in the brain to travel quickly. Without proper signaling, the brain has difficulty communicating with the rest of the body. Despite knowing what causes PMD, it has been difficult to understand why there is a disruption of myelin formation in the first place.

However, in a CIRM-funded study, Dr. David Rowitch, alongside a team of researchers at UCSF, Stanford, and the University of Cambridge, has been developing potential stem cell therapies to reverse or prevent myelin loss in PMD patients.

Two new studies, of which Dr. Rowitch is the primary author, published in Cell Stem Cell, and Stem Cell Reports, respectively report promising progress in using stem cells derived from patients to identify novel PMD drugs and in efforts to treat the disease by directly transplanting neural stem cells into patients’ brains. 

In a UCSF press release, Dr. Rowitch talks about the implications of his findings, stating that,

“Together these studies advance the field of stem cell medicine by showing how a drug therapy could benefit myelination and also that neural stem cell transplantation directly into the brains of boys with PMD is safe.”

Type 1 Diabetes

Viacyte, a company that is developing a treatment for Type 1 Diabetes (T1D), announced in a press release that the company presented preliminary data from a CIRM-funded clinical trial that shows promising results. T1D is an autoimmune disease in which the body’s own immune system destroys the cells in the pancreas that make insulin, a hormone that enables our bodies to break down sugar in the blood. CIRM has been funding ViaCyte from it’s very earliest days, investing more than $72 million into the company.

The study uses pancreatic precursor cells, which are derived from stem cells, and implants them into patients in an encapsulation device. The preliminary data showed that the implanted cells, when effectively engrafted, are capable of producing circulating C-peptide, a biomarker for insulin, in patients with T1D. Optimization of the procedure needs to be explored further.

“This is encouraging news,” said Dr. Maria Millan, President and CEO of CIRM. “We are very aware of the major biologic and technical challenges of an implantable cell therapy for Type 1 Diabetes, so this early biologic signal in patients is an important step for the Viacyte program.”

Heart Function

Although various genome studies have uncovered over 500 genetic variants linked to heart function, such as irregular heart rhythms and heart rate, it has been unclear exactly how they influence heart function.

In a CIRM-funded study, Dr. Kelly Frazer and her team at UCSD studied this link further by deriving heart cells from induced pluripotent stem cells. These stem cells were in turn derived from skin samples of seven family members. After conducting extensive genome-wide analysis, the team discovered that many of these genetic variations influence heart function because they affect the binding of a protein called NKX2-5.

In a press release by UCSD, Dr. Frazer elaborated on the important role this protein plays by stating that,

“NKX2-5 binds to many different places in the genome near heart genes, so it makes sense that variation in the factor itself or the DNA to which it binds would affect that function. As a result, we are finding that multiple heart-related traits can share a common mechanism — in this case, differential binding of NKX2-5 due to DNA variants.”

The full results of this study were published in Nature Genetics.

CIRM Board Approves $19.7 Million in Awards for Translational Research Program

In addition to approving funding for breast cancer related brain metastases last week, the CIRM Board also approved an additional $19.7 million geared towards our translational research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

Before getting into the details of each project, here is a table with a brief synopsis of the awards:

TRAN1 – 11532

Illustration of a healthy eye vs eye with AMD

$3.73 million was awarded to Dr. Mark Humayun at USC to develop a novel therapeutic product capable of slowing the progression of age-related macular degeneration (AMD).

AMD is an eye disease that causes severe vision impairment, resulting in the inability to read, drive, recognize faces, and blindness if left untreated.  It is the leading cause of vision loss in the U.S. and currently affects over 2 million Americans.  By the year 2050, it is projected that the number of affected individuals will more than double to over 5 million.  A layer of cells in the back of the eye called the retinal pigment epithelium (RPE) provide support to photoreceptors (PRs), specialized cells that play an important role in our ability to process images.  The dysfunction and/or loss of RPE cells plays a critical role in the loss of PRs and hence the vision problems observed in AMD.  One form of AMD is known as dry AMD (dAMD) and accounts for about 90% of all AMD cases.

