Stem cell stories that caught our eye: potential glaucoma therapy, Parkinson’s model, clinical trial list, cancer immune therapy

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Stem cells may be option in glaucoma.  A few (potentially) blind mice did not run fast enough in an Iowa lab. But lucky for them they did not run into a farmer’s wife wielding a knife. Instead they had their eye sight saved by a team at the University of Iowa that corrected the plumbing in the back of their eyes with stem cells. They had a rodent version of glaucoma, which allows fluid to build up in the eye causing pressure that eventually damages the optic nerve and leads to blindness.

human eye

The fluid buildup results from a breakdown of the trabecular meshwork, a patch of cells that drains fluid from the eye. The Iowa researchers repaired that highly valuable patch with cells grown from iPS type stem cells created by reprogramming adult cells into an embryonic-like state. The trick with any early stage stem cell is getting it to mature into the desired tissue. This team pulled that off by growing the cells in a culture dish that had previously housed trabecular meshwork cells, which must have left behind some chemical signals that directed the growth of the stem cells.

The cells restored proper drainage in the mice. Also notable, the cells not only acted to replace damaged tissue directly, but they also seem to have summoned the eye’s own healing powers to do more repair. The research team also worked at the university affiliated Veterans Affairs Hospital, and the VA system issued a press release on the work published in the Proceedings of the National Academy of sciences, which was posted by Science Codex.

 

A “mini-brain” from a key area.   The brain is far from a uniform organ. Its many distinct divisions have very different functions. A few research teams have succeeded in coaxing stem cells into forming multi-layered clumps of cells referred to as “brain organoids” that mimic some brain activity, but those have generally been parts of the brain near the surface responsible for speech, learning and memory. Now a team in Singapore has created an organoid that shows activity of the mid-brain, that deep central highway for signals key to vision, hearing and movement.

The midbrain houses the dopamine nerves damaged or lost in Parkinson’s disease, so the mini-brains in lab dishes become immediate candidates for studying potential therapies and they are likely to provide more accurate results than current animal models.

 “Considering one of the biggest challenges we face in PD research is the lack of accessibility to the human brains, we have achieved a significant step forward. The midbrain organoids display great potential in replacing animals’ brains which are currently used in research,” said Ng Huck Hui of A*Star’s Genome Institute of Singapore where the research was conducted in a press release posted by Nanowerk.

The website Mashable had a reporter at the press conference in Singapore when the institute announce the publication of the research in Cell Stem Cell. They have some nice photos of the organoids as well as a microscopic image showing the cells containing a black pigment typical of midbrain cells, one of the bits of proof the team needed to show they created what they wanted.

 

Stem cell clinical trials listings.  Not a day goes by that I, or one of my colleagues, do not refer a desperate patient or family member—often several per day—to the web site clinicaltrials.gov. We do it with a bit of unease and usually some caveats but it is the only resource out there providing any kind of searchable listing of clinical trials. Not everything listed at this site maintained by the National Institutes of Health (NIH) is a great clinical trial. NIH maintains the site, and sets certain baseline criteria to be listed, but the agency does not vet postings.

Over the past year a new controversy has cropped up at the site. A number of for profit clinics have registered trials that require patients to pay many thousands of dollars for the experimental stem cell procedure.  Generally, in clinical trials, participation is free for patients. Kaiser Health News, an independent news wire supported by the Kaiser Family Foundation distributed a story this week on the phenomenon that was picked up by a few outlets including the Washington Post. But the version with the best links to added information ran in Stat, an online health industry portal developed by The Boston Globe, which has become one of my favorite morning reads.

The story leads with an anecdote about Linda Smith who went to the trials site to look for stem cell therapies for her arthritic knees. She found a listing from StemGenex and called the listed contact only to find out she would first have to pay $14,000 for the experimental treatment. The company told the author that they are not charging for participation in the posted clinical trial because it only covers the observation phase after the therapy, not the procedure itself. The reporter found multiple critics who suggested the company was splitting hairs a bit too finely with that explanation.

But the NIH came in for just as much criticism for allowing those trials to be listed at all. The web site already requires organizations listing trials to disclose information about the committees that oversee the safety of the patients in the trial, and critics said they should also demand disclosure of payment requirements, or outright ban such trials from the site.

Paul-Knoepfler-2013 “The average patient and even people in health care … kind of let their guard down when they’re in that database. It’s like, ‘If a trial is listed here, it must be OK,’” said Paul Knoepfler, a CIRM grantee and fellow blogger at the University of California, Davis. “Most people don’t realize that creeping into that database are some trials whose main goal is to generate profit.”

The NIH representative quoted in the article made it sound like the agency was open to making some changes. But no promises were made.

 

Off the shelf T cells.  We at CIRM got some good news this week. We always like it when we see an announcement that technology from a researcher we have supported gets licensed to a company. That commercialization moves it a giant step closer to helping patients.

This week, Kite Pharma licensed a system developed in the lab of Gay Crooks at the University of California, Los Angeles, that creates an artificial thymus “organoid” in a dish capable of mass producing the immune system’s T cells from pluripotent stem cells. Just growing stem cells in the lab yields tiny amounts of T cells. They naturally mature in our bodies in the thymus gland, and seem to need that nurturing to thrive.

T-cell based immune therapy is all the rage now in cancer therapy because early trials are producing some pretty amazing results, and Kite is a leader in the field. But up until now those therapies have all been autologous—they used the patient’s own cells and manipulate them individually in the lab. That makes for a very expensive therapy. Kite sees the Crooks technology as a way to turn the procedure into an allogeneic one—using donor cells that could be pre-made for an “off-the-shelf” therapy. Their press release also envisioned adding some genetic manipulation to make the cells less likely to cause immune complications.

