In the Race to Cure Blindness, Who Will Cross the Finish Line First Optogenetics or Stem Cells?

San Francisco Sunset. (Karen Ring)

San Francisco Sunset. (Karen Ring)

Before you read this blog, I wanted to share a photo that I took (yes with my iPhone 6…) last week of a beautiful sunset at Ocean Beach in San Francisco. I’m showing you this picture not to gloat that I live by the ocean, but to make a point. You’re able to enjoy this picture because you have the ability to see. But more than 20 million Americans in the US who suffer from some form of visual impairment can’t, and they are the inspiration for my blog today.

Age-related macular degeneration (AMD), the leading cause of blindness in the US, destroys the macula, the part of the eye responsible for central vision. Others patients suffer from retinitis pigmentosa (RP), which ravages the photoreceptors in the retina located in the back inside layer of the eye causing night blindness, tunnel vision, and eventually blindness. (For more on RP and AMD, check out our Stem Cells In Your Face video on “Eyeing Stem Cell Therapies for Vision Loss). Other diseases such as cataracts, glaucoma, and diabetic retinopathy can also cause people to lose some or all of their vision.

Unfortunately, there is no cure for many forms of blindness, but science has advanced to the point where multiple technologies are being tested in human clinical trials with the hopes of improving sight in blind patients. The two technologies I’m going to talk about today are optogenetics and stem cells – both innovative techniques that have made rapid progress in recent years.

What is optogenetics and how will it help restore sight?

First published about in the early 2000’s, optogenetics is a relatively new and really cool technology that can control how cells function by genetically manipulating them to be responsive to light. Scientists can use optogenetics to turn the activity of nerve cells in the brain on or off, to make muscle cells contract, and now to make eye cells activate in response to light.

The technique relies on light-sensitive proteins called opsins. Through genetic engineering, opsin proteins are delivered to the surface of the desired cell, and when they are exposed to the right wave-length of light, they send signals that turn the cells’ activity on or off.

Encouraged by the success of using optogenetics to restore sight in animal models of blindness, scientists are now hoping to test it in human clinical trials. A company called RetroSense Therapeutics in Ann Arbor, Michigan has developed a gene therapy technology that uses optogenetics, and it has partially restored sight in animal models. They’re targeting retinal ganglion cells, which are nerve cells located at the inner surface of the retina, and turning them into light-sensing cells to replace the ones that have died off.

A clinical trial using RetroSense’s optogenetics therapy is already underway in patients with RP and the trial’s first patient was treated at a clinic in Texas in February. The goal of the trial is baby steps – doctors hope that patients won’t experience negative side effects and that they will go from zero vision to some vision. You can read more about this clinical trial in a piece by Katherine Bourzac in the MIT Technology Review.

Stem Cell Treatments for Blindness in the Works

I’m switching gears now to talk about stem cell therapies for blindness. This area of research has received a lot more attention from scientists compared to optogenetics probably because it’s been around longer and offers more options for therapeutic development.

To be brief, scientists are testing the potential of stem cells to treat patients with diseases like RP and AMD using different types of stem cells including pluripotent stem cells (both embryonic and induced pluripotent or iPS) and retinal progenitor cells derived from fetal tissue. A common approach with AMD is to generate retinal pigment epithelial (RPE) cells – support cells that keep the retina healthy – from pluripotent stem cells and transplant them into the eye. Clinical trials around the world are testing the safety and efficacy of stem-cell derived RPE cells in patients with both the dry and wet forms of AMD.

Researchers seek to restore health to the retina in the back of the eye using cells such as these precursors of an area called the RPE.

An image of RPE cells made from human  stem cells.

In the US and Korea, Ocata Therapeutics (recently acquired by Astellas Therapeutics) generated RPE cells from human embryonic stem cells and transplanted them into patients with AMD in a Phase 1 clinical trial. They reported some improvement in vision and no adverse side effects and launched a Phase 2 trial in 2015. In Japan, scientists at RIKEN transplanted a living sheet of RPE cells from an AMD patient’s own iPS cells and transplanted them patients with AMD. While the first patient did not suffer any negative side effects, the trial was put on hold due to safety issues associated with findings from the iPS cells in laboratory tests. Other stem cell clinical trials are ongoing and you can read about them in this article in Drug Discovery & Development.

