CIRM Board Approves Two New Discovery Research Projects for COVID-19

Dr. Karen Christman (left) and Dr. Lili Yang (right)

This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two new discovery research project as part of the $5 million in emergency funding for COVID-19 related projects.  This brings the number of COVID-19 projects CIRM is supporting to 17, including three clinical trials.

$249,974 was awarded to Dr. Karen Christman at UC San Diego to develop a treatment for Acute Respiratory Distress Syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs and is prevalent in COVID-19 patients.  Dr. Christman and her team will develop extracellular matrix (ECM) hydrogels, a kind of structure that provides support to surrounding cells.  The goal is to develop a treatment that can be delivered directly to site of injury, where the ECM would recruit stem cells, treat lung inflammation, and promote lung healing.

$250,000 was awarded to Dr. Lili Yang at UCLA to develop a treatment for COVID-19.  Dr. Yang and her team will use blood stem cells to create invariant natural killer T (iNKT) cells, a powerful kind of immune cell with the potential to clear virus infection and mitigate harmful inflammation.  The goal is to develop these iNKT cells as an off the shelf therapy to treat patients with COVID-19.

These awards are part of CIRM’s Quest Awards Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.

“The harmful lung inflammation caused by COVID-19 can be dangerous and life threatening,” says Maria T. Millan, M.D., the President and CEO of CIRM. “Early stage discovery projects like the ones approved today are vital in developing treatments for patients severely affected by the novel coronavirus.”

Earlier in the week the Board also approved changes to both DISC2 and clinical trial stage projects (CLIN2). These were in recognition of the Agency’s remaining budget and operational timeline and the need to launch the awards as quickly as possible.

For DISC2 awards the changes include:

  • Award limit of $250,000
  • Maximum award duration of 12 months
  • Initiate projects within 30 days of approval
  • All proposals must provide a statement describing how their overall study plan and design has considered the influence of race, ethnicity, sex and gender diversity.
  • All proposals should discuss the limitations, advantages, and/or challenges in developing a product or tools that addresses the unmet medical needs of California’s diverse population, including underserved communities.

Under the CLIN2 awards, to help projects carry out a clinical trial, the changes include:

  • Adjust award limit to the following:
Applicant typePhase 1, Phase 1/2, Feasability Award CapPhase 2 Award CapPhase 3 Award Cap
Non-profit$9M$11.25M$7.5M
For-profit$6M$11.25M$7.5M
  • Adjust the award duration to not exceed 3 years with award completion no later than November 2023
  • Initiate projects within 30 days of approval
  • All proposals must include a written plan in the application for outreach and study participation by underserved and disproportionately affected populations. Priority will be given to projects with the highest quality plans in this regard.

The changes outlined above for CLIN2 awards do not apply to sickle cell disease projects expected to be funded under the CIRM/NHLBI Cure Sickle Cell Disease joint Initiative.

Researchers 3D print a heart pump using stem cells

This image used on the cover of the American Heart Association’s Circulation Research journal is a 3D rendering of the printed heart pump developed at the University of Minnesota. The discovery could have major implications for studying heart disease. 
Credit: Kupfer, Lin, et al., University of Minnesota

According to the Centers for Disease Control and Prevention (CDC), heart disease is the leading cause of death for men, women, and people of most racial and ethnic groups in the United States. About 647,000 Americans die from heart disease each year, which is roughly one out of every four deaths total in the US.

In order to better study heart disease, Dr. Brenda Ogle and her team at the University of Minnesota have successfully 3D printed a functioning centimeter-scale human heart pump.

Previously, researchers have attempted to 3D print heart muscle cells within a 3D structure called an extracellular matrix. The heart muscle cells were made from induced pluripotent stem cells (iPSCs), a type of stem cell that can turn into virtually any kind of cell. Unfortunately, the cell density needed for the heart cells to function was never reached.

In this study. Dr. Ogle and her team made some slight changes to the process that had failed previously. First, they optimized a specialized ink made from extracellular matrix proteins. They then mixed the newly created ink with human iPSCs and used this new mixture to 3D print the chambered structure. The iPSCS were expanded to high cell densities in the structure first, and then were differentiated into heart muscle cells. The heart muscle model is about 1.5 centimeters long and was specifically designed to fit into the abdominal cavity of a mouse for future studies.

A video of this process can be seen below:

The team of researchers found that for the first time ever they could achieve the goal of high cell density to allow the cells to beat together, just like a human heart. Furthermore, this study shows how heart muscle cells can organize and work together. The iPSCs differentiating into heart muscle cells right next to each other is comparable to how stem cells grow in the body and then undergo specification to heart muscle cells.

A video of the heart pump contractions can be seen below as well:

In a press release from the University of Minnesota, Dr. Ogle elaborates on the implications of this study.

“We now have a model to track and trace what is happening at the cell and molecular level in pump structure that begins to approximate the human heart. We can introduce disease and damage into the model and then study the effects of medicines and other therapeutics.”

The full results of this study were published in Circulation Research.

Stem cells used to promote quick and precise bone healing

A close-up view of the intricate microarchitecture of the pluripotent stem-cell-derived extracellular matrix. Image Credit: Carl Gregory/Texas A&M

Although some broken bones can be mended with the help of a cast, others require more complex treatments. Bone grafts, which can come from the patient’s own body or a donor, are used to transplant bone tissue to the injury site. However, these procedures can have setbacks such as increased recovery time and chronic pain. Each year approximately 600,000 people in the United States alone experience complications from bone healing.

Researchers at Texas A&M University found a way to use induced pluripotent stem cells (iPSCs), a type of stem cell that can turn into any cell type and can be derived from adults cells (e.g. skin cells), to create superior bone grafts. The team of researchers said these grafts could potentially be used to promote swift and precise bone healing, enabling patients to optimally benefit from surgical intervention.

The Texas A&M team used iPSCS to make mesenchymal stem cells (MSCs), which make the extracellular matrix needed for bone grafts. MSCs can be obtained from bone marrow, but they have a relatively shorter life span and are not as biologically active when compared to MSCs generated from iPSCs.

To test the effectiveness of their iPSC generated bone grafts, they implanted the extracellular matrix at a site of bone defects. After a few weeks, they found that their iPSC generated matrix was five to sixfold more effective than the best FDA-approved graft stimulator.

In a news release from Texas A&M, Dr. Roland Kaunas discusses the potential benefits of using iPSC generated bone grafts.

“Our material is very promising because the pluripotent stem cells can ideally generate many batches of the extracellular matrix from just a single donor which will greatly simplify the large-scale manufacturing of these bone grafts.”

Additionally, the Texas A&M team said this approach has the potential to be incorporated into numerous engineered implants, such as 3D-printed implants or metal screws, so that these parts integrate better with the surrounding bone.

The full results of this study were published in Nature Communications.

A brief video on bone grafts from Texas A&M is available below.