Targeted treatment for pediatric brain tumors shows promising results

Image of medulloblastoma

Imagine sitting in the doctor’s office and being told the heartbreaking news that your child has been diagnosed with a malignant brain tumor. As one might expect, the doctor states that the most effective treatment option is typically a combination of chemotherapy and radiation. However, the doctor reveals that there are additional risks to take into account that apply to children. Since children’s tiny bodies are still growing and developing, chemotherapy and radiation can cause long-term side effects such as intellectual disabilities. As a parent, it is painful enough to have to watch a child go through chemotherapy and radiation without adding permanent damage into the fold.

Sadly, this scenario is not unique. Medulloblastoma is the most prevalent form of a pediatric brain tumor with more than 350 children diagnosed with cancer each year. There are four distinct subtypes of medulloblastoma, with the deadliest being known as Group 3.

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) are trying to minimize the collateral damage by finding personalized treatments that reduce side effects while remaining effective. Scientists at SBP are working with an inhibitor known as LSD1 that specifically targets Group 3 medulloblastoma in a mouse model. The study, published in Nature Communications, showed that the drug dramatically decreased the size of tumors grown under the mouse’s skin by shrinking the cancer by more than 80 percent. This suggested that it could also be effective against patients’ tumors if it could be delivered to the brain. The LSD1 inhibitor has shown promise in clinical trials, where it has been tested for treating other types of cancer.

According to Robert Wechsler-Reya, Ph.D., senior author of the paper and director of the Tumor Initiation and Maintenance Program at SBP: “Our lab is working to understand the genetic pathways that drive medulloblastoma so we can find better ways to intervene and treat tumors. This study shows that a personalized treatment based upon a patient’s specific tumor type might be within our reach.”

Dr. Wechsler-Reya’s work on medulloblastoma was, in part, funded by the CIRM (LA1-01747) in the form of a Research Leadership Award for $5,226,049.

Deep dive into muscle repair yields new strategies to combat Duchenne muscular dystrophy

Researchers at the Sanford Burnham Prebys Medical Discovery Institute (SBP) reported new findings this week that may lead to novel therapeutic strategies for people suffering from Duchenne muscular dystrophy (DMD). DMD, a muscle-wasting disease that affects 1 in 7250 males aged 5 to 24 years in the United States, is caused by a genetic mutation leading to the lack of a protein called dystrophin. Without dystrophin, muscle cells become fragile and are easily damaged. Instead of self-repair, the muscles are replaced by scar tissue, a process called fibrosis that leads to muscle degeneration and wasting.

DMD_KhanAcademy

Dystrophin, a protein that maintains the structural integrity of muscle fibers, is missing in people with DMD. Image credit: Khan Academy

Boys with DMD first show signs of muscle weakness between ages 3-5 and often stop walking by the time they’re teenagers. Eventually the muscles critical for breathing and heart function stop working. Average life expectancy is 26 and there is no cure.

The SBP scientists are aiming to treat DMD by boosting muscle repair in affected individuals. But to do that, they sought to better understand how muscle regeneration works in the first place. In the current study, they focused their efforts on so-called fibro/adipogenic precursor (FAP) cells which, in response to acute injury, appear to play a role in stimulating muscle stem cells to divide and replace damaged muscle in healthy individuals. But FAPs are also implicated in the muscle wasting and scarring that’s seen in DMD.

By examining the gene activity of single FAP cells from mouse models of acute injury and DMD, the researchers identified a sub-population of FAP cells (sub-FAPs). Further study of these sub-FAPs showed that during early stages of muscle regeneration, these cells promote muscle stem cell activation but then at later stages, sub-FAPs – identified by a cell surface protein called Vcam1 – stimulate fibrosis. It turns out that during healthy acute muscle injury, the sub-FAPs with cell-surface Vcam1 protein are readily eaten up and removed by immune cells thereby avoiding muscle fibrosis. But in the DMD mouse model, removal of these sub-FAPs is impaired and instead collagen deposits and muscle fibrosis occur which are hallmarks of the progressive degeneration seen in DMD.

