New approach could help turn back the clock and reverse damage for stroke patients

stroke

Stroke: courtesy WebMD

Stroke is the leading cause of serious, long-term disability in the US. Every year almost 800,000 people suffer from a stroke. The impact on their lives, and the lives of those around them can be devastating.

Right now the only treatment approved by the US Food and Drug Administration (FDA) is tissue plasminogen activator or tPA. This helps dissolve the blood clot causing most strokes and restores blood flow to the brain. However, to be fully effective this has to be administered within about 3-4 hours after the stroke. Many people are unable to get to the hospital in time and as a result suffer long-term damage, damage that for most people has been permanent.

But now a new study in Nature Medicine shows that might not be the case, and that this damage could even be reversible.

The research, done by a team at the University of Southern California (USC) uses a one-two punch combination of stem cells and a protein that helps those cells turn into neurons, the cells in the brain damaged by a stroke.

First, the researchers induced a stroke in mice and then transplanted human neural stem cells alongside the damaged brain tissue. They then added in a dose of the protein 3K3A-APC or a placebo.

hey found that mice treated with 3K3A-APC had 16 times more human stem-cell derived neurons than the mice treated with the placebo. Those neurons weren’t just sitting around doing nothing. USC’s Berislav Zlokovic, senior author of the paper, says they were actively repairing the stroke-induced damage.

“We showed that 3K3A-APC helps the grafted stem cells convert into neurons and make structural and functional connections with the host’s nervous system. No one in the stroke field has ever shown this, so I believe this is going to be the gold standard for future studies. Functional deficits after five weeks of stroke were minimized, and the mice were almost back to normal in terms of motor and sensorimotor functions. Synapses formed between transplanted cells and host cells, so there is functional activation and cooperation of transplanted cells in the host circuitry.”

The researchers wanted to make sure the transplanted cell-3K3A-ACP combination was really the cause of the improvement in the mice so they then used what’s called an “assassin toxin” to kill the neurons they had created. That reversed the improvements in the treated mice, leaving them comparable to the untreated mice. All this suggests the neurons had become an integral part of the mouse’s brain.

So how might this benefit people? You may remember that earlier this summer Stanford researchers produced a paper showing they had helped some 18 stroke patients, by injecting stem cells from donor bone marrow into their brain. The improvements were significant, including in at least one case regaining the ability to walk. We blogged about that work here

In that study, however, the cells did not become neurons nor did they seem to remain in the brain for an extended period. It’s hoped this new work can build on that by giving researchers an additional tool, the 3K3A-ACP protein, to help the transplanted cells convert to neurons and become integrated into the brain.

One of the other advantages of using this protein is that it has already been approved by the FDA for use in people who have experienced an ischemic stroke, which accounts for about 87 percent of all strokes.

The USC team now hope to get approval from the FDA to see if they can replicate their experiences in mice in people, through a Phase 2 clinical trial.

 

 

 

 

 

 

 

Stem cell stories that caught our eye: a surprising benefit of fasting, faster way to make iPSCs, unlocking the secret of leukemia cancer cells

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Fasting

Is fasting the fountain of youth?

Among the many insults our bodies endure in old age is a weakened immune system which leaves the elderly more susceptible to infection. Chemotherapy patients also face the same predicament due to the immune suppressing effects of their toxic anticancer treatments. While many researchers aim to develop drugs or cell therapies to protect the immune system, a University of Southern California research report this week suggests an effective alternative intervention that’s startlingly straightforward: fasting for 72 hours.

The study published in Cell Stem Cell showed that cycles of prolonged fasting in older mice led to a decrease in white blood cells which in turn set off a regenerative burst of blood stem cells. This restart of the blood stem cells replenished the immune system with new white blood cells. In a pilot Phase 1 clinical trial, cancer patients who fasted 72 hours before receiving chemotherapy maintained normal levels of white blood cells.

A look at the molecular level of the process pointed to a decrease in the levels of a protein called PKA in stem cells during the fasting period. In a university press release carried by Science Daily, the study leader, Valter Longo, explained the significance of this finding:

“PKA is the key gene that needs to shut down in order for these stem cells to switch into regenerative mode. It gives the ‘okay’ for stem cells to go ahead and begin proliferating and rebuild the entire system. And the good news is that the body got rid of the parts of the system that might be damaged or old, the inefficient parts, during the fasting. Now, if you start with a system heavily damaged by chemotherapy or aging, fasting cycles can generate, literally, a new immune system.”

