Why “Ask the Stem Cell Team” Remains Important

These are definitely strange, unusual and challenging times. Every day seems to bring new restrictions on what we can and should do. All, of course, in the name of protecting us and helping us avoid a potentially deadly virus. We all hope this will soon pass but we also know the bigger impact of the coronavirus is likely to linger for many months, perhaps even years.

With that in mind a few people have asked us why we are still going ahead with our Facebook Live ‘Ask the Stem Cell Team About Autism’ event this Thursday, March 19th at 12pm PDT. It’s a good question. And the answer is simple. Because there is still a need for good, thoughtful information about the potential for stem cells to help families who have a loved one with autism. And because we still need to do all we can to dispel the bad information out there and warn people about the bogus clinics offering unproven therapies.

In many ways Facebook Live is the perfect way to deliver this information. It allows us to reach out to large numbers of people without having them in the same room. We can educate not contaminate.

And we have some great experts to discuss the use of stem cells in helping people with autism.

The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shepard.

But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.

If you were unable to tune in while we were live, not to worry, you you can watch it here on our Facebook page

CIRM funded study may help explain why some people with cystic fibrosis are less prone to infection

Dr. Kelly A. Frazer, UC San Diego School of Medicine

Cystic fibrosis is a disorder that mostly affects the lungs. It is caused by a mutation in a gene called cystic fibrosis transmembrane conductance regulator (CFTR). As a result of this mutation, cells that produce mucus (a slimy substance like the one in your nose) secrete a thicker-than-normal mucus that can create blockages in the lungs and digestive system. In the lungs, this thicker mucus is a perfect breeding ground for bacteria, leading to more chronic lung infections in those with cystic fibrosis.

However, some people with cystic fibrosis don’t develop lung infections as early or as often as others with the disorder. Thanks to a CIRM funded study, Dr. Kelly Frazer and her team at the UC San Diego School of Medicine have discovered why this might happen.

In healthy people, the CFTR protein is embedded in the membrane of most cells, where it forms a channel for chlorine ions. In people with cystic fibrosis, an inherited mutation in the CFTR gene means their channels don’t work as well and cells produce more mucus. The RNF5 protein inhibits CFTR, so people with cystic fibrosis who have genetic variations that decrease RNF5 expression have CFTR channels that function a little better, and thus aren’t as prone to infections as people with high RNF5 expression.

Before we get into that, we need to dive a bit deeper into cystic fibrosis and what causes this thicker-than normal mucus. In healthy people, CFTR is embedded in the membrane of most cells, where it forms a channel that allows chloride – a component of salt – to travel through. This flow ensures that cells have the right balance of salt and water. In people with cystic fibrosis, the CFTR mutation means that the channel doesn’t work as well, the flow of water is blocked resulting in more thick and sticky mucus. There are medications that can help boost CFTR, but they are very expensive and don’t work for everyone.

Dr. Frazer and her team discovered that a gene, called RNF5, also prevents CFTR from functioning well. People with cystic fibrosis who have lower levels of RNF5 have channels that function better, with less mucus build up, compared to people with higher levels of RNF5. This could potentially explain why some with cystic fibrosis get more chronic lung infections compared to others with the condition.

In a press release by UC San Diego School of Medicine, Dr. Frazer talks about how RNF5 could play a role in treating patients.

“The cystic fibrosis field is trying to figure out what are the modifiers across the genome that increase or decrease the probability that an individual patient will respond to these expensive drugs. RNF5 may be one of these modifier genes.”

In the same press release, Dr. Matteo D’Antonio, a project scientist in Dr. Frazer’s lab, talks about how these findings could result in more personalized treatments for people with cystic fibrosis.

“This study uncovered a new aspect of cystic fibrosis — one that could lead to new drug design and development, and allow clinicians to better tailor treatments.”

The full study was published in eLife.