Barbora Malecova, Ph.D., a first author of the study, explained the implications of these results in a press release:

“This study elucidates the cellular and molecular pathogenesis of muscular dystrophy. These results indicate that removing or modulating the activity of Vcam1-positive sub-FAPs, which promote fibrosis, could be an effective treatment for DMD.”

The lab, led by Pier Lorenzo Puri, M.D., next will explore the possibility of finding drugs that target the Vcam1 sub-FAPs which in turn could help prevent fibrosis in DMD.

The study, funded in part by CIRM, appears in Nature Communications. CIRM is also funding a Phase 2 clinical trial testing a stem cell-based therapy that aims to improve the life-threatening heart muscle degeneration that occurs in DMD patients.

Stem Cell Roundup: Artificial Embryos to Study Miscarriage and ALS Insight – Muscle Repair Cells Go Rogue

Stem Cell Image of the Week: Artificial embryos for studying miscarriage (Adonica Shaw)

etxembryos

Mouse embryos artificially generated by combining three types of stem cells.
Image: University of Cambridge.

This week’s stem cell image of the week comes from a team of researchers from The University of Cambridge who published research in Nature Cell Biology earlier this week indicating they’d achieved a breakthrough in stem cell research that resulted in the generation of a key developmental step that’d never before been achieved when trying to generate an artificial embryo.

To create the artificial embryo, the scientists combined mouse embryonic stem cells with two other types of stem cells that are present in the very earliest stages of embryo development. The reseachers grew the three stem cell types into a dish and coaxed them into simulating a process called gastrulation – one of the very first events that happens during a creature’s development in which the early embryo begins reorganizing into more and more complex multilayer organ structures.

In an interview with The Next Web (TNW), Professor Magdalena Zernicka-Goetz, who led the research team, says:

”Our artificial embryos underwent the most important event in life in the culture dish. They are now extremely close to real embryos. To develop further, they would have to implant into the body of the mother or an artificial placenta.”

The goal of this research isn’t to create mice on demand. Its purpose is to gain insights into early life development. And that could lead to a giant leap in our understanding of what happens during the period in a woman’s pregnancy where the risk of miscarriage is highest.

According to professor Zernicka-Goetz,

magda3

Magdalena Zernicka-Goetz, PhD

“We can also now try to apply this to the equivalent human stem cell types and so study the very earliest events in human embryo development without actually having to use natural human embryos.The early stages of embryo development are when a large proportion of pregnancies are lost and yet it is a stage that we know very little about. Now we have a way of simulating embryonic development in the culture dish, so it should be possible to understand exactly what is going on during this remarkable period in an embryo’s life, and why sometimes this process fails.”

Muscle repair cells go rogue – a possible drug target for ALS?
Call it a case of a good cell gone bad. This week researchers at Sanford Burnham Prebys Medical Discovery Institute, report in Nature Cell Biology that fibro-adipogenic progenitors (FAPs) – cells that are critical in coordinating the repair of torn muscles – can turn rogue, causing muscles to wither and scar. This “Dr. Jekyl and Mr. Hype” discovery may lead to novel treatments for a number of incurable disorders like amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and spinal cord injury.

drjekyllmrhy

Senior author Pier Lorenzo Puri, M.D. (right) and co-first author Luca Madaro, Ph.D. Credit: Fondazione Santa Lucia IRCCS

When muscle is strained, whether due to an acute injury or even weight-lighting, a consistent order of events occurs within the muscle. FAB cells enter the muscle tissue after immune cells called macrophages come in and gobble up dead tissue but before muscle stem cells are stimulated to regenerate the lost muscle. However, to the researchers’ surprise, something entirely different happens in the case of neuromuscular disorders like ALS where nerve signal connections to the muscles degenerate.

