If NASA’s billion dollar Mars rovers deployed a bunch of dollar store party balloons to cushion the moment of impact, the mission would fail miserably. Likewise, the many years and millions of dollars spent on developing a stem cell-based therapy could be all for naught if the delivery of those precious cells into patients used cheap, inefficient tools.
That’s the subject of a recent TV interview with George Yu, who is CEO of Accurexa, a company that is developing and commercializing a novel syringe and needle device that could dramatically improve the delivery of cell therapies to the brain. The device was invented by UCSF neurosurgeon Daniel Lim with the support of a CIRM Tools and Technologies grant.
“So [Dr. Lim] participated in a phase 1 trial a few years ago where he was asked to deliver stem cell[-derived cells] to the brain and he didn’t really have adequate tools to do that, “ Yu explained in his interview with the New York-based finance and business TV program, New to the Street.
“The company that manufactured the stem cells spent millions of dollars in research but then they gave [Dr. Lim] a syringe and a needle that literally costs a couple of dollars. When he used that syringe and needle, which is a straight needle and injected those cells into the brain he actually saw a substantial amount of cells coming to the surface of the brain, which we call reflux, and that’s the reason he said there must be something better than this. And he applied for a grant, he got funded, and he invented the device. “
Not only does the standard straight syringe and needle cause a loss of transplanted cells due to reflux it also requires multiple injections in order to properly distribute the cell therapy in the brain. And with each injection, healthy brain tissue is damaged and increases the risk of stroke.

The Branched Point Device allows a well distributed transplantation of cells into the brain with just one injection site. (image credit: Stereotact Funct Neurosurg. 2013; 91(2): 92–103.)
Lim’s invention, called a Branched Point Device, avoids both cell reflux and the need for multiple injections. Instead of coming straight out of the needle tip, the cells are delivered through an opening that’s positioned on the side of the needle. So rather than re-injecting the needle, it’s incrementally rotated to deliver the cells in a different direction. With the use of a catheter that pokes through the needle, the cells can be distributed around the needle at different depths in a radial pattern much like the branches of a tree.
Use of the device in clinical trials may soon become a reality based on Yu’s comments in the interview:
“We’ve mostly completed our testing and the design of the device and we’re in the late stage of preparing a 510k submission to the FDA. So we expect that to happen this year. And once it’s FDA approved we can potentially sell the device.”
And because CIRM funded the development of this invention, the State of California is entitled to share in licensing revenue arising from the invention. Better still, the use of the device in clinical trials could provide more consistent, reliable results and a faster path to approval for stem cell-based therapies for neurodegenerative diseases like Parkinson’s.
this is knowledge based blog article.
My work on WordPress Themes