FierceBiotech published a bit more analysis of the deal, but we are not going to go into more detail on the actual science now. Crooks is finalizing publication of the work in a scientific journal, and when she does you can get the details here. Stay tuned.

Stem cell stories that caught our eye: herding stem cells, mini autistic brains, tendon repair and hair replacement

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Major advance in getting stem cells to behave.  The promise of embryonic stem cells comes from their ability to become any cell type in the body, but medical uses of the cells have been hampered by our poor ability to quickly get them to mature into pure populations of a desired adult tissue. Scientists at Stanford, partially funded by CIRM, and the Genome Institute of Singapore have teamed up to better understand the normal road map of how the various tissues develop in the embryo and in turn fine tune the recipes used to make specific tissues in the lab. They claim to have created pure colonies of 12 different specialized tissues in half the time or less of normal procedures, which usually result in an undesired mix of cells.

 “The problems of making or isolating pure samples of one specific cell type has been a substantial barrier to medical uses of embryonic stem cells. This research looks like a way around that problem,” said Hank Greely, a medical ethicist at Stanford not involved in the work in an article in the East Bay Times.

 

1438782691969

Weissman

This is a problem researchers around the world have been trying to crack since human embryonic stem cells were first isolated in 2008. The brief paragraph above on how they did it does not do justice to a very elegant and complex research project led by one of the leaders of the field, Irving Weissmann. Stanford’s press release provides more detail about how they achieved the milestone, which should significantly accelerate the field of regenerative medicine.

 

 

Mini brains to figure out oversize brains.  The many forms of autism have many different causes—though most are unknown—and a wide array of symptoms and physical manifestations. An international team has used a lab dish “mini-brain” model to discover the cause of one form of autism, one linked to over-sized brains, which occurs in about 20 percent of children with autism spectrum disorder (ASD).

Autistic neurons Muotri

Nerve precursor cells grown from iPS cells created from children with autism. Inhibitory nerves (in red) are not in sufficient numbers.

A team led by Alysson Muotri at the University of California, San Diego (UCSD), started with tissue samples from children with the disorder and reprogrammed them into iPS type stem cells. They matured those stem cells, first into nerve progenitors and then into the various nerves that in normal cells would result in mini-brains in the lab dish.  But instead of a healthy mix of cells that promote and inhibit nerve growth, they found a lack of inhibitory nerves allowing the overgrowth seen in the condition. They also showed the nerve cells did not send signals to each other properly; they lacked synchronization.

 “The bottom line is that we can now effectively model idiopathic ASD using a cohort of individuals selected by a clear endophenotype. In this case, brain volume,” said Muotri, in a university press release posted by Health Canal. “And early developmental brain enlargement can be explained by underlying molecular and cellular pathway dysregulation, leading to altered neuronal cortical networks.”

More important, they treated the nerves in the dish with a drug, IGF-1, that is currently being tested in the clinic for autism,  and found a reversal of the nerve miss-firing in some of the samples. Their model should make it easier to test more potential drugs, as well.

It has been a big week for improved understanding of ASD. Earlier in the week Fred Gage’s team across the street from UCSD at the Salk institute—where Muotri worked as a post-doctoral fellow—published a causal link for another form of autism, which my colleague Karen Ring wrote about earlier this week in The Stem Cellar.

 

shutterstock_425039020Help for weekend warriors. How many of your friends have ended up on crutches after a weekend of too much basketball or tennis, with a diagnosis of a torn ligament or tendon? And have they said they wished they had broken a bone instead because it would heal faster? Medicine has not been able to speed the healing of those delicate connecting straps in large part because we haven’t known much about how they are created during development. So a team at the Scripps Research Institute set out to find out how they develop and heal naturally.

 “If we understand the molecular mechanisms of tendon development, we can apply the findings to develop a new regenerative therapy for tendon diseases and injuries,” said team leader Hiroshi Asahara in an institution release posted by Sciencecodex.

 They found one gene in particular linked to tendon development and repair in an animal model. They used the new trendy gene editing tool CRISP to regulate the gene in rats. They found the gene results in the production of more tenocytes, which are needed to maintain healthy tendon. That pathway now becomes a target for developing new therapies to help those hobbling friends.

 

For the follicular challenged. On a lighter note, one of the least impactful but most common medical conditions, hair loss, has become a target of therapy development by many university and industry teams. Forbes posted a run down about the activities of some of the leaders of the hair pack.

Not all the author’s science is spot on, for example, when talking about the only organs that constantly regenerate the author ignored the fact that our gut lining turns over about every four days. But he provides a good review of how our hair follicles generally do a good job of replenishing hair and what goes wrong when they fail.

The author focuses most on the work of Japan’s RIKEN Institute, providing an easy to follow info-graphic on how the team there envisions harvesting a small skin sample, sorting the stem cells out of the hair follicles in the sample, growing those stem cells in the lab many fold and then injecting cells back to where they are needed. That team hopes to have a commercial product by 2020. In the meantime, the top of my head will remain intimately acquainted with sun screen.

Stem cell stories that caught our eye: heart repair, a culprit in schizophrenia, 3-parent embryos and funding for young scientists

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Chemicals give stem cells heart.  Coaxing stem cells into improving the function of failing hearts has proven quite difficult. Many trials have used a type of stem cell found in fat and bone marrow, called mesenchymal stem cells, to release factors believed to reduce scarring after a heart attack and improve the growth of new blood vessels to nourish the damaged area. But they have produced spotty and only modest positive results. CIRM funds a team at Capricor that uses related cells, but retrieved from heart tissue and believed to release factors that are more efficient in fostering repair—the results are still pending.

