Promoting stem cell therapies, racial justice and fish breeding

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Jan Nolta, PhD, in her lab at UC Davis; Photo courtesy UC Davis

Working at CIRM you get to meet many remarkable people and Dr. Jan Nolta certainly falls into that category. Jan is the Director of the Stem Cell Program at UC Davis School of Medicine. She also directs the Institute for Regenerative Cures and is scientific director of both the Good Manufacturing Practice clean room facility at UC Davis and the California Umbilical Cord Blood Collection Program.

As if that wasn’t enough Jan is part of the team helping guide UC Davis’ efforts to expand its commitment to diversity, equity and inclusion using a variety of methods including telemedicine, to reach out into rural and remote communities.

She is on the Board of several enterprises, is the editor of the journal Stem Cells and, in her copious spare time, has dozens of aquariums and is helping save endangered species.

So, it’s no wonder we wanted to chat to her about her work and find out what makes her tick. Oh, and what rock bands she really likes. You might be surprised!

That’s why Jan is the guest on the latest edition of our podcast ‘Talking ‘Bout (re)Generation’.

I hope you enjoy it.

A new voice and vision added to CIRM Board

UC Davis School of Medicine Dean, Dr. Allison Brashear: Photo courtesy UCD

We have a new member on the CIRM Board – Dr. Allison Brashear is the Dean of the UC Davis School of Medicine, overseeing one of the nation’s top research, academic and medical training institutions.

Dr. Brashear is an internationally known researcher in movement disorders and an expert in ATP1A3-related diseases, a spectrum of rare neurologic disorders.

Before joining UC Davis, Dr. Brashear was professor and chair of the Department of Neurology for 14 years at Wake Forest School of Medicine.

She serves on the American Board of Psychiatry and Neurology, and has served on the boards of the American Neurological Association and the American Academy of Neurology, where she was instrumental in crafting a leadership program for women, now expanded to include leadership development for minorities.

You can read more about her background in this news release. But we wanted to get a sense of what motivates and inspires Dr. Brashear. So we asked her. And she told us.

Dean Brashear being sworn in – virtually – on the CIRM Board. Top left, James Harrision CIRM General Counsel; Jonathan Thomas, CIRM Board Chair; Dr. Brashear; and Dr. Jim Kovach, Director of Industry Alliances at UC Davis, alternative Board member.

When did you get interested in science? Was this always something you knew you wanted to do?

I loved math and science in middle school and continued with science in college. I grew up hearing my parents talk about caring for patients and the impact you could have on them and their family’s lives. My father is a pulmonologist and my mother was a Ph.D. in marriage and family therapy. Together they taught me the value of patient-centered care. 

My mother was a tremendous advocate for women. When I was in middle school she took my friend and I to the state legislature and we watched the ERA (Equal Rights Amendment) debates. It’s a powerful memory but not always flattering about what people thought at the time. So, from an early age I really became a strong advocate for women, to make sure women had opportunities and that we were an inclusive culture wherever I was. 

As a woman going into a male dominated field, how did you manage to push past the skeptics and doubters to succeed? 

Early on I recognized the need to work with senior faculty who would give me an opportunity to lead and learn.  I became a chair of neurology at Wake Forest when I was 44 and was the only woman chair for 4 years. When I was appointed to the Wake Forest Baptist Medical Center Board of Directors as one of two faculty, I was the only woman. I learned early on that it was important to have sponsorship from senior leaders to succeed. I learned that, when opportunities presented themselves, to say “yes.” This is how I became the lead investigator into ATP1A3 related diseases in 1991. That project, now 11 years funded by the NIH, is one that is led by me and three other women. 

It’s still not uncommon for me to walk into a room and be the only woman. And so, making sure that there is appropriate support for women leaders is really key.

Did you have mentors to help you along the way – what was their advice to you?

I prefer the term sponsorship. Mentors advise – which is important, but more important is the role of the sponsor. A sponsor goes out of their way to advance another career. This can be a public call-out, a well-placed phone call or giving a resident what ends up being a new pathway of research.  I appreciate the many sponsors in my life, and that includes men and women.  I aspire to be a similar sponsor. This is my way to pay it forward. 

How do you sponsor others to help them overcome barriers, etc.? 

I advise women to get extra leadership training, learn about money and to make sure to have a network of advocates. I also remind them to say thank you to those who pave the way. 

I think it goes down to the message that you meet these key people in your life and they go the extra mile to help you and you, as a leader, need to take that opportunity and really just launch from it. Along the way I found I really wanted to bring people in and grow them and that was the best part of being chair of the department and one of the reasons I wanted to be a dean. When faculty join our health system I want to set them up to succeed. Celebrating others’ success with them is a great feeling. Fostering these successes is how we can be a catalyst to research and care innovations that improve health, which is at the heart of our work.  

These are interesting times to head a major university, what advice and encouragement do you have for students just starting out who face their first year “at university” at home? 

Every change brings opportunity. University at home is hard – interpersonal relationships are so important to learning and we miss that when we are on Zoom. I advise students and faculty to nurture those social connections.

When you are not working what do you do for fun?  

I hang out with my husband and our two rescue dogs. We are making plans to go explore California when the COVID-19 pandemic settles down. We had our two adult children home during the shutdown, but both are back at school on the East Coast. 

Cell mate: the man who makes stem cells for clinical trials

When we announced that one of the researchers we fund – Dr. Henry Klassen at the University of California, Irvine – has begun his clinical trial to treat the vision-destroying disease retinitis pigmentosa, we celebrated the excitement felt by the researchers and the hope from people with the disease.

