Stem cells used to promote quick and precise bone healing

A close-up view of the intricate microarchitecture of the pluripotent stem-cell-derived extracellular matrix. Image Credit: Carl Gregory/Texas A&M

Although some broken bones can be mended with the help of a cast, others require more complex treatments. Bone grafts, which can come from the patient’s own body or a donor, are used to transplant bone tissue to the injury site. However, these procedures can have setbacks such as increased recovery time and chronic pain. Each year approximately 600,000 people in the United States alone experience complications from bone healing.

Researchers at Texas A&M University found a way to use induced pluripotent stem cells (iPSCs), a type of stem cell that can turn into any cell type and can be derived from adults cells (e.g. skin cells), to create superior bone grafts. The team of researchers said these grafts could potentially be used to promote swift and precise bone healing, enabling patients to optimally benefit from surgical intervention.

The Texas A&M team used iPSCS to make mesenchymal stem cells (MSCs), which make the extracellular matrix needed for bone grafts. MSCs can be obtained from bone marrow, but they have a relatively shorter life span and are not as biologically active when compared to MSCs generated from iPSCs.

To test the effectiveness of their iPSC generated bone grafts, they implanted the extracellular matrix at a site of bone defects. After a few weeks, they found that their iPSC generated matrix was five to sixfold more effective than the best FDA-approved graft stimulator.

In a news release from Texas A&M, Dr. Roland Kaunas discusses the potential benefits of using iPSC generated bone grafts.

“Our material is very promising because the pluripotent stem cells can ideally generate many batches of the extracellular matrix from just a single donor which will greatly simplify the large-scale manufacturing of these bone grafts.”

Additionally, the Texas A&M team said this approach has the potential to be incorporated into numerous engineered implants, such as 3D-printed implants or metal screws, so that these parts integrate better with the surrounding bone.

The full results of this study were published in Nature Communications.

A brief video on bone grafts from Texas A&M is available below.

2 thoughts on “Stem cells used to promote quick and precise bone healing

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.