Get-Over-Heartbreak-Step-08 This week a Belgian company, using technology developed by the Mayo Clinic in Minnesota, announced positive results for a third option. They start with the stem cells from bone marrow, but in the lab treat them with a cocktail of chemicals that take them part way down the path to becoming heart muscle—into cells called cardiac progenitors. Having shown safety and initial signs of benefit in Phase 1 and 2 trials in Europe, the company Celyad launched the first part of a Phase 3 trial in 2012 and released the results this week.

The company’s research team found that, as with many breakthrough therapies, the most important aspect of early trials is defining which patients are most likely to benefit. The results did not show a benefit for the entire patient group lumped together, but did show significant gain for the 60 percent who fit a certain profile of symptoms at the start of the study. Twin Cities Business wrote about the research that originated in its home state, quoting the lead researcher with OLV Hospital in Belgium, Jozef Bartunek:

 “The results seen for a large clinically relevant number of the patients are groundbreaking,” adding that the results would direct the selection of patients for the second part of the trial to be conducted in the U.S.

The fundamental work done by researchers at Mayo discovered the mechanisms that drive an embryonic stem cell to become heart cells and used that information to develop the cocktail of chemicals that can turn ordinary adult stem cells into cardiac progenitors.

 

Stem cell model fingers culprit in brain. We were all taught the dogma about the path from genes to our tissues: DNA to RNA to protein. And we learned that two types of RNA did the heavy lifting in this transition from genetic recipe to functioning tissue. But RNAs have turned out to be a much more complex family of genetic players, with several types regulating genes rather than coding for any specific function. Some of the most active of these are the micoRNAs with more than 2,000 identified.

A CIRM-funded team at the Salk Institute in La Jolla has fingered one microRNA, miR-19, as playing a role in the faulty wiring seen among nerves in patients with schizophrenia. We always have a few nerve progenitor cells maturing into nerves. But the team found that when they altered the levels of miR-19 the new nerves did not migrate to where they were needed. So, the researchers made iPS type stem cells from patients with schizophrenia, matured them into nerves and looked at miR-19 levels and found them elevated. They also showed the nerve cells did not migrate properly.

 “This is one of the first links between an individual microRNA and a specific process in the brain or a brain disorder,” said senior author Rusty Gage, in an institute press release posted by trueviralnews.

mir19-schizophrenia-neurosciencenews

Over expressing the microRNA miR-19 resulted in new nerves migrating and branching abnormally (right) compared to untreated cells (left)

 

Profile of 3-parent pioneer.  No matter where you stand on the ethics of the “three-parent” fertilization technique that has been much in the news this year, you will enjoy reading Karen Weintraub’s well researched and well written piece about the leading pioneer in the field, Shoukhrat Mitalipov in STAT this morning.

 

Mitalipov-2

Pioneer Mitalipov

The technique focuses on the 37 genes that reside in our cells’ mitochondria rather than in the cells’ nucleus. We only inherit those genes from our moms because we only get the mitochondria in mom’s egg. So, when a woman has a disease-causing mutation in one of those genes, she could have a healthy child that mostly matched her genetic makeup if she could just swap out her mitochondria for someone else’s. That is exactly what the new technique accomplishes.

So far, it has only been tried in monkeys, the oldest of those offspring are now 7 but they are males. The first female is just 4 and since monkeys don’t reproduce until age 6 or 7, and the FDA wants to see how her babies fare, it will be some time before the procedure gets the green light to move forward in humans. None of the 3-parent monkeys show any health issues so far.

Karen’s piece paints a detailed account of the research’s protractors and detractors, as well putting a human face on the man leading the charge. As someone who reads regular posts from a cousin with a child struggling from “Mito” disease, I am rooting for this protagonist.

 

Funding challenge for young stem cell scientists.  A new study in the journal Cell Stem Cell quantifies a lament you hear anytime you are around young researchers, they have a hard time competing with older researchers in the field. The author of the report, Misty Heggeness from the National Institutes of Health, was quoted in news outlets including the San Diego Union Tribune and the blog Science 2.0 on a related issue that should set off alarm bells. If young people are not attracted to the field or fail to stay in the field, at the same time established scientists are nearing retirement age, we could end up with a gap in the research workforce in a few years.

 “From a policy and leadership perspective, one needs to understand what the near future year implications of an aging workforce are. If a system discourages younger cohorts from staying and is heavily composed of older cohorts who will exit the workforce in the near term, who will replace them?”

Part of the problem young researchers have seems to be baked into the current system. Young researchers compete fairly well with older ones on individual applications, but older researchers have the resources to file a lot more applications.  They have more personnel in their labs, freeing them up to write applications, and that personnel also produces the preliminary data that are often needed to even meet application requirements.

The Union Trib piece pointed out that older and younger stem cell scientists are both doing better with funding in California because of CIRM.

Stem cell stories that caught our eye: growing muscle, new blood vessels and pacemakers and Tommy John surgery

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Better way to grow muscle.  The specialized stem cells responsible for repairing muscle, the satellite cells, have always been difficult to grow in large quantities in the lab. They have a strong natural hankering to mature into muscle. Researchers have not been able to keep them in their stem cell state in the lab and that prevents creating enough of them for effective therapies for diseases like muscular dystrophy.

new muscle Kodaira

New muscle fibers in green grown in mice from satellite stem cells

A team at the National Institute of Neuroscience in Kodaira, Japan, published what seems to be a simple solution to the problem. In a press release from the publisher of the Journal of Neuromuscular Diseases posted by Science Daily they reported that adding just one protein to satellite cells allowed them to grow indefinitely in the lab and expand to the point they could provide a meaningful transplant that resulted in muscle repair in mice.