CIRM is also funding stem cell trials to treat blindness. One team led by Henry Klassen at UC Irvine, is using fetal retinal progenitor cells to treat patients with RP. They inject these cells into the fluid of the eye, and the cells release proteins and growth factors that boost the health of the remaining photoreceptors in the retina of RP patients. Another team at USC and UC Santa Barbara led by Mark Humayun, David Hinton and Dennis Clegg generated monolayer sheets of RPE cells derived from embryonic stem cells and growing them on synthetic scaffolds that will be transplanted into patients with AMD. Both teams are testing the safety and usefulness of their stem cell treatments in Phase 1 clinical trials. If you want to learn more about them, check out our recent blog.

So what will it be, optogenetics or stem cells?

Artistic representation of the human eye. (Dr. Kang Zhang, Dr. Yizhi Liu)

Artistic representation of the human eye. (Dr. Kang Zhang, Dr. Yizhi Liu)

It’s hard to tell which technology will be first to succeed in restoring sight to patients suffering from blindness and which technology will be more beneficial in the long run because both have their obstacles and vices.

Current optogenetics techniques require the use of viruses to transfer genes that contain the code for making the light-sensitive opsin proteins. These viruses are injected into the eye and have to target the right cells (and not the wrong ones) and the infected cell needs to produce that opsin forever for the technology to work effectively. Then there is the issue of making sure light can reach the genetically modified cells. Luckily nerves in the eye are easier to access than nerve cells in the brain, which require invasive surgery to implant optical fibers that deliver light. However, activating the ganglion nerve cells in the eye will still be a challenge according to MIT Technology review:

“Vision that works through light-sensitive ganglion cells will likely be different than vision that relies on a healthy retina. When you go outside, for instance, it can be about 10,000 times brighter than inside. Healthy retinas rapidly adapt their sensitivity to adjust to this, but the light-sensing cells created by the gene therapy will not likely be able to adapt. For that reason, it may be necessary for the RetroSense therapy, if it works, to be coupled with some kind of video-projection glasses that can perform these adjustments and tailor the incoming light to the treated eye, sending a brighter signal indoors than it does outdoors, for example.”

 

As for stem cells, there’s always the worry that transplanting cells derived from pluripotent stem cells could cause cancer over time. The Japan iPS cell trial for AMD is a good example. It was put on hold because scientists identified potential cancer-causing mutation in a second patient’s iPS cells. (The cause of the mutation was unknown – it could have been caused by the reprogramming method, the iPS cell culturing process, or could have existed prior to reprogramming). Another issue with stem cell treatments is achieving regulatory approval. In the US, the only widely stem cell based therapy is for bone marrow transplantation. If clinical trials using stem cells to treat diseases of blindness begin to show promising results, it would a major roadblock if they can’t push past current regulatory barriers and reach the patients who need them.

So which technology will cross the finish line first in the race to cure blindness: optogenetics or stem cells? The answer is that it doesn’t matter which technology wins. The important thing is they continue to move forward and hopefully one or even both technologies will produce a safe and effective treatment to restore sight in patients suffering from blindness in the near future.

Five Cool Stem Cell Technologies to Tell Your Friends

As a former stem cell scientist turned science communicator, I love answering science questions no matter how complicated or bizarre. The other day my friend asked me about what CRISPR was and how scientists were using it on stem cells to help people. This got me thinking that it would be cool to do a blog on some of the latest stem cell technologies that are changing the way we do science and ultimately how we treat patients.

So in the spirit of sharing knowledge and also giving you some interesting conversation points at your next dinner party, here are five stem cell technologies that I think are pretty awesome. (As a disclaimer: this isn’t a top 5 list. I picked a few recently published studies that I thought were worth mentioning.)

1) Need a body part? Let me print that for you.

ear_wakeforest

3D printed ear. (Wake Forest University)

Scientists from Wake Forest University have developed technology to make custom-made living body parts by 3D-printing stem cells onto biodegradable scaffolds. The stem cells are printed in a hydrogel solution using a special 3D printer they call ITOP. This printer makes it possible for the printed stem cells to develop into life-sized tissues and organs that have built-in microchannels that allow blood, oxygen and other nutrients to flow through. Using the ITOP technology, the team was able to generate segments of jawbone, an ear, and muscle tissue. We wrote a blog about this fascinating technology, so check it out if you’re thirsty for more details.

