Four CIRM Funded Trials Release Results at 2019 ASH Meeting

With more than 17,000 members from nearly 100 countries, the American Society of Hematology (ASH) is an organization composed of clinicians and scientists around the world working to conquer various blood diseases. Currently, they are having their 61st Annual ASH Meeting to highlight some of the exciting work going on in the field. Four of our CIRM funded trials have released promising results at this conference and we wanted to take the opportunity to highlight them below.

Sangamo Therapeutics

Sangamo Therapeutics is conducting a CIRM-funded clinical trial for beta-thalassemia, a severe form of anemia caused by mutations in the hemoglobin gene. The therapy Sangamo is testing takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), provides a functional copy of the hemoglobin gene. These modified cells are then given back to the patient. The company announced preliminary results from their first three patients treated. in the clinical trials at the ASH 2019 Conference as well.

Some of the highlights are the following:

  • The first three patients experienced prompt hematopoietic reconstitution, meaning that their supply of blood stem cells was restored.
  • The first three patients experienced no clonal hematopoiesis, meaning that the blood stem cells did not create cells with mutations in the DNA
  • Additional study results are expected in late 2020 once enrollment is complete and all six patients have longer follow-up

You can read more detailed results regarding the first three patients in the press release.

Forty Seven, Inc.

In another CIRM funded trial, Forty Seven, Inc. is testing a treatment for myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). The treatment involves an antibody called magrolimab in combination with the chemotherapy drug azacitidine. Cancer cells express a signal that send a “don’t eat me” message to white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. Magrolimab works by blocking the signal, enabling the body’s own immune system to detect these evasive cancer cells. The goal is to use both magrolimab and azacitidine to make the cancer stem cells vulnerable to being attacked and destroyed by the immune system.

Of the 46 patients evaluated, 24 patients had untreated higher-risk MDS and 22 patients had untreated AML. None of the patients were eligible for treatment with chemotherapy.

In higher-risk MDS, the overall response rate (ORR), which is the proportion of patients in a trial whose tumor is destroyed or significantly reduced by a treatment, was 92%.

Within this group of patients with an ORR, the following was observed:

  • 12 patients (50%) achieved a complete response (CR), meaning that they experienced a disappearance of all signs of cancer in response to treatment.
  • Two patients (8%) achieved hematologic (blood) improvement. 
  • Additionally, two patients (8%) achieved stable disease, meaning the cancer is neither increasing nor decreasing in extent or severity.

In untreated AML, the ORR was 64% and the following was observed within this group patients with an ORR:

  • Nine patients (41%) achieved a CR
  • Three patients (14%) achieved a CR with an incomplete blood count recovery (CRi)
  • One patient (5%) achieved a morphologic leukemia-free state (MLFS), which is defined as the disappearance of all cells with morphologic characteristics of leukemia, accompanied by bone marrow recovery, in response to treatment.
  • Seven patients (32%) achieved stable disease (SD)

The median time to response among MDS and AML patients treated with the combination was 1.9 months.

More details regarding these results are available via the news release.

Oncternal Therapeutics

Onceternal Therapeutics, which is conducting a CIRM-funded trial for a treatment for lymphoma and leukemia, presented results at the 2019 ASH Meeting. The treatment involves an antibody called cirmtuzumab (named after yours truly) being used with a cancer fighting drug called ibrutinib. The antibody recognizes and attaches to a protein on the surface of cancer stem cells. This attachment disables the protein, which slows the growth of the leukemia and makes it more vulnerable to anti-cancer drugs.

Some of the results presented are summarized as follows:

  • Twenty-nine of the 34 patients achieved a response, for an overall best objective response rate of 85%.
  • One patient achieved a complete response (CR) and remained in remission six months after completion of the trial and discontinuation of all anti-CLL therapy. In addition, three patients met radiographic and hematologic response criteria for Clinical CR.
  • Five patients had stable disease.
  • The total clinical benefit rate was 100%.
  • None of the patients died or saw their disease progress.
  • Patients achieved responses rapidly, with 68% of patients achieving a clinical response by three months on the combination therapy.
  • The rise in leukemic cell counts that is typically seen in the first six months with ibrutinib by itself was blunted with the addition of cirmtuzumab, and leukemic cell counts returned toward baseline and normal levels rapidly.

You can read more about these results in the official press release.

Rocket Pharmaceuticals

Last, but not least, Rocket Pharmaceuticals presented results at the 2019 ASH Conference related to a CIRM-funded trial for Leukocyte Adhesion Deficiency-I (LAD-I), a rare pediatric disease caused by a mutation in a specific gene that affects the body’s ability to combat infections. As a result, there is low expression of neutrophil (CD18). The company is testing a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient. The goal is to establish functional immune cells, enabling the body to combat infections.  

Here are some of the highlights from the presentation:

  • Initial results from the first pediatric patient treated demonstrate early evidence of safety and potential effectiveness. 
  • The patient exhibited early signs of engraftment
  •  The patient also displayed visible improvement of multiple disease-related skin lesions after receiving therapy
  •  No safety issues related to administration have been identified

More detailed results on this trial are available via the news release.

Promising start to CIRM-funded trial for life-threatening blood disorder

Aristotle

At CIRM we are always happy to highlight success stories, particularly when they involve research we are funding. But we are also mindful of the need not to overstate a finding. To quote the Greek philosopher Aristotle (who doesn’t often make an appearance on this blog), “one swallow does not a summer make”. In other words, one good result doesn’t mean you have proven something works.  But it might mean that you are on the right track. And that’s why we are welcoming the news about a clinical trial we are funding with Sangamo Therapeutics.  

The trial is for the treatment of beta-thalassemia, (beta-thal) a severe form of anemia caused by a genetic mutation. People with beta-thal require life-long blood transfusions because they have low levels of hemoglobin, a protein needed to help the blood carry oxygen around the body. Those low levels of oxygen can cause anemia, fatigue, weakness and, in severe cases, can lead to organ damage and even death. The life expectancy for people with the more severe forms of the condition is only 30-50 years.

In this clinical trial the Sangamo team takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), inserts a working copy of the defective hemoglobin gene. These modified cells are given back to the patient, hopefully generating a new, healthy, blood supply which potentially will eliminate the need for chronic blood transfusions.

Yesterday, Sangamo announced that the first patient treated in this clinical trial seems to be doing rather well.

The therapy, called ST-400, was given to a patient who has the most severe form of beta-thal. In the two years before this treatment the patient was getting a blood transfusion every other week. While the treatment initially caused an allergic reaction, the patient quickly rebounded and in the seven weeks afterwards:

  • Demonstrated evidence of being able to produce new blood cells including platelets and white blood cells
  • Showed that the genetic edits made by ST-400 were found in new blood cells
  • Hemoglobin levels – the amount of oxygen carried in the blood – improved.

In the first few weeks after the therapy the patient needed some blood transfusions but in the next five weeks didn’t need any.

Obviously, this is encouraging. But it’s also just one patient. We don’t yet know if this will continue to help this individual let alone help any others. A point Dr. Angela Smith, one of the lead researchers on the project, made in a news release:

“While these data are very early and will require confirmation in additional patients as well as longer follow-up to draw any clinical conclusion, they are promising. The detection of indels in peripheral blood with increasing fetal hemoglobin at seven weeks is suggestive of successful gene editing in this transfusion-dependent beta thalassemia patient. These initial results are especially encouraging given the patient’s β0/ β0 genotype, a patient population which has proved to be difficult-to-treat and where there is high unmet medical need.” It’s a first step. But a promising one. And that’s always a great way to start.