Once nerves are no longer attached to muscle and stop sending movement signals from the brain, the macrophages don’t infiltrate the muscle and instead the FAPs pile up in the muscle and never leave. And as a result, muscle stem cells are never activated. In ALS patients, this cellular train crash leads to progressive loss of muscle control to move the limbs and ultimately even to breathe.

The promising news from these findings, which were funded in part by CIRM, is that the team identified of an out-of-whack cell signaling pathway that is responsible for the breakdown in the rogue function of the FAP cells. The researchers hope further studies of this pathway’s role in muscle degeneration may lead to novel therapies and disease-screening technologies for ALS and other motor neuron diseases.

Stem Cell Roundup: Rainbow Sherbet Fruit Fly Brains, a CRISPR/iPSC Mash-up and more

This week’s Round Up is all about the brain with some CRISPR and iPSCs sprinkled in:

Our Cool Stem Cell Image of the Week comes from Columbia University’s Zuckerman Institute:

Mann-SC-Hero-01-19-18

(Credit: Jon Enriquez/Mann Lab/Columbia’s Zuckerman Institute).

This rainbow sherbet-colored scientific art is a microscopy image of a fruit fly nervous system in which brain cells were randomly labeled with different colors. It was a figure in a Neuron study published this week showing how cells derived from the same stem cells can go down very different developmental paths but then later are “reunited” to carry out key functions, such as in this case, the nervous system control of leg movements.


A new therapeutic avenue for Parkinson’s diseaseBuck Institute

Many animal models of Parkinson’s disease are created by mutating specific genes to cause symptoms that mimic this incurable, neurodegenerative disorder. But, by far, most cases of Parkinson’s are idiopathic, a fancy term for spontaneous with no known genetic cause. So, researchers at the Buck Institute took another approach: they generated a mouse model of Parkinson’s disease using the pesticide, paraquat, exposure to which is known to increase the risk of the idiopathic form of Parkinson’s.

Their CIRM-funded study in Cell Reports showed that exposure to paraquat leads to cell senescence – in which cells shut down and stop dividing – particularly in astrocytes, brain cells that support the function of nerve cells. Ridding the mice of these astrocytes relieved some of the Parkinson’s like symptoms. What makes these results so intriguing is the team’s analysis of post-mortem brains from Parkinson’s patients also showed the hallmarks of increased senescence in astrocytes. Perhaps, therapeutic approaches that can remove senescent cells may yield novel Parkinson’s treatments.


Discovery may advance neural stem cell treatments for brain disordersSanford-Burnham Prebys Medical Discovery Institute (via Eureka Alert)

Another CIRM-funded study published this week in Nature Neuroscience may also help pave the way to new treatment strategies for neurologic disorders like Parkinson’s disease. A team at Sanford Burnham Prebys Medical Discovery Institute (SBP) discovered a novel gene regulation system that brain stem cells use to maintain their ability to self-renew.

The study centers around messenger RNA, a molecular courier that transcribes a gene’s DNA code and carries it off to be translated into a protein. The team found that the removal of a chemical tag on mRNA inside mouse brain stem cells caused them to lose their stem cell properties. Instead, too many cells specialized into mature brain cells leading to abnormal brain development in animal studies. Team lead Jing Crystal Zhao, explained how this finding is important for future therapeutic development:

CrystalZhao_headshot

Crystal Zhao

“As NSCs are increasingly explored as a cell replacement therapy for neurological disorders, understanding the basic biology of NSCs–including how they self-renew–is essential to harnessing control of their in vivo functions in the brain.”


Researchers Create First Stem Cells Using CRISPR Genome ActivationThe Gladstone Institutes

Our regular readers are most likely familiar with both CRISPR gene editing and induced pluripotent stem cell (iPSC) technologies. But, in case you missed it late last week, a Cell Stem Cell study out of Sheng Ding’s lab at the Gladstone Institutes, for the first time, combined the two by using CRISPR to make iPSCs. The study got a lot of attention including a review by Paul Knoepfler in his blog The Niche. Check it out for more details!

 

Stem Cell Stories that Caught Our Eye: GPS for Skin & Different Therapies for Aging vs. Injured Muscles?