 “This research enables us to get one step closer to the optimal culture conditions for muscle stem cells,” said Shin’ichi Takeda from the institute.

The protein they used, leukemia inhibitory factor, and its downstream impacts on other genes is now the subject of their ongoing research.

 

Regenerating heart vessels. A CIRM funded team at Sanford Burnham Prebys Medical Discovery Institute (SBP) in San Diego and at Stanford University have shown that repressing a single gene can encourage the formation of new blood vessels in the heart. Creating those new conduits for oxygen after a heart attack could reduce damage to the heart muscle and prevent development of heart failure.

Building new blood vessels requires coordination of several growth factors and clinical trials evaluating individual factors have resulted in failure. The SBP team found that a single gene repressed all those needed factors and blocking it could let them do their job and create new blood vessels.

Mark Mercola

Mark Mercola

“We found that a protein called RBPJ serves as the master controller of genes that regulate blood vessel growth in the adult heart,” said senior author Mark Mercola, a professor at SBP and at Stanford, in an institute press release. “RBPJ acts as a brake on the formation of new blood vessels. Our findings suggest that drugs designed to block RBPJ may promote new blood supplies and improve heart attack outcomes.”

 The authors also suggested that RBPJ itself might be beneficial in cancer if it can inhibit the new blood vessels tumors need to thrive.

 

Bionic patch as pacemaker.  Chemists at Harvard have designed nanoscale electronic scaffolds that can be seeded with heart cells and are able to conduct current to detect irregular heart rhythms and potentially send out electrical signals to correct them.

 “Rather than simply implanting an engineered patch built on a passive scaffold, our works suggests it will be possible to surgically implant an innervated patch that would now be able to monitor and subtly adjust its performance,” said Charles Lieber the senior author in a university press release posted by Phys.Org. The research was published in Nature Nanotechnology

 With its electronics built into the patch that is integrated into the heart, Lieber suggested the bionic patch could detect heart rhythm problems sooner than traditional pace makers. Another use for the patch he suggested could be to screen potential drugs.

 

Alternate to Tommy John in pictures. Sports fans generally have a vague idea of what Tommy John surgery is. First performed on baseball pitcher Tommy John of the LA Dodgers in 1974, the surgery replaces a torn elbow tendon with one from another part of the body.  A number of baseball players in the past couple years have made headlines because they sought out an alternative to this invasive procedure using stem cells.

The players sometimes improve, but with their high-priced team doctors also demanding extensive physical therapy and other interventions, we don’t really know how much of the improvement is due to the stem cells.  I am not aware of controlled clinical trials looking at the alternative therapy.

LA Angels Andrew HeaneyBut given how much it is in the news, I thought it would be good to share this excellent info-graphic from the LA Times explaining exactly what happens with the stem cell version of the Tommy John procedure. The Times posted the graphic yesterday, and then today, papers around the country ran stories that the most recent famous recipient of the cells, Los Angeles Angels lefthander Andrew Heaney, was going to have the old-fashioned surgery today because the stem cell treatment did not work in this case.

There may be some individuals, likely those with only partial tears who might benefit from this stem cell procedure that uses a type of stem cell that is not likely to replace tendons, but can release factors that summons the body’s natural healing apparatus to do a better job.  But until more formal clinical trials are conducted, it will be hard for     doctors to know who would and would not benefit.

Presentations at ISSCR that caught our eye: Stem cell clinical trials expand as work to improve our understanding of just how they work goes on in parallel

In a special edition of our weekly roundup, here are some highlights from just the first two days of the four-day annual meeting of the International Society for Stem Cell Research

 Seeing stem cells from both sides now. As the biggest gathering of stem cell researchers each year, the annual meeting of the International Society for Stem Cell Research offers a chance to catch up on progress across the complete spectrum of research, from fundamental exploration in the lab to clinical trials. This year’s meeting in San Francisco offers more advances toward the clinic than ever before, but it also shows a cadre of basic researchers struggling to understand what is really going on at the genetic and molecular level with some of the biggest breakthroughs of the past few years. It is a bit like the opening verse of Joni Mitchell’s song “Both Sides Now” in which she laments that even after seeing clouds as beautiful patterns and as blocks to the sun she does not really know clouds at all.

Yamanaka at ISSCR 2016

Nobelist Shinya Yamanaka at the annual ISSCR meeting

Nothing captured that spirit better than the opening talk on the second day by Nobel Prize winner Shinya Yamanaka who maintains labs at Kyoto University in Japan and at the Gladstone institutes here in San Francisco, about a mile from the site of the meeting. This year marks the 10th anniversary of his Nobel-winning discovery that you can use genetic factors to reprogram adult cells into embryonic-like stem cells called iPS cells. Even as his institute is supplying the cells for the first ever clinical trial using iPS, in this case in the blinding disease called macular degeneration, he spent much of his talk discussing his ongoing basic research trying to understand what really goes on in that reprogramming process, and why so many cells are refractory to reprogramming with only a few percent in most experiments becoming stem cells.

Before launching into his ongoing basic research—some of it from a research thread he began to unravel as a postdoc at the Gladstone—he told an enlightening tale of how he had been reprogrammed as a scientist.  He said that he went from a a basic researcher just working in his lab to someone who spent much of their time talking to government officials, bankers and donors. But he noted that like our cells, part of him was refractory to reprogramming and he still liked getting into the lab to do the basic research needed to understand the creation of iPS cells and make it it faster and more efficient, which is critical to any future role for the cells at the other end of the research pipeline—treating patients in need.