The approach that Dr. Humayun is developing will use a biologic product produced by human embryonic stem cells (hESCs). This material will be injected into the eye of patients with early development of dAMD, supporting the survival of photoreceptors in the affected retina.

TRAN1 – 11579

Illustration depicting the role neuronal relays play in muscle sensation

$6.23 million was awarded to Dr. Mark Tuszynski at UCSD to develop a neural stem cell therapy for spinal cord injury (SCI).

According to data from the National Spinal Cord Injury Statistical Center, as of 2018, SCI affects an estimated 288,000 people in the United States alone, with about 17,700 new cases each year. There are currently no effective therapies for SCI. Many people suffer SCI in early adulthood, leading to life-long disability and suffering, extensive treatment needs and extremely high lifetime costs of health care.

The approach that Dr. Tuszynski is developing will use hESCs to create neural stem cells (NSCs).  These newly created NSCs would then be grafted at the site of injury of those with SCI.  In preclinical studies, the NSCs have been shown to support the formation of neuronal relays at the site of SCI.  The neuronal relays allow the sensory neurons in the brain to communicate with the motor neurons in the spinal cord to re-establish muscle control and movement.

TRAN1 – 11548

Graphic depicting the challenges of traumatic brain injury (TBI)

$4.83 million was awarded to Dr. Brian Cummings at UC Irvine to develop a neural stem cell therapy for traumatic brain injury (TBI).

TBI is caused by a bump, blow, or jolt to the head that disrupts the normal function of the brain, resulting in emotional, mental, movement, and memory problems. There are 1.7 million people in the United States experiencing a TBI that leads to hospitalization each year. Since there are no effective treatments, TBI is one of the most critical unmet medical needs based on the total number of those affected and on a cost basis.

The approach that Dr. Cummings is developing will also use hESCs to create NSCs.  These newly created NSCs would be integrated with injured tissue in patients and have the ability to turn into the three main cell types in the brain; neurons, astrocytes, and oligodendrocytes.  This would allow for TBI patients to potentially see improvements in issues related to memory, movement, and anxiety, increasing independence and lessening patient care needs.

TRAN1 – 11628

Illustration depicting the brain damage that occurs under hypoxic-ischemic conditions

$4.96 million was awarded to Dr. Evan Snyder at Sanford Burnham Prebys to develop a neural stem cell therapy for perinatal hypoxic-ischemic brain injury (HII).

HII occurs when there is a lack of oxygen flow to the brain.  A newborn infant’s body can compensate for brief periods of depleted oxygen, but if this lasts too long, brain tissue is destroyed, which can cause many issues such as developmental delay and motor impairment.  Current treatment for this condition is whole-body hypothermia (HT), which consists of significantly reducing body temperature to interrupt brain injury.  However, this is not very effective in severe cases of HII. 

The approach that Dr. Snyder is developing will use an established neural stem cell (NSC) line.   These NSCs would be injected and potentially used alongside HT treatment to increase protection from brain injury.

Stem Cell Roundup: Rainbow Sherbet Fruit Fly Brains, a CRISPR/iPSC Mash-up and more

This week’s Round Up is all about the brain with some CRISPR and iPSCs sprinkled in:

Our Cool Stem Cell Image of the Week comes from Columbia University’s Zuckerman Institute:

Mann-SC-Hero-01-19-18

(Credit: Jon Enriquez/Mann Lab/Columbia’s Zuckerman Institute).

This rainbow sherbet-colored scientific art is a microscopy image of a fruit fly nervous system in which brain cells were randomly labeled with different colors. It was a figure in a Neuron study published this week showing how cells derived from the same stem cells can go down very different developmental paths but then later are “reunited” to carry out key functions, such as in this case, the nervous system control of leg movements.


