Extra dose of patience needed for spinal cord injury stem cell therapies, rat study suggests

2017 has been an exciting year for Asterias Biotherapeutics’ clinical trial which is testing a stem cell-based therapy for spinal cord injury. We’ve written several stories about patients who have made remarkable recoveries after participating in the trial (here and here).

But that doesn’t mean researchers at other companies or institutes who are also investigating spinal cord injury will be closing up shop. There’s still a long way to go with the Asterias trial and there’s still a lot to be learned about the cellular and molecular mechanisms of spinal cord injury repair, which could lead to alternative options for victims. Continued studies will also provide insights on optimizing the methods and data collection used in future clinical trials.

Human neuronal stem cells extend axons (green) three months after transplantation in rat model of spinal cord injury. Image: UCSD

In fact, this week a team of UC San Diego scientists report in the Journal of Clinical Investigation that, based on brain stem cell transplant studies in a rat model of spinal cord injury, recovery continues long after the cell therapy is injected. These findings suggest that collecting clinical trial data too soon may give researchers the false impression that their therapy is not working as well as they had hoped.

In this study, funded in part by CIRM, the researchers examined brain stem cells – or neural stem cells, in lab lingo – that were derived from human embryonic stem cells. These neural stem cells (NSCs) aren’t fully matured and give rise to nerve cells as well as support cells called glia. Previous studies have shown that when NSCs are transplanted into rodent models of spinal cord injury, the cells mature into nerve cells, make connections with nerves within the animal and can help restore some limb movement.

But the timeline for the maturation of the NSCs after transplantation into the injury site wasn’t clear because most studies only measured recovery for a few weeks or months. To get a clearer picture, the UCSD team analyzed the fate and impact of human NSCs in adult rats with spinal cord injury from 1 month to 1.5 years – the longest time such an experiment has been carried out so far. The results confirmed that the transplanted NSCs did indeed survive through the 18-month time point and led to recovery of movement in the animals’ limbs.

To their surprise, the researchers found that the NSCs continued to mature and some cell types didn’t fully specialize until 6 months or even 12 months after the transplantation. This timeline suggests that although the human cells are placed into the hostile environment of an injury site in an animal model, they still follow a maturation process seen during human development.

The researchers also focused on the fate of the nerve cells’ axons, the long, thin projections that relay nerve signals and make connections with other nerve cells. Just as is seen with normal human development, these axons were very abundant early in the experiment but over several months they went through a pruning process that’s critical for healthy nerve function.

Altogether, these studies provide evidence that waiting for the clinical trial results of stem cell-based spinal cord injury therapies will require an extra dose of patience. Team lead, Dr. Mark Tuszynski, director of the UC San Diego Translational Neuroscience Institute, summed it up this way in a press release:

Mark Tuszynski, UCSD

“The bottom line is that clinical outcome measures for future trials need to be focused on long time points after grafting. Reliance on short time points for primary outcome measures may produce misleadingly negative interpretation of results. We need to take into account the prolonged developmental biology of neural stem cells. Success, it would seem, will take time.”

Advertisements

2 thoughts on “Extra dose of patience needed for spinal cord injury stem cell therapies, rat study suggests

    • Dear Carlos, certainly a cure for spinal cord injury can’t come soon enough for people like yourself whose quality of life has been dramatically affected by their injuries. One bright spot is a clinical trial being run by Asterias Biotherapeutics which is testing a stem cell based therapy for spinal cord injury. So far, their results have been very encouraging for restoring arm, hand and finger movement to participants who had become paralyzed from the neck down after their injuries. More testing is needed to ensure that the therapy is safe and effective enough to be available for wider use. You can learn more about the trial here: http://www.scistar-study.com/

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s