 

It takes a neighborhood. As usual much of the basic science revolved around the lab recipes needed to keep stem cells in the stem cell state in the lab, or how to efficiently direct them to become a specific type of adult tissue. On the latter there was also considerable work presented on how to get around the fact that too often the adult cells created from stem cells are not fully mature and function more like those tissues would in the fetus than they should in an adult patient.

Fiona Watt of Kings College London presented her work on studying the one “organ” that is easier to study in humans than mice: the skin hair follicle. In the furry critters the hair follicles are too close together to easily isolate individual ones. With our sparser covering it is easy to study single hair follicles, which serve as the niche that houses skin stem cells until they are needed to replenish or repair our outer barrier. In recent years, when trying to understand how stem cells stay stem cells or decide to mature into specific tissue, researchers have increasingly turned their attention to the niches all over the body that stem cells call home. They are finding that there are many facets to these homes—physical, chemical and genetic—that like any neighborhood, impact how a stem cell grows up.

Watt opened by paying tribute to a pioneer in the field who died this past year, Harvard Med School’s Howard Green, who was always a treat to interview when I was there, and who pioneered single cell analysis in skin four decades ago. Watt’s work tries to break down the various components of the skin stem cell niche in the lab to see how each contributes to cell fate. She looked at the extracellular matrix, the scaffold that holds cells in place, and found a link between the size of the hole in the scaffold and cells remaining stem cells. She also found difference between soft and hard scaffolds. She noted other factors such as the type of cell that lives next door and the oxygen level all impact the cell decisions.

She suggested that these determinants of cell fate are likely consistent across stem cell niches throughout the body and will be critical to more efficiently producing replacement tissues to help patients.

 

Jumping from A to C, skipping B.  Two researchers followed Watt who are trying to develop ways to skip the step of turning adult cells in to iPS-type stem cells and instead convert them directly into the desired tissue needed for repair. Stanford’s Marius Wernig, who cited funding from CIRM and the New York Stem Cell Foundation, reported on his work trying to improve his breakthrough from a few years ago in which he converted skin into nerve with just one genetic factor. He is investigating the underlying structures of our DNA to try to understand why only 20 percent of cells make the desired conversion. He is finding some answers but has more to ferret out.

 

parmar

Malin Parmar

Then Malin Parmar of Sweden’s Lund University went into more detail on the fetal cell and stem cell transplant trials she is working with in Parkinson’s disease that she described at our public symposium earlier in the week. But she closed with work that she thinks could be the ultimate best solution to the disease.  Finding genetic factors that can convert other nerve cells directly into the dopamine-producing nerve cells lost in patients with the disease. She started with Wernig’s recipe and added a genetic factor known to drive cells to become dopamine nerves. She succeeded in turning brain cells called glial cells into dopamine nerves inside the brains of mice and showed they made the needed connections to other brain cells. But the work is still some years from getting to patients.

 

The complexities of the heart.  Yesterday afternoon five researchers presented different ways to figure out how to use stem cells to repair or replace a very complex organ, the heart. Shen Ding from Gladstone, who has pioneered the concept of using chemical instead of genetic factors to reprogram cells, presented his latest work in which he used that technique to grow partially mature heart cells in the lab, transplanted them into mice and saw them mature into tissue that improved heart function in a model of heart attack. He said his next experiments will involve finding a way to deliver the chemicals directly into the damaged heart to try to get the reprogramming done in the living animal.

57966-heartinribcagesmall

Stephanie Protze, of the McEwen Centre for Regenerative Medicine in Toronto, presented work on another component of the heart, the pace maker cells that ensure any new muscle cell beats at the right speed.  She described a recipe to drive stem cells to become pace maker cells, but there was a glitch. They beat at 150 beats per minute, which is the fetal rate not the adult rate. So, once again the field ran into the block of creating only partially mature tissue.

Tamer Mohamed, also of the Gladstone, presented work using chemicals to convert heart scar tissue to functional heart muscle. His work tweaked an earlier recipe that resulted in fewer than one percent of cells converting to a procedure that resulted in 30 percent. In the mouse model he saw improved heart function and reduced scarring.

University of Pittsburgh’s Lei Yang presented work on a very big, long-term goal for the field: producing a complete replacement heart. Like several other teams, his group started with a mouse donor heart and used detergents to wash away the cells so that all that was left was the scaffold of that extracellular matrix mentioned above.  He then seeded the scaffold with heart cells derived from iPS cells and let them mature.  The work resulted in what he called “beating heart constructs.”  Some of the cells beat with needed synchronicity and some did not.

All in all, the meeting exudes measured confidence. The field is clearly making rapid strides toward understanding stem cells well enough to create meaningful therapies.  However, it is ripe for what is called “reverse translation,” which is taking the findings of early clinical trials  that don’t perform quite as well as desired, and going back to  the lab to figure out how to make them better.

Stem cell stories that caught our eye: hearts with nerve, keeping adult stem cells as stem cells and lab models for the inner ear and pituitary

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Hearts with nerve.  When trying to heal a damaged heart you can’t just worry about the heart muscle, you also need to pay attention to the nerves that tell the muscle what to do. A team at John Hopkins has grown nerves from stem cells in the lab that connect to heart cells growing in the same dish, a key step to making the two tissues collaborate where you need them.