 2) Bio-bots controlled by light

When you think robots, you think machines and metal. But what if the robot was made out of human cells? Crazy? Not even. Scientists from the University of Illinois have made what they called “bio-bots” or tiny machines “powered by biological components.” They printed muscle cells onto flexible skeletons in the shape of rings (see GIF). The muscle cells are engineered to have light sensitive switches, so when they are exposed to light, they contract like normal muscles do. The beauty of bio-bots is that they “can sense, process, and respond to dynamic environmental signals in real time, enabling a variety of applications.” Some of these applications could include bio-bots made up of other types of tissue (brain, heart, etc.) and general use for disease research. Story credit goes to Megan Thielking’s Morning Rounds for STATnews.

Bio-bots composed of muscle cells are powered by light. (University of Illinois)

Bio-bots composed of muscle cells are powered by light. (University of Illinois)

3) New way to track stem cells using MRI

Scientists from the UC San Diego School of Medicine have developed a new way to track cells in the body using magnetic resonance imaging (MRI). In a CIRM-funded study, the scientists made a new Fluorine-based chemical tracer that is taken in by the cells of interest. When these cells are imaged with MRI, the tracer gives off a bright and easily detectable signal. According to MNT news who covered the story, “the work is expected to enhance the progress of treatments involving stem cells and immune cells, as it will give researchers a clear picture of how cells behave after being introduced to the body.”

 4) Engineering cells to fight cancer

Genomic modification of human stem cells by gene editing methods such as CRISPR is not a novel concept, but the technology continues to evolve at record pace and is worth mentioning. You can think of CRISPR as molecular scissors that can remove disease-causing mutations in a person’s DNA. Scientists can repair genetic mutations in human stem cells and other cell types and then use these repaired cells to replace diseased or damaged tissue or to perform therapeutic functions in patients. An article by Antonio Regalado at MIT Technology Review nicely summarizes how genetically engineered immune cells are saving the lives of cancer patients. These immune cells are engineered to recognize cancer cells (which are normally expert at evading the immune system) and when they are transplanted into cancer patients, they attack and kill off the cancer pretty effectively.

5) One day, stem cells will help the blind see

Artistic representation of the human eye. (Dr. Kang Zhang, Dr. Yizhi Liu)

Artistic representation of the human eye. (Dr. Kang Zhang, Dr. Yizhi Liu)

Blindness is a big problem and stem cells are considered a promising therapeutic strategy for restoring sight in patients suffering from diseases of blindness. We covered two recent discoveries in last week’s round-up, but it never hurts to mention them again. One study from UC San Diego Health treated children suffering from cataracts. They removed the cataracts and stimulated the native stem cells in their eyes to produce new lens tissue that was able to improve their vision. The other study generated different eye parts in a dish using reprogrammed human induced pluripotent stem cells or iPS cells. They generated corneas from iPS cells and transplanted them into blind rabbits and were successful in restoring their vision. Hopefully soon stem cell technologies will advance through the clinic and provide new treatments to cure patients who’ve lost their sight.

From Science Fiction to Science Fact: Gene Editing May Make Personalized Therapies for Blindness

Have you seen the movie Elysium? It’s a 2013 futuristic science fiction film starring one of my favorite actors Matt Damon. The plot centers on the economic, social and political disparities between two very different worlds: one, an overpopulated earth where people are poor, starving, and have little access to technology or medical care, the other, a terraformed paradise in earth’s orbit that harbors the rich, the beautiful, and advanced technologies.

Med-Bays.

Med-Bays.

The movie is entertaining (I give it 4 stars, Rotten Tomatoes says 67%), but as a scientist, one of the details that stuck out most was the Med-Bays. They’re magical, medical machines that can diagnose and cure any disease, regrow body parts, and even make people young again.

Wouldn’t it be wonderful if Med-Bays actually existed? Unfortunately, we currently lack the capabilities to bring this technology out of the realm of science fiction. However, recent efforts in the areas of personalized stem cell therapies and precision medicine are putting paths for creating potential cures for a wide range of diseases on the map.

One such study, published in Scientific Reports, is using precision medicine to help cure patients with a rare eye disease. Scientists from the University of Iowa and Columbia University Medical Center used CRISPR gene editing technology to fix induced pluripotent stem cells (iPS cells) derived from patients with an inherited form of blindness called X-linked retinitis pigmentosa (XLRP). The disease is caused by a single genetic mutation in the RPGR gene, which causes the retina of the eye to break down, leaving the patient blind or with very little vision. (For more on RP and other diseases of blindness, check out our Stem Cells in your Face video.)