Skin stem cells specialize into new skin by sensing neighborhood crowding
When embarking on a road trip, the GPS technology inside our smartphones helps us know where we are and how to get where we’re going. The stem cells buried in the deepest layers of our skin don’t have a GPS and yet, they do just fine determining their location, finding their correct destination and becoming the appropriate type of skin cell. And as a single organ, all the skin covering your body maintains the right density and just the right balance of skin stem cells versus mature skin cells as we grow from a newborn into adult.

crowdinginth

Skin cells growing in a petri dish (green: cytoskeleton, red: cell-cell junction protein).
Credit: MPI for Biology of Aging

This easily overlooked but amazing feat is accomplished as skin cells are continually born and die about every 30 days over your lifetime. How does this happen? It’s an important question to answer considering the skin is our first line of defense against germs, toxins and other harmful substances.

This week, researchers at the Max Planck Institute for Biology of Aging in Cologne, Germany reported a new insight into this poorly understood topic. The team showed that it all comes down to the skin cells sensing the level of crowding in their local environment. As skin stem cells divide, it puts the squeeze on neighboring stem cells. This physical change in tension on these cells “next door” triggers signals that cause them to move upward toward the skin surface and to begin maturing into skin cells.

Lead author Yekaterina Miroshnikova explained in a press release the beauty of this mechanism:

“The fact that cells sense what their neighbors are doing and do the exact opposite provides a very efficient and simple way to maintain tissue size, architecture and function.”

The research was picked up by Phys.Org on Tuesday and was published in Nature Cell Biology.

Stem cells respond differently to aging vs. injured muscle
From aging skin, we now move on to our aging and injured muscles, two topics I know oh too well as a late-to-the-game runner. Researchers at the Sanford Burnham Prebys Medical Discovery Institute (SBP) in La Jolla report a surprising discovery that muscle stem cells respond differently to aging versus injury. This important new insight could help guide future therapeutic strategies for repairing muscle injuries or disorders.

muscle stem cell

Muscle stem cell (pink with green outline) sits along a muscle fiber.
Image: Michael Rudnicki/OIRM

Muscle stem cells, also called satellite cells, make a small, dormant population of cells in muscle tissue that springs to life when muscle is in need of repair. It turns out that these stem cells are not identical clones of each other but instead are a diverse pool of cells.  To understand how the assortment of muscle stem cells might respond differently to the normal wear and tear of aging, versus damage due to injury or disease, the research team used a technology that tracks the fate of individual muscle stem cells within living mice.

The analysis showed a clear but unexpected result. In aging muscle, the muscle stem cells maintained their diversity but their ability to divide and grow declined. However, the opposite result was observed in injured muscle: the muscle stem cell diversity became limited but the capacity to divide was not affected. In a press release, team leader Alessandra Sacco explains the implications of these findings for therapy development:

sacco

Alessandra Sacco, PhD

“This study has shown clear-cut differences in the dynamics of muscle stem cell pools during the aging process compared to a sudden injury. This means that there probably isn’t a ‘one size fits all’ approach to prevent the decline of muscle stem cells. Therapeutic strategies to maintain muscle mass and strength in seniors will most likely need to differ from those for patients with degenerative diseases.”

This report was picked up yesterday by Eureka Alert and published in Cell Stem Cell.

Stem cell stories that caught our eye: update on Capricor’s heart attack trial; lithium on the brain; and how stem cells do math

Capricor ALLSTARToday our partners Capricor Therapeutics announced that its stem cell therapy for patients who have experienced a large heart attack is unlikely to meet one of its key goals, namely reducing the scar size in the heart 12 months after treatment.

The news came after analyzing results from patients at the halfway point of the trial, six months after their treatment in the Phase 2 ALLSTAR clinical trial which CIRM was funding. They found that there was no significant difference in the reduction in scarring on the heart for patients treated with donor heart-derived stem cells, compared to patients given a placebo.

