Scientists Make Insulin-Secreting Cells from Stem Cells of Type 1 Diabetes Patients

Stem cell research for diabetes is in a Golden Age. In the past few years, scientists have developed methods to generate insulin-secreting pancreatic beta cell-like cells from embryonic stem cells, induced pluripotent stem cells (iPS cells), and even directly from human skin. We’ve covered a number of recent studies in this area on our blog, and you can read more about them here.

Patients with type 1 diabetes (T1D) suffer from an autoimmune response that attacks and kills the beta cells in their pancreas. Without these important cells, patients can no longer secrete insulin in response to increased glucose or sugar levels in the blood. Cell replacement is evolving into an attractive therapeutic option for patients with T1D. Replacing lost beta cells in the pancreas is a more permanent and less burdensome solution than the daily insulin shots that many T1D patients currently take.

Cell replacement therapy for type 1 diabetes

Stem cells are the latest strategy that scientists are pursuing for T1D cell replacement therapy. The strategy involves generating beta cells from pluripotent stem cells, either embryonic or iPS cells, that function similarly to beta cells found in a healthy human pancreas. Making beta cells from a patient’s own iPS cells is the ideal way to go because this autologous form (self to self) of transplantation would reduce the chances  of transplant rejection because a patient’s own cells would be put back into their body.

Scientists have generated beta cell-like cells from iPS cells derived from T1D patients previously, but the biological nature and function of these cells wasn’t up to snuff in a side by side comparison with beta cells from non-diabetic patients. They didn’t express the appropriate beta cell markers and failed to secrete the appropriate levels of insulin when challenged in a dish and when transplanted into animal models.

However, a new study published yesterday in Nature Communications has overcome this hurdle. Teams from the Washington University School of Medicine in St. Louis and the Harvard Stem Cell Institute have developed a method that makes beta cells from T1D patient iPS cells that behave very similarly to true beta cells. This discovery has the potential to offer personalized stem cell treatments for patients with T1D in the near future.

These beta cells could be the real deal

Their current work is based off of an earlier 2014 study – from the lab of Douglas Melton at Harvard – that generated functional human beta cells from both embryonic and iPS cells of non-diabetic patients. In the current study, the authors were interested in learning whether it was possible to generate functional beta cells from T1D patients and whether these cells would be useful for transplantation given that they could potentially be less functional than non-diabetic beta cells.

The study’s first author, Professor Jeffrey Millman from the Washington University School of Medicine, explained:

Jeffrey Millman

Jeffrey Millman

“There had been questions about whether we could make these cells from people with type 1 diabetes. Some scientists thought that because the tissue would be coming from diabetes patients, there might be defects to prevent us from helping the stem cells differentiate into beta cells. It turns out that’s not the case.”

After generating beta cells from T1D iPS cells, Millman and colleagues conducted a series of experiments to test the beta cells both in a dish and in mice. They found that the T1D-derived beta cells expressed the appropriate beta cell markers, secreted insulin in the presence of glucose, and responded well to anti-diabetic drugs that stimulated the beta cells to secrete even more insulin.

When T1D beta cells were transplanted into mice that lacked an immune system, they survived and functioned similarly to transplanted non-diabetic beta cells. When the mice were treated with a drug that killed off their mouse beta cells, the surviving human T1D beta cells were successful in regulating the blood glucose levels in the mice and kept them alive.

Beta cells derived from type 1 diabetes patient stem cells (top) express the same beta cell markers as beta cells derived from non-diabetic (ND) patients.

Beta cells derived from type 1 diabetes patient stem cells (top) express the same beta cell markers as beta cells derived from non-diabetic (ND) patients. (Nature Communications)

Big Picture

The authors concluded that the beta cells they generated from T1D iPS cells were indistinguishable from healthy beta cells derived from non-diabetic patients. In a news release, Millman commented on the big picture of their study:

“In theory, if we could replace the damaged cells in these individuals with new pancreatic beta cells — whose primary function is to store and release insulin to control blood glucose — patients with type 1 diabetes wouldn’t need insulin shots anymore. The cells we’ve manufactured sense the presence of glucose and secrete insulin in response. And beta cells do a much better job controlling blood sugar than diabetic patients can.”

He further commented that the T1D- derived beta cells “could be ready for human research in three to five years. At that time, Millman expects the cells would be implanted under the skin of diabetes patients in a minimally invasive surgical procedure that would allow the beta cells access to a patient’s blood supply.”

“What we’re envisioning is an outpatient procedure in which some sort of device filled with the cells would be placed just beneath the skin,” he said.

In fact, such devices already exist. CIRM is funding a type 1 diabetes clinical trial sponsored by the San Diego based company ViaCyte. They are currently testing a combination drug delivery system that implants a medical device capsule containing pancreatic progenitor cells derived from human embryonic stem cells. Once implanted, the progenitor cells are expected to specialize into mature pancreatic cells including beta cells that secrete insulin.


Related Links:

3 thoughts on “Scientists Make Insulin-Secreting Cells from Stem Cells of Type 1 Diabetes Patients

  1. So is this a disguised pseudo beta cell? ‘Disguise’ a cell so that it performs the function of islet beta cells but would not be recognized and attacked by the immune system?

  2. Any updates on this technology, three years later? My son (who has T1D) and I are very interested in learning more.

    • Hi Sue, it’s proving trickier and more complicated than first anticipated to get this technology to work. They are making progress but it’s not ready yet to be used in people.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.