CRISPR is a hot new tool that allows scientists to target and change specific sequences of DNA in the genome with higher accuracy and efficiency than other gene editing tools. In this study, researchers were concerned that it would be hard for CRISPR to correct the RPGR gene mutation because it’s located in a repetitive section of DNA that can be hard to accurately edit. After treating patient stem cells with the CRISPR modifying cocktail, the scientists found that the RPGR mutation had a 13% correction rate, which is comparable to other iPS cell based CRISPR editing studies.

Skin cells from a patient with X-linked Retinitis Pigmentosa were transformed into induced pluripotent stem cells and the blindness-causing point mutation in the RPGR gene was corrected using CRISPR/Cas9. Image by Vinit Mahajan.

Stem cells derived from a patient with X-linked Retinitis Pigmentosa. (Image by Vinit Mahajan)

The authors claim that this is the first study to successfully correct a genetic mutation in human stem cells derived from patients with degenerative retinal disease. The study is important because it indicates that XLRP patients can benefit from personalized stem cell therapy where scientists make individual patient iPS cell lines, use precision medicine to genetically correct the RPGR mutation, and then transplant healthy retinal cells derived from the corrected stem cells back into the same patients to hopefully give them back their sight.

Senior author on the study, Vinit Mahajan explained in a University of Iowa news release:

Vinit Mahajan

Vinit Mahajan

“With CRISPR gene editing of human stem cells, we can theoretically transplant healthy new cells that come from the patient after having fixed their specific gene mutation. And retinal diseases are a perfect model for stem cell therapy, because we have the advanced surgical techniques to implant cells exactly where they are needed.”

It’s important to note that this study is still in its early stages. Stephen Tsang, a co-author on the study, commented:

“There is still work to do. Before we go into patients, we want to make sure we are only changing that particular, single mutation and we are not making other alterations to the genome.”


Related Links:

The Ogawa-Yamanaka Prize Crowns Its First Stem Cell Champion

A world of dark

Imagine if you woke up one day and couldn’t see. Your life would change drastically, and you would have to painfully relearn how to function in a world that heavily relies on sight.

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

While most people don’t lose their sight overnight, many suffer from visual impairments that slowly happen over time. Glaucoma, cataracts, and macular degeneration are examples of debilitating eye diseases that eventually lead to blindness.

With almost 300 million people world wide with some form of visual impairment, there’s urgency in the scientific community to develop safe therapies for clinical applications. One of the most promising strategies is using human induced pluripotent stem (iPS) cells derived from patients to generate cell types suitable for transplantation into the human eye.

However, this task is more easily said than done. Safety, regulatory, and economical concerns make the process of translating iPS cell therapies from the bench into the clinic an enormous challenge worthy only of a true scientific champion.

A world of light

Dr. Masayo Takahashi

Dr. Masayo Takahashi

Meet Dr. Masayo Takahashi. She is a faculty member at the RIKEN Centre for Developmental Biology, a prominent female scientist in Japan, and a bona fide stem cell champion. Her mission is to cure diseases of blindness using iPS cell technology.

Since the Nobel Prize-winning discovery of iPS cells by Dr. Shinya Yamanaka eight years ago, Dr. Takahashi has made fast work using this technology to generate specific cells from human iPS cells that can be transplanted into patients to treat an eye disease called macular degeneration. This disease results in the degeneration of the retina, an area in the back of the eye that receives light and translates the information to your brain to produce sight.

Dr. Takahashi generates cells called retinal pigment epithelial (RPE) cells from human iPS cells that can replace lost or dying retinal cells when transplanted into patients with macular degeneration. What makes this therapy so exciting is that Dr. Takahashi’s iPS-derived RPE cells appear to be relatively safe and don’t cause an immune system reaction or cause tumors when transplanted into humans.

Because of the safety of her technology, and the unfulfilled needs of millions of patients with eye diseases, Dr. Takahashi made it her goal to take iPS cells into humans within five years of Dr. Yamanaka’s discovery.

Ogawa-Yamanaka Stem Cell Prize

It’s no surprise that Dr. Takahashi succeeded in her ambitious goal. Her cutting edge work has led to the first clinical trial using iPS cells in humans, specifically treating patients with macular degeneration. In September 2014, the first patient, a 70-year-old Japanese woman, received a transplant of her own iPS-derived RPE cells and no complications were reported.