In additional to necessary follow up studies, the team is looking into whether fasting could benefit other organ systems besides the immune system. If the data holds up, it could be that regular fasting or direct targeting of PKA could put us on the road to a much more graceful and healthier aging process.

4955224186_31f969e6fd_m

Faster, cheaper, safer way to use iPS cells

Science, like traffic in any major city, never moves quite as quickly as you would like, but now Japanese researchers are teaming up to develop a faster, and cheaper way of using iPSC’s , pluripotent stem cells that are reprogrammed from adult cells, for transplants.

Part of the beauty of iPSCs is that because those cells came from the patient themselves, there is less risk of rejection. But there are problems with this method. Taking adult cells and turning them into enough cells to treat someone can take a long time. It’s expensive too.

But now researchers at Kyoto University and three other institutions in Japan have announced they are teaming up to change that. They want to create a stockpile of iPSCs that are resistant to immunological rejection, and are ready to be shipped out to researchers.

Having a stockpile of ready-to-use iPSCs on hand means researchers won’t have to wait months to develop their own, so they can speed up their work.

Shinya Yamanaka, who developed the technique to create iPSCs and won the Nobel prize for his efforts, say there’s another advantage with this collaboration. In a news article on Nikkei’s Asian Review he said these cells will have been screened to make sure they don’t carry any potentially cancer-causing mutations.

“We will take all possible measures to look into the safety in each case, and we’ll give the green light once we’ve determined they are sound scientifically. If there is any concern at all, we will put a stop to it.”

CIRM is already working towards a similar goal with our iPSC Initiative.

Unlocking the secrets of leukemia stem cells

the-walking-dead-season-6-zombies

Zombies: courtesy “The Walking Dead”

Any article that has an opening sentence that says “Cancer stem cells are like zombies” has to be worth reading. And a report in ScienceMag  that explains how pre-leukemia white blood cell precursors become leukemia cancer stem cells is definitely worth reading.

The article is about a study in the journal Cell Stem Cell by researchers at UC San Diego. The senior author is Catriona Jamieson:

“In this study, we showed that cancer stem cells co-opt an RNA editing system to clone themselves. What’s more, we found a method to dial it down.”

An enzyme called ADAR1 is known to spur cancer growth by manipulating small pieces of genetic material known as microRNA. Jamieson and her team wanted to track how that was done. They discovered it is a cascade of events, and that once the first step is taken a series of others quickly followed on.

They found that when white blood cells have a genetic mutation that is linked to leukemia, they are prone to inflammation. That inflammation then activates ADAR1, which in turn slows down a segment of microRNA called let-7 resulting in increased cell growth. The end result is that the white blood cells that began this cascade become leukemia stem cells and spread an aggressive and frequently treatment-resistant form of the blood cancer.

Having uncovered how ADAR1 works Jamieson and her team then tried to find a way to stop it. They discovered that by blocking the white blood cells susceptibility to inflammation, they could prevent the cascade from even starting. They also found that by using a compound called 8-Aza they could impede ADAR1’s ability to stimulate cell growth by around 40 percent.

Jamieson

Catriona Jamieson – definitely not a zombie

Jamieson says the findings open up all sorts of possibilities:

“Based on this research, we believe that detecting ADAR1 activity will be important for predicting cancer progression. In addition, inhibiting this enzyme represents a unique therapeutic vulnerability in cancer stem cells with active inflammatory signaling that may respond to pharmacologic inhibitors of inflammation sensitivity or selective ADAR1 inhibitors that are currently being developed.”

This wasn’t a CIRM-funded study but we have supported other projects by Dr. Jamieson that have led to clinical trials.

 

 

 

 

Calling for a cure for HIV/AIDS

Larry Kramer - Photo by David Shankbone

Larry Kramer – Photo by David Shankbone

Larry Kramer is a pivotal figure in the history of HIV/AIDS. His activism on many fronts has been widely credited with changing public health policy and speeding up access to experimental medications for people infected with the virus. So when he says that the fight for treatment is not enough but “The battle cry now must be one word — cure, cure, cure!” People pay attention.

A few years ago it might have been considered dangerously optimistic to use the word “cure” in any conversation about HIV/AIDS, but that’s no longer the case. In fact cure is something that is becoming not just a wildly ambitious dream, but something that scientists are working hard to achieve right now.

On Tuesday, October 6th, we are going to hold an HIV/AIDS Cure Town Hall meeting in Palm Springs. This will be the third event we’ve held and the previous two, in San Francisco and Los Angeles, were hugely successful. It’s not hard to understand why. Our experts are going to be talking about their work in trying to eradicate the AIDS virus from people infected with it.