Obviously this is disappointing news for everyone involved, but we know that not all clinical trials are going to be successful. CIRM supported this research because it clearly addressed an unmet medical need and because an earlier Phase 1 study had showed promise in helping prevent decline in heart function after a heart attack.

Yet even with this failure to repeat that promise in this trial,  we learned valuable lessons.

In a news release, Dr. Tim Henry, Director of the Division of Interventional Technologies in the Heart Institute at Cedars-Sinai Medical Center and a Co-Principal Investigator on the trial said:

“We are encouraged to see reductions in left ventricular volume measures in the CAP-1002 treated patients, an important indicator of reverse remodeling of the heart. These findings support the biological activity of CAP-1002.”

Capricor still has a clinical trial using CAP-1002 to treat boys and young men developing heart failure due to Duchenne Muscular Dystrophy (DMD).

Lithium gives up its mood stabilizing secrets

As far back as the late 1800s, doctors have recognized that lithium can help people with mood disorders. For decades, this inexpensive drug has been an effective first line of treatment for bipolar disorder, a condition that causes extreme mood swings. And yet, scientists have never had a good handle on how it works. That is, until this week.

evan snyder

Evan Snyder

Reporting in the Proceedings of the National Academy of Sciences (PNAS), a research team at Sanford Burnham Prebys Medical Discovery Institute have identified the molecular basis of the lithium’s benefit to bipolar patients.  Team lead Dr. Evan Snyder explained in a press release why his group’s discovery is so important for patients:

“Lithium has been used to treat bipolar disorder for generations, but up until now our lack of knowledge about why the therapy does or does not work for a particular patient led to unnecessary dosing and delayed finding an effective treatment. Further, its side effects are intolerable for many patients, limiting its use and creating an urgent need for more targeted drugs with minimal risks.”

The study, funded in part by CIRM, attempted to understand lithium’s beneficial effects by comparing cells from patient who respond to those who don’t (only about a third of patients are responders). Induced pluripotent stem cells (iPSCs) were generated from both groups of patients and then the cells were specialized into nerve cells that play a role in bipolar disorder. The team took an unbiased approach by looking for differences in proteins between the two sets of cells.

The team zeroed in on a protein called CRMP2 that was much less functional in the cells from the lithium-responsive patients. When lithium was added to these cells the disruption in CRMP2’s activity was fixed. Now that the team has identified the molecular location of lithium’s effects, they can now search for new drugs that do the same thing more effectively and with fewer side effects.

The stem cell: a biological calculator?

math

Can stem cells do math?

Stem cells are pretty amazing critters but can they do math? The answer appears to be yes according to a fascinating study published this week in PNAS Proceedings of the National Academy of Sciences.

Stem cells, like all cells, process information from the outside through different receptors that stick out from the cells’ outer membranes like a satellite TV dish. Protein growth factors bind those receptors which trigger a domino effect of protein activity inside the cell, called cell signaling, that transfers the initial receptor signal from one protein to another. Ultimately that cascade leads to the accumulation of specific proteins in the nucleus where they either turn on or off specific genes.

Intuition would tell you that the amount of gene activity in response to the cell signaling should correspond to the amount of protein that gets into the nucleus. And that’s been the prevailing view of scientists. But the current study by a Caltech research team debunks this idea. Using real-time video microscopy filming, the team captured cell signaling in individual cells; in this case they used an immature muscle cell called a myoblast.

goentoro20170508

Behavior of cells over time after they have received a Tgf-beta signal. The brightness of the nuclei (circled in red) indicates how much Smad protein is present. This brightness varies from cell to cell, but the ratio of brightness after the signal to before the signal is about the same. Image: Goentoro lab, CalTech.

To their surprise the same amount of growth factor given to different myoblasts cells led to the accumulation of very different amounts of a protein called Smad3 in the cells’ nuclei, as much as a 40-fold difference across the cells. But after some number crunching, they discovered that dividing the amount of Smad3 after growth factor stimulation by the Smad3 amount before growth stimulation was similar in all the cells.