But we missed out one group. The people who make the cells that are being used in the treatment. That’s like praising a champion racecar driver for their skill and expertise, and forgetting to mention the people who built the car they drive.

Prof. Gerhard Bauer

Prof. Gerhard Bauer

In this case the “car” was built by the Good Manufacturing Practice (GMP) team, led by Prof. Gerhard Bauer, at the University of California Davis (UC Davis).

Turns out that Gerhard and his team have been involved in more than just one clinical trial and that the work they do is helping shape stem cell research around the U.S. So we decided to get the story behind this work straight from the horse’s mouth (and if you want to know why that’s a particularly appropriate phrase to use here read this previous blog about the origins of GMP)

When did the GMP facility start, what made you decide this was needed at UC Davis?

Gerhard: In 2006 the leadership of the UC Davis School of Medicine decided that it would be important for UC Davis to have a large enough manufacturing facility for cellular and gene therapy products, as this would be the only larger academic GMP facility in Northern CA, creating an important resource for academia and also industry. So, we started planning the UC Davis Institute for Regenerative Cures and large GMP facility with a team of facility planners, architects and scientists, and by 2007 we had our designs ready and applied for the CIRM major facilities grant, one of the first big grants CIRM offered. We were awarded the grant and started construction in 2008. We opened the Institute and GMP facility in April of 2010.

How does it work? Do you have a number of different cell lines you can manufacture or do people come to you with cell lines they want in large numbers?

Gerhard: We perform client driven manufacturing, which means the clients tell us what they need manufactured. We will, in conjunction with the client, obtain the starting product, for instance cells that need to undergo a manufacturing process to become the final product. These cells can be primary cells or also cell lines. Cell lines may perhaps be available commercially, but often it is necessary to derive the primary cell product here in the GMP facility; this can, for instance, be done from whole donor bone marrow, from apheresis peripheral blood cells, from skin cells, etc.

How many cells would a typical – if there is such a thing – order request?

Gerhard: This depends on the application and can range from 1 million cells to several billions of cells. For instance, for an eye clinical trial using autologous (from the patient themselves) hematopoietic stem and progenitor cells, a small number, such as a million cells may be sufficient. For allogeneic (from an unrelated donor) cell banks that are required to treat many patients in a clinical trial, several billion cells would be needed. We therefore need to be able to immediately and adequately adjust to the required manufacturing scale.

Why can’t researchers just make their own cells in their own lab or company?

Gerhard: For clinical trial products, there are different, higher, standards than apply for just research laboratory products. There are federal regulations that guide the manufacturing of products used in clinical trials, in this special case, cellular products. In order to produce such products, Good Manufacturing Practice (GMP) rules and regulations, and guidelines laid down by both the Food and Drug Administration (FDA) and the United States Pharmacopeia need to be followed.

The goal is to manufacture a safe, potent and non-contaminated product that can be safely used in people. If researchers would like to use the cells or cell lines they developed in a clinical trial they have to go to a GMP manufacturer so these products can actually be used clinically. If, however, they have their own GMP facility they can make those products in house, provided of course they adhere to the rules and regulations for product manufacturing under GMP conditions.

Besides the UC Irvine retinitis pigmentosa trial now underway what other kinds of clinical trials have you supplied cells for?

Gerhard: A UC Davis sponsored clinical trial in collaboration with our Eye Center for the treatment of blindness (NCT01736059), which showed remarkable vision recovery in two out of the six patients who have been treated to date (Park et al., PMID:25491299, ), and also an industry sponsored clinical gene therapy trial for severe kidney disease. Besides cellular therapy products, we also manufacture clinical grade gene therapy vectors and specialty drug formulations.

For several years we have been supplying clinicians with a UC Davis GMP facility developed formulation of the neuroactive steroid “allopregnanolone” that was shown to act on resident neuronal stem cells. We saved several lives of patients with intractable seizures, and the formulation is also applied in clinical trials for the treatment of traumatic brain injury, Fragile X syndrome and Alzheimer’s disease.

What kinds of differences are you seeing in the industry, in the kinds of requests you get now compared to when you started?

Gerhard: In addition, gene therapy vector manufacturing and formulation work is really needed by several clients. One of the UC Davis specialties is “next generation” gene-modified mesenchymal stem cells, and we are contacted often to develop those products.

Where will we be in five years?

Gerhard: Most likely, some of the Phase I/II clinical trials (these are early stage clinical trials with, usually, relatively small numbers of patients involved) will have produced encouraging results, and product manufacturing will need to be scaled up to provide enough cellular products for Phase III clinical trials (much larger trials with many more people) and later for a product that can be licensed and marketed.

We are already working with companies that anticipate such scale up work and transitioning into manufacturing for marketing; we are planning this upcoming process with them. We also believe that certain cellular products will replace currently available standard medical treatments as they may turn out to produce superior results.

What does the public not know about the work you do that you think they should know?

Gerhard: The public should know that UC Davis has the largest academic Good Manufacturing Practice Facility in Northern California, that its design was well received by the FDA, that we are manufacturing a wide variety of products – currently about 16 – that we are capable of manufacturing several products at one time without interfering with each other, and that we are happy to work with clients from both academia and private industry through both collaborative and Fee-for-Service arrangements.

We are also very proud to have, during the last 5 years, contributed to saving several lives with some of the novel products we manufactured. And, of course, we are extremely grateful to CIRM for building this state-of-the-art facility.

You can see a video about the building of the GMP facility at UC Davis here.