This includes clinical trials run by Calimmune and City of Hope/Sangamo, plus some truly cutting edge research by Dr. Paula Cannon of the University of Southern California.

The clinical trials are both taking similar, if slightly different, approaches to reach the same goal; functionally curing people with HIV. They take the patient’s own blood stem cells and genetically modify them so that the AIDS virus is no longer able to infect them. They also help boost the patient’s T cells, a key part of a healthy immune system and the virus’ main target, so that they can fight back against the virus. It’s a kind of one-two punch to block and eventually evict the virus.

Timothy Brown; photo courtesy CureAIDSreport.org

Timothy Brown; photo courtesy CureAIDSreport.org

This work is based on the real-life experiences of Timothy Ray Brown, the “Berlin Patient”. He became the first person ever cured of HIV/AIDS when he got a bone marrow transplant from a person with a natural resistance to HIV. This created a new blood supply and a new immune system both of which were resistant to HIV.

Timothy is going to be joining us at the event in Palm Springs to share his story and show that cure is not just a word it’s a goal; one that we can now think of as being possible.

The HIV/AIDS Cure Town Hall event will be held on Tuesday, October 6th in the Sinatra Auditorium at the Desert Regional Medical Center in Palm Springs. Doors open at 6pm and the program starts at 6.30pm. And of course, it’s free.

Pushing, pulling and dragging stem cell research forward

Government agencies are known for many things, but generally speaking a willingness to do some voluntary, deep self-examination is not one of them. However, for the last few weeks CIRM has been doing a lot of introspection as we develop a new Strategic Plan, a kind of road map for where we are heading.

Patient Advocate meeting in Los Angeles: Photo courtesy Cristy Lytal USC

Patient Advocate meeting in Los Angeles:
Photo courtesy Cristy Lytal USC

But we haven’t been alone. We’ve gone to San Diego, Los Angeles and San Francisco to talk to Patient Advocates in each city, to get their thoughts on what we need to focus on for the future. Why Patient Advocates? Because they are the ones with most skin in the game. They are why we do this work so it’s important they have a say in how we do it.

As Chris Stiehl, a Patient Advocate for type 1 diabetes, said in San Diego: “Let the patient be in the room, let them be part of the conversation about these therapies. They are the ones in need, so let them help make decisions about them right from the start, not at the end.”

A Strategic Plan is, on the surface, a pretty straightforward thing to put together. You look at where you are, identify where you want to go, and figure out the best way to get from here to there. But as with many things, what seems simple on the surface often turns out to be a lot more complicated when looked at in more depth.

The second bit, figuring out where you want to go, is easy. We want to live up to our mission of accelerating the development of stem cells therapies to patients with unmet medical needs. We don’t want to be good at this. We want to be great at this.

Dr. C. Randal Mills talking to Patient Advocates in LA: Photo courtesy Cristy Lytal, USC

Dr. C. Randal Mills talking to Patient Advocates in LA: Photo courtesy Cristy Lytal, USC

The first part, seeing where you are, is a little tougher: it involves what our President and CEO, Dr. Randy Mills, “confronting some brutal facts”, being really honest in assessing where you are because without that honesty you can’t achieve anything.

So where are we as an agency? Well, we have close to one billion dollars left in the bank, we have 12 projects in clinical trials and more on the way, we have helped advance stem cells from a fledgling field to a science on the brink of what we hope will be some remarkable treatments, and we have a remarkable team ready to help drive the field still further.

But how do we do that, how do we identify the third part of the puzzle, getting from where we are to where we want to be? CIRM 2.0 is part of the answer – developing a process to fund research that is easier, faster and more responsive to the needs of the scientists and companies developing new therapies. But that’s just part of the answer.

Some of the Patient Advocates asked if we considered focusing on just a few diseases, such as the ten largest killers of Americans, and devoting our remaining resources to fixing them. And the answer is yes, we looked at every single option. But we quickly decided against that because, as Randy Mills said:

“This is not a popularity contest, you can’t judge need by numbers, deciding the worth of something by how many people have it. We are disease agnostic. What we do is find the best science, and fund it.”

Another necessary element is developing better ways to attract greater investment from big pharmaceutical companies and venture capital to really help move the most promising projects through clinical trials and into patients. That is starting to happen, not as fast as we would like, but as our blog yesterday shows things are moving in this direction.

And the third piece of the pie is getting these treatments through the regulatory process, getting the Food and Drug Administration (FDA) to approve therapies for clinical trials. And this last piece clearly hit a nerve.