A new therapeutic avenue for Parkinson’s diseaseBuck Institute

Many animal models of Parkinson’s disease are created by mutating specific genes to cause symptoms that mimic this incurable, neurodegenerative disorder. But, by far, most cases of Parkinson’s are idiopathic, a fancy term for spontaneous with no known genetic cause. So, researchers at the Buck Institute took another approach: they generated a mouse model of Parkinson’s disease using the pesticide, paraquat, exposure to which is known to increase the risk of the idiopathic form of Parkinson’s.

Their CIRM-funded study in Cell Reports showed that exposure to paraquat leads to cell senescence – in which cells shut down and stop dividing – particularly in astrocytes, brain cells that support the function of nerve cells. Ridding the mice of these astrocytes relieved some of the Parkinson’s like symptoms. What makes these results so intriguing is the team’s analysis of post-mortem brains from Parkinson’s patients also showed the hallmarks of increased senescence in astrocytes. Perhaps, therapeutic approaches that can remove senescent cells may yield novel Parkinson’s treatments.


Discovery may advance neural stem cell treatments for brain disordersSanford-Burnham Prebys Medical Discovery Institute (via Eureka Alert)

Another CIRM-funded study published this week in Nature Neuroscience may also help pave the way to new treatment strategies for neurologic disorders like Parkinson’s disease. A team at Sanford Burnham Prebys Medical Discovery Institute (SBP) discovered a novel gene regulation system that brain stem cells use to maintain their ability to self-renew.

The study centers around messenger RNA, a molecular courier that transcribes a gene’s DNA code and carries it off to be translated into a protein. The team found that the removal of a chemical tag on mRNA inside mouse brain stem cells caused them to lose their stem cell properties. Instead, too many cells specialized into mature brain cells leading to abnormal brain development in animal studies. Team lead Jing Crystal Zhao, explained how this finding is important for future therapeutic development:

CrystalZhao_headshot

Crystal Zhao

“As NSCs are increasingly explored as a cell replacement therapy for neurological disorders, understanding the basic biology of NSCs–including how they self-renew–is essential to harnessing control of their in vivo functions in the brain.”


Researchers Create First Stem Cells Using CRISPR Genome ActivationThe Gladstone Institutes

Our regular readers are most likely familiar with both CRISPR gene editing and induced pluripotent stem cell (iPSC) technologies. But, in case you missed it late last week, a Cell Stem Cell study out of Sheng Ding’s lab at the Gladstone Institutes, for the first time, combined the two by using CRISPR to make iPSCs. The study got a lot of attention including a review by Paul Knoepfler in his blog The Niche. Check it out for more details!

 

Stanford scientists are growing brain stem cells in bulk using 3D hydrogels

This blog is the final installment in our #MonthofCIRM series. Be sure to check out our other blogs highlighting important advances in CIRM-funded research and initiatives.

Neural stem cells from the brain have promising potential as cell-based therapies for treating neurological disorders such as Alzheimer’s disease, Parkinson’s, and spinal cord injury. A limiting factor preventing these brain stem cells from reaching the clinic is quantity. Scientists have a difficult time growing large populations of brain stem cells in an efficient, cost-effective manner while also maintaining the cells in a stem cell state (a condition referred to as “stemness”).

CIRM-funded scientists from Stanford University are working on a solution to this problem. Dr. Sarah Heilshorn, an associate professor of Materials Science and Engineering at Stanford, and her team are engineering 3D hydrogel technologies to make it easier and cheaper to expand high-quality neural stem cells (NSCs) for clinical applications. Their research was published yesterday in the journal Nature Materials.

Stem Cells in 3D

Similar to how moviegoers prefer to watch the latest Star Wars installment in 3D, compared to the regular screen, scientists are turning to 3D materials called hydrogels to grow large numbers of stem cells. Such an environment offers more space for the stem cells to proliferate and expand their numbers while keeping them happy in their stem cell state.

To find the ideal conditions to grow NSCs in 3D, Heilshorn’s team tested two important properties of hydrogels: stiffness and degradability (or how easy it is to remodel the structure of the hydrogel material). They designed a range of hydrogels, made from proteins with elastic qualities, that varied in these two properties. Interestingly, they found that the stiffness of the material did not have a profound effect on the “stemness” of NSCs. This result contrasts with other types of adult stem cells like muscle stem cells, which quickly differentiate into mature muscle cells when exposed to stiffer materials.