Currently, the trial is on hold “as part of a safety validation step and in consideration of anticipated regulatory changes to iPS cell research in Japan” according to a Gladstone Institute news release. Nevertheless, this first iPS cell trial in humans has overcome significant regulatory hurdles, has set an important precedent for establishing the safety of stem cell therapies, and has given scientists hope that iPS cell therapies can become a reality.

Dr. Deepak Srivastava presents Dr. Takahashi with the Ogawa-Yamanaka Prize.

Dr. Deepak Srivastava presents Dr. Takahashi with the Ogawa-Yamanaka Prize.

For her accomplishments, Dr. Takahashi was recently awarded the first ever Ogawa-Yamanaka Stem Cell Prize and honored at a special event held at the Gladstone Institutes in San Francisco yesterday. This prize was established by a generous gift from Mr. Hiro Ogawa in collaboration with Dr. Shinya Yamanaka and Dr. Deepak Srivastava at the Gladstone Institutes. The award recognizes scientists who conduct translational iPS cell research that will eventually be applied to patients in the clinic.

In an interview with CIRM, Dr. Deepak Srivastava, the Director of the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, described the prestigious prize and the ceremony held at the Gladstone to honor Dr. Takahashi:

Dr. Deepak Srivastava

The Ogawa-Yamanaka prize prize is meant to incentivize and honor those whose work is advancing the translational use of stem cells for regenerative medicine. Dr. Masayo Takahashi is a pioneer in pushing the technology of iPS cell-derived cell types and actually introducing them into people. She’s the very first person in the world to successfully overcome all the regulatory barriers and the scientific barriers to introduce this new type of stem cell into a patient. And she’s done so for a condition of blindness called macular degeneration, which affects millions of people world wide, and for which there are very few treatments currently. We are honoring her with this prize for her pioneering efforts at making this technology one that can be applied to patients.

The new world that iPS cells will bring

As part of the ceremony, Dr. Takahashi gave a scientific talk on the new world that iPS cells will bring for patients with diseases that lack cures, including those with visual impairments. The Stem Cellar team was lucky enough to interview Dr. Takahashi as well as attend her lecture during the Gladstone ceremony. We will cover both her talk and her interview with CIRM in an upcoming blog.

The Stem Cellar team at CIRM was excited to attend this momentous occasion, and to know that CIRM-funding has supported many researchers in the field of iPS cell therapy and regenerative medicine. We would like to congratulate Dr. Takahashi on her impressive and impactful accomplishments in this area and look forward to seeing progress in iPS cell trial for macular degeneration.


 

Related Links:

A hopeful sight: therapy for vision loss cleared for clinical trial

Rosalinda Barrero

Rosalinda Barrero, has retinitis pigmentosa

Rosalinda Barrero says people often thought she was rude, or a snob, because of the way she behaved, pretending not to see them or ignoring them on the street. The truth is Rosalinda has retinitis pigmentosa (RP), a nasty disease, one that often attacks early in life and slowly destroys a person’s vision. Rosalinda’s eyes look normal but she can see almost nothing.

“I’ve lived my whole life with this. I told my daughters [as a child] I didn’t like to go Trick or Treating at Halloween because I couldn’t see. I’d trip; I’d loose my candy. I just wanted to stay home.”

Rosalinda says she desperately wants a treatment:

“Because I’m a mom and I would be so much a better mom if I could see. I could drive my daughters around. I want to do my part as a mom.”

Now a promising therapy for RP, funded by the stem cell agency, has been cleared by the Food and Drug Administration (FDA) to start a clinical trial in people.

The therapy was developed by Dr. Henry Klassen at the University of California, Irvine (UCI). RP is a relatively rare, inherited condition in which the light-sensitive cells at the back of the retina, cells that are essential for vision, slowly and progressively degenerate. Eventually it can result in blindness. There is no cure and no effective long-term treatment.

Dr. Klassen’s team will inject patients with stem cells, known as retinal progenitors, to help replace those cells destroyed by the disease and hopefully to save those not yet damaged.

In a news release about the therapy Dr. Klassen said the main goal of this small Phase I trial will be to make sure this approach is safe:

“This milestone is a very important one for our project. It signals a turning point, marking the beginning of the clinical phase of development, and we are all very excited about this project.”

Jonathan Thomas, the Chair of our Board, says that CIRM has invested almost $20 million to help support this work through early stage research and now, into the clinic.

“One of the goals of the agency is to provide the support that promising therapies need to progress and ultimately to get into clinical trials in patients. RP affects about 1.5 million people worldwide and is the leading cause of inherited blindness in the developed world. Having an effective treatment for it would transform people’s lives in extraordinary ways.”