Many Patient Advocates expressed frustration at the slow pace of approval for any therapy by the FDA, some saying it felt like they just kept piling up obstacles in the way.

Dr. Mills said the FDA is caught between a rock and a hard place; criticized if it approves too slowly and chastised if it approves too fast, green lighting a therapy that later proves to have problems. But he agreed that changes are needed:

“The regulatory framework works well for things like drugs and small molecules that can be taken in pills but it doesn’t work well for cellular therapies like stem cells. It needs to do better at that.”

One Advocate suggested a Boot Camp for researchers, drilling them in the skills they’ll need to get FDA approval. Others suggested applying political pressure from Patient Advocacy groups to push for change.

As always there are no easy answers, but the meeting certainly raised many great questions. Those are all helping us focus our thinking on what needs to be in the Strategic Plan.

Randy ended the Patient Advocate events by saying the stem cell agency “is in the time business. What we do is time sensitive.” For too many people that time is already running out. We have to do everything we can to change that.

Share your voice, shape our future

shutterstock_201440705There is power in a single voice. I am always reminded of that whenever I meet a patient advocate and hear them talk about the need for treatments and cures – and not just for their particular disease but for everyone.

The passion and commitment they display in advocating for more research funding reflects the fact that everyday, they live with the consequences of the lack of effective therapies. So as we at CIRM, think about the stem cell agency’s future and are putting together a new Strategic Plan to help shape the direction we take, it only makes sense for us to turn to the patient advocate community for their thoughts and ideas on what that future should look like.

That’s why we are setting up three meetings in the next ten days in San Diego, Los Angeles and San Francisco to give our patient advocates a chance to let us know what they think, in person.

We have already sent our key stakeholders a survey to get their thoughts on the general direction for the Strategic Plan, but there is a big difference between ticking a box and having a conversation. These upcoming meetings are a chance to talk together, to explore ideas and really flesh out the details of what this Strategic Plan could be and should be.

Our President and CEO, Dr. C. Randal Mills wants each of those meetings to be an opportunity to hear, first hand, what people would like to see as we enter our second decade. We have close to one billion dollars left to invest in research so there’s a lot at stake and this is a great chance for patient advocates to help shape our next five years.

Every voice counts, so join us and make sure that yours is heard.

The events are:

San Diego, Monday, July 13th at noon at Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Los Angeles: Tuesday, July 14th at noon at Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, 1425 San Pablo Street, 1st floor conf. room Los Angeles, CA 90033

San Francisco: Wednesday, July 15th at noon at CIRM, 210 King Street (3rd floor), San Francisco, CA 94107

There will be parking at each event and a light lunch will be served.

We hope to see you at one of them and if you do plan on coming please RSVP to info@cirm.ca.gov

And of course please feel free to share this invitation to anyone you think might be interested in having their voice heard. We all have a stake in this.

Taking stock: ten years of the stem cell agency, progress and promise for the future

Under some circumstances ten years can seem like a lifetime. But when lives are at stake, ten years can fly by in a flash.

Ten years ago the people of California created the stem cell agency when they overwhelmingly approved Proposition 71, giving us $3 billion to fund and support stem cell research in the state.

In 2004 stem cell science held enormous potential but the field was still quite young. Back then the biology of the cells was not well understood, and our ability to convert stem cells into other cell types for potential therapies was limited. Today, less than 8 years after we actually started funding research, we have ten projects that are expected to be approved for clinical trials by the end of the year, including work in heart disease and cancer, HIV/AIDS and diabetes. So clearly great progress has been made.

Dean Carmen Puliafito and the panel at the Tenth Anniversary event at USC

Dean Carmen Puliafito and the panel at the Tenth Anniversary event at USC

Yesterday we held an event at the University of Southern California (USC) to mark those ten years, to chart where we have come from, and to look to where we are going. It was a gathering of all those who have, as they say, skin in the game: researchers, patients and patient advocates.

The event was held at the Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research. As Dr. Carmen Puliafito, Dean of USC’s Keck School of Medicine noted, without CIRM the building would not even exist.

“With this funding, our researchers, and researchers in 11 other facilities throughout the state, gained a dedicated space to hunt for cures for some of the most pernicious diseases in the world, including heart disease, stroke, cancer, diabetes, Alzheimer’s and Parkinson’s disease.”

Dr. Dhruv Sareen from Cedars-Sinai praised CIRM for creating a whole new industry in the state:

“What Silicon Valley has done for technology, CIRM is doing for stem cell research in California.”