On the other hand, the researchers found that it was crucial for the NSCs to be able to remodel their 3D environment. NSCs maintained their stemness by secreting enzymes that broke down and rearranged the molecules in the hydrogels. If this enzymatic activity was blocked, or if the cells were grown in hydrogels that couldn’t be remodeled easily, NSCs lost their stemness and stopped proliferating. The team tested two other hydrogel materials and found the same results. As long as the NSCs were in a 3D environment they could remodel, they were able to maintain their stemness.

NSCs maintain their stemness in hydrogels that can be remodeled easily. Nestin (green) and Sox2 (red) are markers that indicate “high-quality” NSCs. (Image courtesy of Chris Madl, Stanford)

Caption: NSCs maintain their stemness in hydrogels that can be remodeled easily. Nestin (green) and Sox2 (red) are markers that indicate “high-quality” NSCs. (Images courtesy of Chris Madl)

Christopher Madl, a PhD student in the Heilshorn lab and the first author on the study, explained how remodeling their 3D environment allows NSCs to grow robustly in an interview with the Stem Cellar:

Chris Madl

“In this study, we identified that the ability of the neural stem cells to dynamically remodel the material was critical to maintaining the correct stem cell state. Being able to remodel (or rearrange) the material permitted the cells to contact each other.  This cell-cell contact is responsible for maintaining signals that allow the stem cells to stay in a stem-like state. Our findings allow expansion of neural stem cells from relatively low-density cultures (aiding scale-up) without the use of expensive chemicals that would otherwise be required to maintain the correct stem cell behavior (potentially decreasing cost).”

To 3D and Beyond

When asked what’s next on the research horizon, Heilshorn said two things:

Sarah Heilshorn

“First, we want to see if other stem cell types – for example, pluripotent stem cells – are also sensitive to the “remodel-ability” of materials. Second, we plan to use our discovery to create a low-cost, reproducible material for efficient expansion of stem cells for clinical applications. In particular, we’d like to explore the use of a single material platform that is injectable, so that the same material could be used to expand the stem cells and then transplant them.”

Heilshorn is planning to apply the latter idea to advance another study that her team is currently working on. The research, which is funded by a CIRM Tools and Technologies grant, aims to develop injectable hydrogels containing NSCs derived from human induced pluripotent stem cells to treat mice, and hopefully one day humans, with spinal cord injury. Heilshorn explained,

“In our CIRM-funded studies, we learned a lot about how neural stem cells interact with materials. This lead us to realize that there’s another critical bottleneck that occurs even before the stage of transplantation: being able to generate a large enough number of high-quality stem cells for transplantation. We are developing materials to improve the transplantation of stem cell-derived therapies to patients with spinal cord injuries. Unfortunately, during the transplantation process, a lot of cells can get damaged. We are now creating injectable materials that prevent this cell damage during transplantation and improve the survival and engraftment of NSCs.”

An injectable material that promotes the expansion of large populations of clinical grade stem cells that can also differentiate into mature cells is highly desired by scientists pursuing the development of cell replacement therapies. Heilshorn and her team at Stanford have made significant progress on this front and are hoping that in time, this technology will prove effective enough to reach the clinic.

Extra dose of patience needed for spinal cord injury stem cell therapies, rat study suggests

2017 has been an exciting year for Asterias Biotherapeutics’ clinical trial which is testing a stem cell-based therapy for spinal cord injury. We’ve written several stories about patients who have made remarkable recoveries after participating in the trial (here and here).

But that doesn’t mean researchers at other companies or institutes who are also investigating spinal cord injury will be closing up shop. There’s still a long way to go with the Asterias trial and there’s still a lot to be learned about the cellular and molecular mechanisms of spinal cord injury repair, which could lead to alternative options for victims. Continued studies will also provide insights on optimizing the methods and data collection used in future clinical trials.