Specifically, the team grew sympathetic nerves—a name that never made much sense to me, but basically refers to all those nerves that function without us thinking about their role, like breathing and heartbeat. Faulty sympathetic nerves lead to several diseases including high blood pressure. While it will likely be many years before this work leads to lab-grown heart muscle and nerves teaming up in actual patients, using nerves grown from stem cells made from patients, teams can begin studying those diseases in the lab now.

The researchers published their work in Cell Stem Cell, and ScienceDaily posted the university’s press release. Much of the work involved what has become classic in stem cell research, trying many different combinations of growth factors applied at different moments in time until they arrived at just the right recipe to end up with sympathetic nerves.

 

inner-ear-organoid-Atoh1-GFP-resized

Lab grown inner ear structure (Indiana University)

Inner ear grown in a dish.  Researchers at Children’s Hospital, Boston, and Indiana University have succeeded in growing a sac-like tissue that contains the inner ear organs responsible for balance. Starting with mouse embryonic stem cells, the resulting one millimeter structure contained functioning sensory hair cells critical to hearing.

Jeffrey Holt of Children’s said, in the hospital’s Vector blog, that he hopes to use the lab model of the inner ear to test potential therapies for balance disorders he sees in children coming to the facility. The lab-grown tissues seem to behave like the real thing, responding to mechanical stimuli by producing tiny electrical currents. The team published its research in Nature Communications.

 

Getting adult stem cells to stay stem cells.  While pluripotent stem cells like embryonic stem cells can generally be grown in the lab indefinitely, most stem cells from adult tissue eventually mature into specific adult tissue and loose the stem cell property of being able to renew themselves. Researchers at Harvard and Massachusetts General Hospital (MGH) developed a process that keeps adult stem cells from maturing into specific tissue. This could eventually help teams scaling up production of potential therapies but can already speed up and reduce the cost of much of the research getting to that point.

The MGH team worked with airway stem cells, which have been particularly hard to maintain in the lab and require constant collection of new cells that can require invasive procedures such as bronchoscopy. This has made diseases such as asthma and COPD hard to study using stem cell models of disease, which are generally more accurate than animal models.

They started by looking at what internal cellular signaling pathways were active in cells that were maturing into specific tissue but that were not active in the stem cells. They found two such pathways and developed ways to shut down those cell signals. That in turn kept cell in the stem cell state and allowed them to be grown in large quantities in the lab. They were even able to do this with the few airway stem cells that patients cough up when collecting a sputum sample. This would greatly simplify stem cell collection for researchers and patients.

“We also found that the same methodology works for many tissues of the body — from the skin to the esophagus to mammary glands. Many of these organ tissues cannot currently be cultured, so it remains to be seen whether scientists in these areas will be able to grow stem cells from samples acquired from other minimally invasive procedures, including the collection of secretions. If all this becomes possible, it would represent a big step forward for personalized medical approaches to disease,” said Jayaraj Rajagopal, senior author on the paper published in Cell Stem Cell in an MGH press release posted by ScienceDaily

 

Tunable pituitary tissue. While prior research has reported creating tiny pituitary organoids in a dish, those tissues were not very precise in what hormones they produce. Given the fact that the pituitary gland secretes hormones for growth, reproduction and the stress response, and patients with pituitary disease have varying deficiencies in specific hormones, random production of various hormones isn’t likely to be effective treatment.

pituitarytis

Pituitary cells grown from stem cells

Now a team at the Sloan Kettering Institute for Cancer Research led by Lorenz Studer has developed a system of adjusting two factors used to drive stem cells to become pituitary tissue. This system results in adjustable proportions of the tissue that produces different hormones. That way you can get more or less of the various hormones that a patient may need.

When transplanted into rats, the lab grown tissue succeeded in secreting multiple hormones and causing appropriate responses in the animals. Bastian Zimmer, the first author on the paper in Stem Cell Reports, suggested the technique could be used to generate specific cell types for patients with different types of hypopituitarism.

“For the broad application of stem cell-derived pituitary cells in the future, cell replacement therapy may need to be customized to the specific needs of a given patient population,” Zimmer said in a release provided by the journal and posted by MedicalXpress.

Patient advocates a small but mighty force at BIO meeting

Patient Advocacy Pavilion at BIO2016

Patient Advocacy Pavilion at BIO2016

A few hundred patient advocates operating from a small sub-section carved out of three cavernous exhibit halls could easily get lost amid the 16,000 scientists and business folks attending the BIO International meeting in San Francisco last week. But their voice was heard as they made great use of the meeting to remind companies developing therapies that they are the end user. They are the reason why the companies exist.

Talking to many advocates representing their constituents from the tiny two-foot by one-foot shelves and a stool they were each given within the advocate zone a couple of consensus points came through. The meeting provided incredibly valuable contacts for the patient advocates, and the attitudes of the companies are changing.

 “We want to make people aware that family caregivers are making care decisions,” said Mark Gibbons of the Caregiver Action Network. “It has been wonderful having companies reach out to us rather than us making cold calls on them.”

Bill Remak of the California Chronic Care Coalition had similar thoughts on the changing attitude, but on a different aspect of the patient-company interface:

 “This has been a very good meeting; we made really good contacts and had great discussions on business models, pricing and making products accessible to patients. The mentality is changing to more concern on patient access.”

We had a lengthy discussion with Sean Elkins, chief science officer, and Allison Moore, CEO, of the Hereditary Neuropathy Foundation. They fight the battle to get therapies to their constituents on two fronts: The battle to get funding for the research as well as the added barrier of working with orphan diseases. They represent folks with Charcot-Marie-Tooth (CMT) disease and a half dozen related neurologic conditions. And while a prevalence of one in 2,500 makes it one of the more common orphan diseases, they have no treatments, and still have a hard time getting some company’s attention.