Dr. Klassen says without that support it is doubtful that this work would have progressed as quickly as it has. And the support doesn’t just involve money:

“CIRM has played a critical and essential role in this project. While the funding is extremely important, CIRM also tutors and guides its grantees in the many aspects of translational development at every step of the way, and this accelerates during the later pre-clinical phase where much is at stake.”

This is now the 12th project that we are funding that has been approved by the FDA for clinical trials. It’s cause for optimism, but cautious optimism. These are small scale, early phase trials that in many cases are the first time these therapies have been tested in people. They look promising in the lab. Now it’s time to see if they are equally promising in people.

Considering we didn’t really start funding research until 2007 we have come a long way in a short time. Clearly we still have a long way to go. But the news that Dr. Klassen’s work has been given the go-ahead to take the next, big step, is a hopeful sign for Rosalinda and others with RP that we are at least heading in the right direction.

One of our recent Spotlight on Disease videos features Dr. Klassen and Rosalinda Barrero talking about RP.

This work will be one of the clinical trials being tested in our new Alpha Stem Cell Clinic Network. You can read more about that network here.

Stem cell stories that caught our eye; progress toward artificial brain, teeth may help the blind and obesity

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

More progress toward artificial brain. A team at the RIKEN Institute in Japan has used stem cells in a 3-D culture to create brain tissue more complex than prior efforts and from an area of the brain not produced before, the cerebellum—that lobe at the lower back of the brain that controls motor function and attention. As far back as 2008, a RIKEN team had created simple tissue that mimicked the cortex, the large surface area that controls memory and language.

shutterstock_93075775

The Inquisitr web portal wrote a feature on a wide variety of efforts to create an artificial brain teeing off of this week’s publication of the cerebellum work in Cell Reports. The piece is fairly comprehensive covering computerized efforts to give robots intelligence and Europe’s Human Brain Project that is trying to map all the activity of the brain as a starting point for recapitulating it in the lab.

The experts interviewed included Robert Caplan of Tufts University in Massachusetts who is using 3-D scaffolding to build functional brain tissues that can process electrical signals. He is not planning any Frankenstein moments; he hopes to create models to improve understanding of brain diseases.

“Ideally we would like to have a laboratory brain system that recapitulates the most devastating diseases. We want to be able to take our existing toolkit of drugs and understand how they work instead of using trial and error.”

Teeth eyed as source of help for the blind. Today the European Union announced the first approval of a stem cell therapy for blindness. And already yesterday a team at the University of Pittsburg announced they had developed a new method to use stem cells to restore vision that could expand the number of patients who could benefit from stem cell therapy.

Many people have lost part or all their vision due to damage to the cornea on the surface of their eye. Even when they can gain vision back through a corneal transplant, their immune system often rejects the new tissue. So the ideal would be making new corneal tissue from the patient’s own cells. The Italian company that garnered the EU approval does this in patients by harvesting some of their own cornea-specific stem cells, called limbal stem cells. But this is only an option if only one eye is impacted by the damage.

The Pittsburgh team thinks it may have found an unlikely alternative source of limbal cells: the dental pulp taken from teeth that have be extracted. It is not as far fetched at it sounds on the surface. Teeth and the cornea both develop in the same section of the embryo, the cranial neural crest. So, they have a common lineage.

The researchers first treated the pulp cells with a solution that makes them turn into the type of cells found in the cornea. Then they created a fiber scaffold shaped like a cornea and seeded the cells on it. Many steps remain before people give up a tooth to regain their sight, but this first milestone points the way and was described in a press release from the journal Stem Cells Translational Medicine, which was picked up by the web site ClinicaSpace.

CIRM funds a project that also proposes to use the patient’s own limbal stem cells but using methods more likely to gain approval of the Food and Drug Administration than those used by the Italian company.

Stem cells and the fight against obesity. Of the two types of stem cells found in your bone marrow, one can form bone and cartilage and, all too often, fat. Preventing these stem cells from maturing into fat may be a tool in the fight against obesity according to a team at Queen Mary University of London.

The conversion of stem cells to fat seems to involve the cilia, or hair-like projections found on cells. When the cilia lengthen the stem cells progress toward becoming fat. But if the researchers genetically prevented that lengthening, they stopped the conversion to fat cells. The findings opens several different ways to think about understanding and curbing obesity says Melis Dalbay one of the authors of the study in a university press release picked up by ScienceNewsline.