Human neuronal stem cells extend axons (green) three months after transplantation in rat model of spinal cord injury. Image: UCSD

In fact, this week a team of UC San Diego scientists report in the Journal of Clinical Investigation that, based on brain stem cell transplant studies in a rat model of spinal cord injury, recovery continues long after the cell therapy is injected. These findings suggest that collecting clinical trial data too soon may give researchers the false impression that their therapy is not working as well as they had hoped.

In this study, funded in part by CIRM, the researchers examined brain stem cells – or neural stem cells, in lab lingo – that were derived from human embryonic stem cells. These neural stem cells (NSCs) aren’t fully matured and give rise to nerve cells as well as support cells called glia. Previous studies have shown that when NSCs are transplanted into rodent models of spinal cord injury, the cells mature into nerve cells, make connections with nerves within the animal and can help restore some limb movement.

But the timeline for the maturation of the NSCs after transplantation into the injury site wasn’t clear because most studies only measured recovery for a few weeks or months. To get a clearer picture, the UCSD team analyzed the fate and impact of human NSCs in adult rats with spinal cord injury from 1 month to 1.5 years – the longest time such an experiment has been carried out so far. The results confirmed that the transplanted NSCs did indeed survive through the 18-month time point and led to recovery of movement in the animals’ limbs.

To their surprise, the researchers found that the NSCs continued to mature and some cell types didn’t fully specialize until 6 months or even 12 months after the transplantation. This timeline suggests that although the human cells are placed into the hostile environment of an injury site in an animal model, they still follow a maturation process seen during human development.

The researchers also focused on the fate of the nerve cells’ axons, the long, thin projections that relay nerve signals and make connections with other nerve cells. Just as is seen with normal human development, these axons were very abundant early in the experiment but over several months they went through a pruning process that’s critical for healthy nerve function.

Altogether, these studies provide evidence that waiting for the clinical trial results of stem cell-based spinal cord injury therapies will require an extra dose of patience. Team lead, Dr. Mark Tuszynski, director of the UC San Diego Translational Neuroscience Institute, summed it up this way in a press release:

Mark Tuszynski, UCSD

“The bottom line is that clinical outcome measures for future trials need to be focused on long time points after grafting. Reliance on short time points for primary outcome measures may produce misleadingly negative interpretation of results. We need to take into account the prolonged developmental biology of neural stem cells. Success, it would seem, will take time.”

Harnessing DNA as a programmable instruction kit for stem cell function

DNA is the fundamental molecule to all living things. The genetic sequences embedded in its double-helical structure contain the instructions for producing proteins, the building blocks of our cells. When our cells divide, DNA readily unzips into two strands and makes a copy of itself for each new daughter cell. In a Nature Communications report this week, researchers at Northwestern University describe how they have harnessed DNA’s elegant design, which evolved over a billion years ago, to engineer a programmable set of on/off instructions to mimic the dynamic interactions that cells encounter in the body. This nano-sized toolkit could provide a means to better understand stem cell behavior and to develop regenerative therapies to treat a wide range of disorders.

Stupp

Instructing cells with programmable DNA-protein hybrids: switching bioactivity on and off Image: Stupp lab/Northwestern U.

While cells are what make up the tissues and organs of our bodies, it’s a bit more complicated than that. Cells also secrete proteins and molecules that form a scaffold between cells called the extracellular matrix. Though it was once thought to be merely structural, it’s clear that the matrix also plays a key role in regulating cell function. It provides a means to position multiple cell signaling molecules in just the right spot at the right time to stimulate a particular cell behavior as well as interactions between cells. This physical connection between the matrix, molecules and cells called a “niche” plays an important role for stem cell function.

Since studying cells in the laboratory involves growing them on plastic petri dishes, researchers have devised many methods for mimicking the niche to get a more accurate picture of how cells response to signals in the body. The tricky part has been to capture three main characteristics of the extracellular matrix all in one experiment; that is, the ability to add and then reverse a signal, to precisely position cell signals and to combine signals to manipulate cell function. That’s where the Northwestern team and its DNA toolkit come into the picture.