Allison Moore

Allison Moore and Sean Elkins

As a result, they initiate many research projects themselves with their own donor-derived funds and federal grants. In one effort they developed an assay for whether existing drug compounds could impact the nerves of patients with CMT. They have been testing many existing compounds and finding a few candidate therapies. But Elkins lamented on Twitter that he wished the drug companies would train their exhibit staff better about rare diseases. “When you approach some of them and say you have tested some of their products in an orphan disease they act like a deer in the headlights.”

His colleague, Moore, noted their efforts to take the bull by the horns and bring in the next generation of scientist/business people to tackle their diseases. “The highlight of the meeting for us has been meeting with former academics starting companies who are excited about the prospect of working on something new.”

Moore’s own story highlighted the dedication evident among the advocates at the meeting. She is a patient herself and not just a foundation executive. She worked the meeting so hard that by the third day she had bandages on both legs to cover the blisters from the braces that allow her to walk despite the underlying illness.

Everyone working the patient advocate zone at the meeting seemed pleased to have the chance to make connections that might one day make things a bit better for their constituents. This was the first time attending for the team from the California Chronic Care Coalition and the group’s CEO, Liz Helms, was exuberant in stating their time was well spent:

 “This meeting was over the top valuable; everything we expected and more.”

Stem cell stories that caught our eye: hopeful stroke data, new target for muscular dystrophy and a rave from Silicon Valley

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Stroke study offers hope.  The dogma in stroke recovery says six months after the event patients will have recovered as much as they ever will. A research team at Stanford and the University of Pittsburg may have proven that wrong. They injected mesenchymal stem cells (MSCs) from donor bone marrow directly into the brains of 18 patients and saw significant improvement in the patients’ mobility.

Gary Steinberg, the lead researcher at Stanford where 12 of the patients were treated, offered appropriate caution in a university release stating that more and bigger clinical trials will be needed to verify these results:

“This was just a single trial, and a small one. It was designed primarily to test the procedure’s safety. But patients improved by several standard measures, and their improvement was not only statistically significant, but clinically meaningful. Their ability to move around has recovered visibly. That’s unprecedented.”

wheelchair-567810_960_720

At least one patient was able to abandon her wheel chair

At least one patient was able to abandon here wheel chair.

News outlets around the world ran the story including CNBC and Hufffington Post, which included an interview with Sonia Olea Coontz who had one of the more dramatic recoveries. Like most of the patients, Coontz was more than a year out from her stroke and generally considered unable to regain any lost function, but after the injection her right arm and leg “woke up” in her words.

The team used MSCs from two donors that had been modified to enhance their ability to secrete factors that can foster the innate healing ability of the brain. Steinberg noted that the stem cells did not stay in the brain for much more than a month. But, during that time they seem to have done something pretty amazing. Can’t wait to see if the team repeats this result in a planned 156-patient trial.

 

 Stem cell decisions and muscular dystrophy. While most muscle repair relies on a type of stem cell that can only become muscle, a second type of stem cell that can become muscle or fat also has a role and might provide a way to intervene in the muscle wasting of muscular dystrophy. A team at Rockefeller University in New York City has found a gene that can direct those cells, called pericytes and PICs, to preferentially become muscle.

Previous work had shown that the loss of the protein laminin was associated with some forms of muscular dystrophy and that injecting it directly into the muscle of mice did alleviate some of their muscular dystrophy. But laminin does not migrate from the injection site so in humans would require far too many injections. So the Rockefeller researchers looked to see how laminin affects the activity of genes—whether they are turned on or off—in those special stem cells. They found one gene in particular, gpihbp1, that when forced on could result in the stem cells making much more muscle.

 “Our data suggests that gpihbp1 could be a novel target for the treatment of muscular dystrophy,” said team leader Sidney Strickland in an article posted by Scicasts.

 The researchers published their work in the journal Nature Communications.

 

Silicon Valley leader pushes stem cells. Eric Schmidt, former CEO of Google and current executive chairman of its parent company Alphabet, told The Economic Club of New York this week that America needs to concentrate on transformative big ideas, and he included stem cell science among those.

Google's Eric SchmidtWhen he talked about tackling important problems with science and technology he cited 3D printing of buildings and using stem cells to grow body parts as examples. In an article on uncova.com he said he is seeing an “incredible revolution in medicine and this incredible revolution that’s going on in knowledge.”

When the interviewer, Charlie Rose, asked him whether, if he was starting over today, if he would go into computer science or biology, he answered with an anecdote about a computer scientist who went into biology marrying the two.

 

Stem cell stories that caught our eye: reducing radiation damage, making good cartilage, watching muscle repair and bar coding cells

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

A bomb blastaStem cells key to reducing radiation damage. With the anniversary of Hiroshima and President Obama’s historic visit to the site all over the news this week, it was nice to read about research that could result in many more people surviving a major radiation event—either from a power plant accident or the unthinkable repeat of history.

Much of the life-threatening damage that occurs early after radiation exposure happens in the gut, so a way to reduce that damage could buy time for other medical care. A team at the University of Texas Medical Branch at Galveston has discovered a drug that activates stem cells in the gut, which help maintain a healthy population of crypt cells that can repair gut damage.

A single injection of the small protein drug in mice significantly increased their survival, even if it was given 24 hours after exposure to radiation. The researchers published their work in the journal Laboratory Investigation and in a story written for MedicalNewsToday the lead author, Carla Kantara suggested the role the drug might have:

 “The current results suggest that the peptide may be an effective emergency nuclear countermeasure that could be delivered within 24 hours after exposure to increase survival and delay mortality, giving victims time to reach facilities for advanced medical treatment.”