One of the beneficiaries of that new industry has been ViaCyte, a San Diego-based company that is now in clinical trials with a small implantable device containing stem cell-derived cells to treat type 1 diabetes. ViaCyte’s Dr. Eugene Brandon said without CIRM none of that would have been possible.

“In 2008 it was extremely hard for a small biotech company to get funding for the kind of work we were doing. Without that support, without that funding from CIRM, I don’t know where this work would be today.”

As with everything we do, at the heart of it are the patients. Fred Lesikar says when he had a massive heart attack and woke up in the hospital his nurse told him about a measure they use to determine the scale of the attack. When he asked how big his attack had been, she replied, “I’ve never seen numbers that large before. Ever.”

Fred told of leaving the hospital a diminished person, unable to do most basic things because his heart had been so badly damaged. But after getting a stem cell-based therapy using his own heart cells he is now as active as ever, something he says doesn’t just affect him.

“It’s not just patients who benefit from these treatments, families do too. It changes the life of the patient, and the lives of all those around them. I feel like I’m back to normal and I’m so grateful for CIRM and Cedars-Sinai for helping me get here.”

The team behind that approach, based at Cedars-Sinai, is now in a much larger clinical trial and we are funding it.

The last word in the event was left to Bob Klein, who led the drive to get Proposition 71 passed and who was the agency’s first Chair. He said looking at what has happened in the last ten years: “it is beyond what I could have imagined.”

Bob noted that the field has not been without its challenges and problems to overcome, and that more challenges and problems almost certainly lie in the future:

“But the genius of the people of this state is reflected in their commitment to this cause, and we should all be eternally grateful for their vision in supporting research that will save and transform people’s lives.”

Ten at ten at the stem cell agency: sharing the good news about progress from the bench to the bedside

Ten years ago this month the voters of California overwhelmingly approved Proposition 71, creating the state’s stem cell agency, the California Institute for Regenerative Medicine, and providing $3 billion to fund stem cell research in California.

That money has helped make California a global leader in stem cell research and led to ten clinical trials that the stem cell agency is funding this year alone. Those include trials in heart disease, cancer, leukemia, diabetes, blindness, HIV/AIDS and sickle cell disease.

To hear how that work has had an impact on the lives of patients we are holding a media briefing to look at the tremendous progress that has been made, and to hear what the future holds.

When: Thursday, November 20th at 11am

Where: Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at the University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033

Who: Hear from patients who have benefited from stem cell therapies, the researchers who have done the work, and the key figures in the drive to make California the global leader in stem cell research

To listen in to the event by phone:

Call in: 866.528.2256  Participant code: 1594399

For more information contact: Kevin McCormack, Communications Director, CIRM kmccormack@cirm.ca.gov

Cell: 415-361-2903

Beautiful by design: turning a stem cell research workplace into a work of art

Broad Center for Regenerative Medicine & Stem Cell Research, USC

Sometimes what seems like an interesting project, a fun thing to try out, turns out to be a great idea, one that has the power to completely transform the way others see what you do and where you do it. That’s what is happening at the Broad Center for Regenerative Medicine and Stem Cell Research at the University of Southern California (USC).

A few weeks ago I told you how USC is using art to break down barriers, bringing together students studying art and design with stem cell researchers to collaborate on a project to come up with a new way of communicating about stem cells. The end results are far beyond what they had hoped for.

First, the art students toured the research facility, talked to the scientists and fell in love with the science. In a portfolio put together by the students they said they were “inspired by the imagery and research process.”

Then they got to work, coming up with ways of incorporating the imagery from stem cell research into the actual building itself. The students said they were inspired by the way the researchers worked together, and how the building itself seemed to promote that kind of collaboration because of its design. So, they set out to mirror that idea of collaboration by creating:

 “a designed environment that would enliven the space, enrich the researchers’ experience, convey a sense of the current research to visitors, and be visually energizing and engaging.”

They came up with a number of different proposals using different stem cell images and colors to brighten up the building and help give visual clues as to where you are in the facility. They wanted those colors and images to be part of the experience from the moment you walked in the lobby, to getting out of the elevator and walking down a corridor.

The end design will not just engage the eye but also the mind, using quotes from scientists, writers and patients to inspire people to think, to hope, and to reflect on the role that science plays in all our lives. One they have in mind comes from science fiction writer Ray Bradbury:

“The best scientist is open to experience and begins with romance – the idea that anything is possible.”

Although the semester is almost over the students have asked if they can stay on over the summer, to help see the final designs implemented.

At USC they’re showing that an open mind and a vivid imagination can turn a work place into a work of art. The science inspired that art. Now the hope is that the art will inspire the science.

kevin mccormack