They first immobilized a single strand of DNA onto the surface of a material where cells are grown. Then they added a hybrid molecule – they call it “P-DNA” – made up of a particular signaling protein attached to a single strand of DNA that pairs with the immobilized DNA. Once those DNA strands zip together, that tethers the signaling protein to the material where the cells encounter it, effectively “switching on” that protein signal. Adding an excess of single-stranded DNA that doesn’t contain the attached protein, pushes out the P-DNA which can be washed away thereby switching off the protein signal. Then the P-DNA can be added back to restart the signal once again.

Because the DNA sequences can be easily synthesized in the lab, it allows the researchers to program many different instructions to the cells. For instance, combinations of different protein signals can be turned on simultaneously and the length of the DNA strands can precisely control the positioning of cell-protein interactions. The researchers used this system to show that spinal cord neural stem cells, which naturally clump together in neurospheres when grown in a dish, can be instructed to spread out on the dish’s surface and begin specializing into mature brain cells. But when that signal is turned off, the cells ball up together again into the neurospheres.

Team lead Samuel Stupp looks to this reversible, on-demand control of cell activity as means to develop patient specific therapies in the future:

stupp-samuel

Samuel Stupp

“People would love to have cell therapies that utilize stem cells derived from their own bodies to regenerate tissue. In principle, this will eventually be possible, but one needs procedures that are effective at expanding and differentiating cells in order to do so. Our technology does that,” he said in a university press release.

 

 

Making brain stem cells act more like salmon than bloodhounds

Like salmon swimming against a river current, brain stem cells can travel against their normal migration stream with the help of electrical stimuli, so says CIRM-funded research published this week in Stem Cell Reports. The research, carried out by a team of UC Davis scientists, could one day provide a means for guiding brain stem cells, or neural stem cells (NSCs), to sites of disease or injury in the brain.

Min_SCR full

Human neural stem cells (green) guided by electrical stimulation migrated to and colonized the subventricular zone of rats’ brains. This image was taken three weeks after stimulation. Image: Jun-Feng Feng/UC DAVIS, Sacramento and Ren Ji Hospital, Shanghai.

NSCs are a key ingredient in the development of therapies that aim to repair damaged areas of the brain. Given the incredibly intricate structure of nerve connections, targeting these stem cells to their intended location is a big challenge for therapy development. One obstacle is mobility. Although resident NSCs can travel long distances within the brain, the navigation abilities of transplanted NSCs gets disrupted and becomes very limited.

In earlier work, the research team had shown that electrical currents could nudge NSCs to move in a petri dish (watch team lead Dr. Min Zhao describe this earlier work in the 30 second video below) so they wanted to see if this technique was possible within the brains of living rats. By nature, NSCs are more like bloodhounds than salmon, moving from one location to another by sensing an increasing gradient of chemicals within the brain. In this study, the researchers transplanted human NSCs in the middle of such a such gradient, called the rostral migration stream, that normally guides the cells to the olfactory bulb, the area responsible for our sense of smell.

Electrodes were implanted into the brains of the rats and an electrical current flowing in the opposite direction of the rostral migration stream was applied. This stimulus caused the NSCs to march in the direction of the electrical current. Even at three and four weeks after the stimulation, the altered movement of the NSCs continued. And there was indication that the cells were specializing into various types of brain cells, an important observation for any cell therapy meant to replace diseased cells.

The Scientist interviewed Dr. Alan Trounson, of the Hudson Institute of Australia, who was not involved in study, to get his take on the results:

“This is the first study I’ve seen where stimulation is done with electrodes in the brain and has been convincing about changing the natural flow of cells so they move in the opposite direction. The technique has strong possibilities for applications because the team has shown you can move cells, and you could potentially move them into seriously affected brain areas.”

Though it’s an intriguing proof-of-concept, much works remains to show this technique is plausible in the clinic. Toward that goal, the team has plans to repeat the studies in primates using a less invasive method that transmits the electrical signals through the skull.