The small protein, or peptide, named TP508, has already been tested in humans for diabetic foot ulcers so could be tested in humans fairly quickly.

 

Making good cartilage for your knees. Rarely a week goes by that I don’t tell a desperate osteoarthritis patient with painful knees that I am treating my own rotten knees with physical therapy until we learn how to use stem cells to make the right kind of cartilage needed for lasting knee repair. So, I was thrilled to read this week that the National Institutes of Health awarded Case Western Reserve University in Cleveland $6.7 million to develop a center to create standardized systems for monitoring stem cells as they convert into cartilage and for evaluating the resulting cartilage.

ear_wakeforest There are a couple problems with existing attempts to use stem cells for knee and other cartilage repair. First not all cartilage is equal and too often stem cells form the soft kind like in your earlobe, not the hard kind needed to protect knees. Also, it has been hard to generate enough cells to replace the entire area that tends to be eroded away in osteoarthritis, one of the leading causes of disability.

The new center, which will be available to researchers anywhere in the world, will develop tools for them to measure four things:

  • which genes are turned on or off as stem cells take the many steps toward becoming various forms of cartilage;
  • predict the best makeup of the extracellular matrix, the support structures outside cells that help them organize as they become a specific tissue;
  • evaluate the biochemical environment around the cells that helps direct their growth;
  • measure the mechanical properties of the resulting cartilage—is it more like the ear or the knee.

NewsWise posted the university’s press release

 

Damaged muscle grabs stem cells.  All our tissues have varying skills in self repair. Muscles generally get pretty high marks in that department, but we don’t really know how they do it. A team at Australia’s Monash University used the transparent Zebra fish and fancy microscopes to actually watch the process.

When they injured mature muscle cells they saw those cells send out projections that actually grabbed nearby muscle stem cells, which regenerated the damaged muscle. They published their findings in Science, the university issued a press release and a news site for Western Australia, WAtoday wrote a story quoting the lead researcher Peter Currie:

 “A significant finding is that the wound site itself plays a pivotal role in coordinating the repair of damaged tissue. If that response could be sped up, we are going to get better, or more timely, regeneration and healing.”

The online publication posted four beautiful florescent images of the cells in action.

 

muscle stem cells Monash

Muscle stem cells in action

“Bar coding” cells points to better transplants.  A team at the University of Southern California, partially funded by CIRM, developed a way genetically “bar code” stem cells so they can be tracked after transplant. In this case they watched the behavior of blood-forming stem cells and found the dose of cells transplanted had a significant impact on what the cells became as they matured.

The general dogma has blood stem cells producing all the various types of cells in our blood system including all the immune cells needed by cancer patients after certain therapies. But the USC tracking showed that only 20 to 30 percent of the stem cells displayed this do-it-all behavior. The type of immune cells created by the remaining 70 to 80 percent varied depending on whether there was a low dose of cells or a high dose, which can be critical to the effectiveness of the transplant.

 “The dose of transplanted bone marrow has strong and lasting effects on how HSCs specialize and coordinate their behavior,” said Rong Lu, senior author, in a USC press release posted by ScienceDaily. “This suggests that altering transplantation dose could be a tool for improving outcomes for patients — promoting bone marrow engraftment, reducing the risk of infection and ultimately saving lives.”

Free public event will detail the many ways stem cells are used in clinical trials today

The hundreds of active stem cell clinical trials being run in the US, and indeed around the world, provide ample evidence that our favorite cells are truly multi-talented. There are so many different ways researchers are using them to develop therapies we would be hard-pressed to name them all. However, most fall into five general categories that will be discussed at a free public symposium CIRM is co-hosting in conjunction with the International Society for Stem Cell Research during its annual meeting in San Francisco.

Moscone at dusk

San Francisco’s Moscone Center is close to BART and Muni public transit

The free public event will run from 6:00 to 7:30 on Tuesday evening June 21 at the Moscone West convention center, room 2009, on the corner of Howard and Fourth streets in San Francisco. After a brief overview, four researchers will describe active clinical trials and how stem cells provide hope for therapies in different diseases.  The last half hour will be open for general questions from the audience.

All the details are at a special page on EventBright where you can register to attend. The evening will start with Bruce Conklin of the Gladstone Institutes providing an overview of the many ways to use stem cells, including his own work using them to create laboratory models of heart disease. Then:

  • Malin Parmar of Sweden’s Lund University will discuss a Parkinson’s disease trial where stem cells are used to replace vital brain cells destroyed by the disease;
  • Donald Kohn of the University of California, Los Angeles, will provide details of two trials that combine stem cells and gene therapy, one for sickle cell anemia and one for severe combined immune deficiency, also called Bubble Baby disease;
  • Henry Klassen of University of California, Irvine, will talk about using progenitor stem cells to deliver factors that can protect the photoreceptors in the eyes of patients who have a blinding condition;
  • Catriona Jamieson of the University of California, San Diego will describe the bad boy of the stem cell world, the cancer stem cell, and clinical trials she is conducting to attack those cells.

While some of the hundreds of current stem cell clinical trials will not produce the desired impact on their target diseases, they will all make strides toward learning how to optimize the great potential of stem cell therapies.

Right now CIRM is funding 16 different clinical trials in diseases as varied as HIV/AIDS and type 1 diabetes. Over the next 5 years we hope to add another 50 clinical trials to that list. The field of regenerative medicine is advancing. This event is a chance for you to understand the progress, and the challenges, that we face in bringing potentially life-changing, even life-saving therapies to the people who need it the most, the patients.