As team lead Dr. Lea Goentoro mentions in a press release, this result has some very important implications for studying human disease:

“Prior to this work, researchers trying to characterize the properties of a tumor might take a slice from it and measure the total amount of Smad in cells. Our results show that to understand these cells one must instead measure the change in Smad over time.”

Unlocking the secrets of how stem cells decide what kind of cell they’re going to be

Laszlo Nagy, Ph.D., M.D.

Laszlo Nagy, Ph.D., M.D.: Sanford Burnham Prebys Medical Discovery Institute

Before joining CIRM I thought OCT4 was a date on the calendar. But a new study says it may be a lot closer to a date with destiny, because this study says OCT4 helps determine what kinds of cell a stem cell will become.

Now, before we go any further I should explain for people who have as strong a science background as I do – namely none – that OCT4 is a transcription factor, this is a protein that helps regulate gene activity by turning certain genes on at certain points, and off at others.

The new study, by researches at Sanford Burnham Prebys Medical Discovery Institute (SBP), found that OCT4 plays a critical role in priming genes that cause stem cells to differentiate or change into other kinds of cells.

Why is this important? Well, as we search for new ways of treating a wide variety of different diseases we need to find the most efficient and effective way of turning stem cells into the kind of cells we need to regenerate or replace damaged tissue. By understanding the mechanisms that determine how a stem cell differentiates, we can better understand what we need to do in the lab to generate the specific kinds of cells needed to replace those damaged by, say, heart disease or cancer.

The study, published in the journal Molecular Cell, shows how OCT4 works with other transcription factors, sometimes directing a cell to go in one direction, sometimes in another. For example, it collaborates with a vitamin A (aka retinoic acid) receptor (RAR) to convert a stem cell into a neuronal precursor, a kind of early stage brain cell. However, if OCT4 interacts with another transcription factor called beta-catenin then the stem cell goes in another regulatory direction altogether.

In an interview with PhysOrg News, senior author Laszlo Nagy said this finding could help develop more effective methods for producing specific cell types to be used in therapies:

“Our findings suggest a general principle for how the same differentiation signal induces distinct transitions in various types of cells. Whereas in stem cells, OCT4 recruits the RAR to neuronal genes, in bone marrow cells, another transcription factor would recruit RAR to genes for the granulocyte program. Which factors determine the effects of differentiation signals in bone marrow cells – and other cell types – remains to be determined.”

In a way it’s like programming all the different devices that are attached to your TV at home. If you hit a certain combination of buttons you get to one set of stations, hit another combination and you get to Netflix. Same basic set up, but completely different destinations.

“In a sense, we’ve found the code for stem cells that links the input—signals like vitamin A and Wnt—to the output—cell type. Now we plan to explore whether other transcription factors behave similarly to OCT4—that is, to find the code in more mature cell types.”

 

 

CIRM scholar Ke Wei talks heart regeneration

Ke Wei

Ke Wei

“How do you mend a broken heart?” was the topic of one of our recent Stem Cellar blogs highlighting a stellar CIRM-funded publication on the regenerative abilities of the protein FSTL1 following heart injury. One of the master-minds behind this study is co-first author Ke Wei. Ke is a postdoc in Dr. Mark Mercola’s lab at the Sanford Burnham Prebys Medical Discovery Institute located in balmy southern California. He also happens to be one of our prized CIRM scholars.

KeWeipatch

Cross sections of a healthy (control) or injured mouse heart. Injured hearts treated with patches containing FSTL1 show the most recovery of healthy heart tissue (red). Image adapted from Wei et al. 2015)

Upon hearing of Ke’s important and exciting accomplishments in the field of regenerative medicine for heart disease, we called him up to learn more about his scientific accomplishments and aspirations.

Q: Tell us about your research background and how you got into this field?

KW: I went to UCLA for my graduate school PhD, and I studied under Dr. Fabian Chen focusing on heart development. At that time, I mainly worked on very early heart development and other tissues like smooth muscle cells. For my graduate thesis work, I found that particular genes were important for smooth muscle development.