“This is the first time that it has been shown that subtle changes in primary cilia structure can influence the differentiation of stem cells into fat. Since primary cilia length can be influenced by various factors including pharmaceuticals, inflammation and even mechanical forces, this study provides new insight into the regulation of fat cell formation and obesity.”

10 Years/10 Therapies: 10 Years after its Founding CIRM will have 10 Therapies Approved for Clinical Trials

In 2004, when 59 percent of California voters approved the creation of CIRM, our state embarked on an unprecedented experiment: providing concentrated funding to a new, promising area of research. The goal: accelerate the process of getting therapies to patients, especially those with unmet medical needs.

Having 10 potential treatments expected to be approved for clinical trials by the end of this year is no small feat. Indeed, it is viewed by many in the industry as a clear acceleration of the normal pace of discovery. Here are our first 10 treatments to be approved for testing in patients.

HIV/AIDS. The company Calimmune is genetically modifying patients’ own blood-forming stem cells so that they can produce immune cells—the ones normally destroyed by the virus—that cannot be infected by the virus. It is hoped this will allow the patients to clear their systems of the virus, effectively curing the disease.

Spinal cord injury patient advocate Katie Sharify is optimistic about the latest clinical trial led by Asterias Biotherapeutics.

Spinal cord injury patient advocate Katie Sharify is optimistic about the clinical trial led by Asterias Biotherapeutics.

Spinal Cord Injury. The company Asterias Biotherapeutics uses cells derived from embryonic stem cells to heal the spinal cord at the site of injury. They mature the stem cells into cells called oligodendrocyte precursor cells that are injected at the site of injury where it is hoped they can repair the insulating layer, called myelin, that normally protects the nerves in the spinal cord.

Heart Disease. The company Capricor is using donor cells derived from heart stem cells to treat patients developing heart failure after a heart attack. In early studies the cells appear to reduce scar tissue, promote blood vessel growth and improve heart function.

Solid Tumors. A team at the University of California, Los Angeles, has developed a drug that seeks out and destroys cancer stem cells, which are considered by many to be the reason cancers resist treatment and recur. It is believed that eliminating the cancer stem cells may lead to long-term cures.

Leukemia. A team at the University of California, San Diego, is using a protein called an antibody to target cancer stem cells. The antibody senses and attaches to a protein on the surface of cancer stem cells. That disables the protein, which slows the growth of the leukemia and makes it more vulnerable to other anti-cancer drugs.

Sickle Cell Anemia. A team at the University of California, Los Angeles, is genetically modifying a patient’s own blood stem cells so they will produce a correct version of hemoglobin, the oxygen carrying protein that is mutated in these patients, which causes an abnormal sickle-like shape to the red blood cells. These misshapen cells lead to dangerous blood clots and debilitating pain The genetically modified stem cells will be given back to the patient to create a new sickle cell-free blood supply.

Solid Tumors. A team at Stanford University is using a molecule known as an antibody to target cancer stem cells. This antibody can recognize a protein the cancer stem cells carry on their cell surface. The cancer cells use that protein to evade the component of our immune system that routinely destroys tumors. By disabling this protein the team hopes to empower the body’s own immune system to attack and destroy the cancer stem cells.

Diabetes. The company Viacyte is growing cells in a permeable pouch that when implanted under the skin can sense blood sugar and produce the levels of insulin needed to eliminate the symptoms of diabetes. They start with embryonic stem cells, mature them part way to becoming pancreas tissues and insert them into the permeable pouch. When transplanted in the patient, the cells fully develop into the cells needed for proper metabolism of sugar and restore it to a healthy level.

HIV/AIDS. A team at The City of Hope is genetically modifying patients’ own blood-forming stem cells so that they can produce immune cells—the ones normally destroyed by the virus—that cannot be infected by the virus. It is hoped this will allow the patients to clear their systems of the virus, effectively curing the disease

Blindness. A team at the University of Southern California is using cells derived from embryonic stem cell and a scaffold to replace cells damaged in Age-related Macular Degeneration (AMD), the leading cause of blindness in the elderly. The therapy starts with embryonic stem cells that have been matured into a type of cell lost in AMD and places them on a single layer synthetic scaffold. This sheet of cells is inserted surgically into the back of the eye to replace the damaged cells that are needed to maintain healthy photoreceptors in the retina.