So I was trained as a heart developmental biologist, but after my PhD, I came to the Burnham Institute and I joined two labs: Dr. Mark Mercola and Dr. Pilar Ruiz-Lozano. They co-mentored me for the first couple of years of my postdoc. Mark is interested in using stem cells and high throughput screens to identify pharmaceutical compounds for inducing heart regeneration and treating heart diseases. Pilar is interested in the epicardium, the outer layer of the heart, which is known to play important roles during heart development. When I joined their labs, they had combined forces to study how the epicardium affects heart development and heart diseases.

In their labs, I used my developmental biologist background to combine in vitro stem cells based screening studies (Mark) and in vivo mouse embryonic heart development studies (Pilar) to dissect the function of the epicardium on heart development and disease.

Q: Tell us about your experience as a CIRM scholar and what you were able to accomplish.

KW: My two years of CIRM fellowship were separated but my focus was the same for both CIRM-funded periods: to understand the effect of the epicardium on heart development and diseases.

In my first project in 2008, we tried to generate an in vitro model of mouse epicardial cells and used those cells to study their influence on cardiac differentiation using both in vitro and in vivo experiments. We ran into a lot of technical difficulties, so at that time, we decided to switch to using existing in vitro epicardial cell lines, and using those to study their influence on cardiomyocytes (heart muscle cells).

In my second year of CIRM funding in 2011, we identified the genes and proteins that can promote immature cardiomyocytes to proliferate, and put them in vivo and it worked. So the success of our publication all started from my second year of CIRM-fellowship.

Q: What benefits did you experience as a CIRM scholar?

KW: I’ve really enjoyed being a CIRM scholar and took advantage of the resources they provided me over the years. One of the benefits I enjoyed the most was attending the CIRM annual meetings and retreats. I was able to talk with a lot of scientists with different backgrounds, and that really expanded my horizons.

As you can see from our paper in Nature, it’s definitely not only a developmental biologist paper. It’s actually very clinical and collaborative, and it was done by many different groups working together. By going to CIRM conferences and meeting all the other CIRM fellows, I got a lot of new ideas, and those ideas encouraged me to collaborate with more scientists. These events really encouraged me to look beyond the thoughts of a developmental biologist.

Our paper is co-authored by me and Vahid Serpooshan from Stanford. We co-first authored this paper, and my work mainly involved the in vitro studies that identified the regenerative proteins and their function in heart injury. Vahid’s approach was more bioengineering focused. He produced the FSTL1 patch, put it in the rodent heart, and conducted all the other in vivo studies. It was a perfect collaboration to push this project for publication in a high level journal like Nature.

Q: What is the big picture of your research and your future goals?

KW: I plan to stay in academia. The key thing about heart diseases is that heart regeneration is very limited. Using our approach, we found one particular protein that’s important to the regenerative process, and in reality, its concentration is very low in the heart when it’s infarcted (injured). I think we have set up a pretty good system to test all possible therapeutic means in the lab, including proteins from the epicardium, small molecules, microRNAs and other compounds to activate cardiomyocyte proliferation. I plan to focus on understanding the mechanisms for why cardiomyocytes stop proliferating in the adult heart, and what new approaches we can pursue to promote their expansion and regenerative abilities. The FSTL1 story is the start of this, and I will try to find new factors that can promote heart regeneration.

Q: Will your work involve human stem cell models?

KW: To make this study clinically relevant, we included the swine models. We are definitely testing FSTL1 in human cells right now. Currently we can produce a huge amount of the human cardiomyocytes. They seem to be at a different stage than rodent cells so we are optimizing the system to perform screens for human cell proliferation. When that system is set up, then anything that comes out of the screen will be much more relevant to clinical studies in humans.

Q: What is your favorite thing about being a scientist?

Knowing that the information I acquire through experiments is new to mankind, and that my actions expand the horizon of combined human knowledge, even just for a tiny bit, is a huge satisfaction to me as a scientist.